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Epilepsy is a disease with substantial missing heritability; despite its high genetic component, genetic association studies have

had limited success detecting common variants which influence susceptibility. In this paper, we reassess the role of common

variants on epilepsy using extensions of heritability analysis. Our data set consists of 1258 UK patients with epilepsy, of which

958 have focal epilepsy, and 5129 population control subjects, with genotypes recorded for over 4 million common single

nucleotide polymorphisms. Firstly, we show that on the liability scale, common variants collectively explain at least 26%

(standard deviation 5%) of phenotypic variation for all epilepsy and 27% (standard deviation 5%) for focal epilepsy.

Secondly we provide a new method for estimating the number of causal variants for complex traits; when applied to epilepsy,

our most optimistic estimate suggests that at least 400 variants influence disease susceptibility, with potentially many thou-

sands. Thirdly, we use bivariate analysis to assess how similar the genetic architecture of focal epilepsy is to that of non-focal

epilepsy; we demonstrate both significant differences (P = 0.004) and significant similarities (P = 0.01) between the two

subtypes, indicating that although the clinical definition of focal epilepsy does identify a genetically distinct epilepsy subtype,

there is also scope to improve the classification of epilepsy by incorporating genotypic information. Lastly, we investigate the

potential value in using genetic data to diagnose epilepsy following a single epileptic seizure; we find that a prediction model

explaining 10% of phenotypic variation could have clinical utility for deciding which single-seizure individuals are likely to

benefit from immediate anti-epileptic drug therapy.
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Introduction
Epilepsy is a common, serious neurological disease, defined by an

enduring predisposition to epileptic seizures (Fisher et al., 2005),

which across North America and Europe affects approximately five

people in every 1000 (Banerjee et al., 2009). It is a highly hetero-

geneous condition that encompasses a spectrum of clinical sub-

types, defined by EEG, seizure type and brain imaging criteria.

Although clinical classifications are constantly evolving and

remain a source of debate (Korff and Scheffer, 2013), patients

with epilepsy can be divided into one of two broad categories:

focal epilepsy, defined as seizures originating within one cerebral

hemisphere, and non-focal epilepsy, of which the majority have

generalized epilepsy and a smaller proportion are unclassifiable

(Berg et al., 2010). Where care has been taken with seizure clas-

sification, �60% of people with epilepsy are classified as focal

(Banerjee et al., 2009).

Although traditional estimates of heritability for epilepsy vary

greatly, depending on the method used, the population sampled

and the mixture of clinical subtypes considered, studies have con-

sistently demonstrated that the condition has a substantial genetic

component; estimates of heritability from twin studies typically fall

in the range 25–70% (Miller et al., 1998; Kjeldsen et al., 2001).

By contrast, the molecular genetic factors affecting common forms

of epilepsy remain poorly understood. The largest genome-wide

association study (GWAS) to date, which considered 3445

Caucasian patients with focal epilepsy and 6935 control subjects,

found no single nucleotide polymorphisms (SNPs) significantly

associated with risk (Kasperavičirūte_ et al., 2010). In a smaller

GWAS of 1087 Chinese focal patients and 3444 controls,

genome-wide significance was achieved by a single locus on

1q32.1 (minimum P = 1� 10�8; Guo et al., 2011), whereas a

GWAS of 1527 European generalized patients and 2451 controls

reported significant loci at 2p16.1 and 17q21.32 (minimum

P = 2�10�9 and P = 9� 10�9, respectively; EPICURE

Consortium et al., 2012). None of these three loci have yet

been replicated in independent studies. For a minority of epilepsy

cases, rare copy number variants have been shown to confer risk

for both focal and non-focal forms of epilepsy (Dibbens et al.,

2009; de Kovel et al., 2010; Heinzen et al., 2010), whereas for

uncommon, monogenic forms of epilepsy, many causal genes

have been identified using linkage analysis or exome sequencing

of parent-offspring trios (Heinzen et al., 2012; Epi4K Consortium

et al., 2013; Hildebrand et al., 2013); however, altogether these

findings explain only a small fraction of the overall population

susceptibility of epilepsy.

To date, GWAS have predominantly focussed on marginal

(single-SNP) analyses, where each SNP is tested individually for

association with the phenotype. To allow for the large number

of SNPs being tested (from a few hundred thousand to many

millions), a SNP is only declared associated if its P-value is below

a stringent significance threshold (typically P55� 10�8). So al-

though GWAS have successfully discovered SNPs influential for (or

which tag variants which influence) a large variety of phenotypes,

with standard sample sizes, they will struggle to detect SNPs of

moderate or weak effect. In recent years, methods have been

developed for assessing the joint influence of multiple SNPs on

phenotypes. A major advantage of these methods is that they

can appreciate the contribution of variants with effect sizes too

small to be picked up through traditional marginal analysis. In

particular, it has been shown that by applying SNP-based herit-

ability analysis to GWAS of nominally unrelated individuals, it is

possible to estimate the total variance explained by common vari-

ants (Yang et al., 2010, 2011; Speed et al., 2012), whereas by

using a bivariate extension of the method it is possible to examine

the amount of overlap between the genetic architecture of two

traits (Lee et al., 2012).

In this study, we use extensions of SNP-based heritability ana-

lysis to reconsider the impact on susceptibility to epilepsy of

common variants, defined as those with minor allele frequency

40.01, and to describe the genetic architecture of the disease.

Our data set consists of genome-wide SNP data for 1258 epilepsy

cases and 5129 population controls. Although marginal analysis

finds no individual SNPs significantly associated with susceptibility

to epilepsy, we determine that collectively common SNPs explain a

sizeable proportion of phenotypic variation: 26% [standard devi-

ation (SD) 5%] when considering all epilepsy and 27% (SD 6%)

when considering patients with focal epilepsy. These estimates

account for inflation due to population structure and genotyping

errors. By considering genome-wide distributions of heritability

that are consistent with the results from our association and her-

itability analyses, we show that epilepsy is a highly polygenic trait

with a minimum of 400 susceptibility loci, but potentially many

thousands, and that the majority of heritability resides with

loci which individually explain only a small fraction (50.04%)

of phenotypic variation. These results indicate that large meta-

analyses, involving tens of thousands of individuals, will be

required to confidently detect individual SNPs influencing suscep-

tibility to epilepsy.

One measure of the genetic similarity between two traits is �,

the correlation between SNP effect sizes for each trait: � = 1 indi-

cates the two traits have identical genetic aetiologies whereas

� = 0 indicates no overlap. Using bivariate analysis (Lee et al.,

2012), we estimate � = 0.45 for focal and non-focal epilepsy.

This result shows that there are significant differences between

the genetic architectures of the two subtypes (P = 0.004 when

testing the hypothesis � = 1), reinforcing the belief that focal

and non-focal forms of epilepsy represent distinct disorders.

However, it also demonstrates a significant overlap between

these two subtypes of epilepsy (P = 0.01 when testing � = 0);

this suggests there is scope to improve current clinical classifica-

tions, perhaps by incorporating genetic markers, which would

facilitate the identification of subtype-specific genetic associations.

Our result emphasizes the importance of considering both ‘all

epilepsy’ and its individual clinical subgroups in the search for

susceptibility loci.

Conceptually, epilepsy is said to exist after at least one unpro-

voked, non-febrile seizure and when there is a high risk of recur-

rence (Fisher et al., 2005). As �50–60% of individuals who

experience a first, unprovoked, non-febrile epileptic seizure will

never experience a second (Berg et al., 2010), on a practical

level the diagnosis of epilepsy has traditionally relied on the pres-

ence of at least two epileptic seizures, as then the chance of
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recurrence is sufficiently high (60–90%; Hauser et al., 1998).

Recently, the International League Against Epilepsy (ILAE) have

adopted a new definition of epilepsy, such that an individual

experiencing their first seizure should be considered to have epi-

lepsy if their probability of further seizures is similar to the general

recurrence risk after two seizures (Fisher et al., 2014).

Given the substantial estimates of variance explained, then with

sufficient sample size it should be possible to construct a reason-

able prediction model for epilepsy using genome-wide SNP data.

Although the low prevalence of epilepsy means that this model

would have limited value in terms of predicting which individuals

in the general population will develop epilepsy, we examine how

well they could assist the diagnosis of epilepsy for patients who

have experienced a first epileptic seizure. We find that the ability

of such a model to predict which single-seizure individuals will

have subsequent seizures depends heavily on the distribution of

liability values of individuals for whom the first seizure remains an

isolated event. In the best case scenario, we determine that to

achieve AUC (area under the receiver operating curve)40.75,

which has been considered a threshold for clinical use (Janssens

et al., 2006), it is necessary to construct a prediction model ex-

plaining 10% of phenotypic variation.

Materials and methods
Epilepsy patients were recruited to our study by epilepsy specialists at

UK epilepsy centres (Speed et al., 2014). Inclusion criteria for the

study were: (i) epilepsy patients aged 5 years or older; (ii) two or

more unprovoked, non-febrile seizures; and (iii) able to give informed

consent. Exclusion criteria were: (i) provoked seizures (e.g. alcohol); (ii)

acute symptomatic seizures (e.g. acute brain injury); and (iii) progres-

sive neurological disease (e.g. brain tumour). Patients were classified

according to ILAE guidelines (Commission on Classification and

Terminology of the ILAE, 1989; Berg et al., 2010). Epilepsy subtype

was determined by clinicians, and classified as focal, generalized or

unclassified (unclassified where there was no evidence for focal

onset either clinically or from neuroimaging, but where the EEG did

not show a generalized epileptic discharge). A breakdown of epilepsy

subtypes is provided in Supplementary Table 1.

After quality control, our data comprise 1258 UK epilepsy patients

(958 of subtype focal, 151 generalized and 149 unclassified),

combined with 5129 controls (2655 from the 1958 Birth Cohort and

2464 from the National Blood Service; The Wellcome Trust Case

Control Consortium, 2007). Before imputation, individuals were

recorded for 299 735 autosomal SNPs with minor allele frequency

40.01; after imputation against the 1000 Genome Phase I June

2011 (interim) reference panel using IMPUTE2 (The 1000 Genomes

Project Consortium, 2010; Howie et al., 2011), this number

increased to 4 238 038. Our quality control steps (detailed in full

in the Appendix) sought to exclude suspect samples, poorly genot-

yped or imputed SNPs, and apparent population outliers.

Additionally, we removed close relatedness by filtering samples so

that no pair remained with estimated kinship (computed using allelic

correlations; Astle and Balding, 2009) 42.6%, a level of relatedness

slightly lower than that expected between second cousins (Yang et al.,

2010).

Details of our statistical analyses are provided in Appendix 1.

Results

Marginal association analysis
Figure 1 presents P-values from marginal tests of association for

susceptibility to all epilepsy (1258 cases, 5129 control subjects).

We used an additive logistic regression model, including as covari-

ates sex and the five leading principal component axes (the ap-

propriate number of axes to include was determined through

heritability analysis, see below and Supplementary Fig. 1). The

genomic inflation factor is 1.05. The smallest association P-value

for any SNP is P = 1.9�10�6, considerably above 5� 10�8, the

conventional threshold for genome-wide significance. We had

80% power to detect a variant explaining 40.46% of liability

variation (see below for an explanation of the liability model)

and 50% power to detect a variant explaining 40.35%

(Supplementary Fig. 2) We also performed the analysis using

only focal epilepsy patients (958 cases), and using only non-

focal patients (300 cases consisting of patients with generalized

and unclassified epilepsy combined). Again, no SNPs reached

genome-wide significance (Supplementary Fig. 3); the smallest

P-values were P = 1.9�10�6 (inflation factor 1.05) and

P = 8.2�10�8 (inflation factor 1.01), respectively. Our results for

focal epilepsy are consistent with those of Kasperavičirūte_ et al.

(2010), who concluded there was no evidence for common SNPs

affecting focal epilepsy susceptibility with odds ratios 41.3 (their

study included our control samples). Notably, we found no sup-

port for rs2292096 within CAMSAP1 (in our analysis this SNP

had P = 0.26, whereas the minimum P across the 178 SNPs within

this gene is 0.22). The study identifying this SNP considered

focal epilepsy patients of Chinese ancestry (Guo et al., 2011)

whereas our patients are of European ancestry. We also

consider generalized epilepsy (151 cases), identifying a single locus

within SYNRG (top SNP rs116499908, P = 3.3�10�8; inflation

factor 1.01).

Variance explained by common single
nucleotide polymorphisms
When considering a disease phenotype, it is convenient to sup-

pose an underlying liability model (Supplementary Fig. 4); this as-

sumes that case/control status is determined according to whether

or not an individual’s liability, an unobservable, normally distribu-

ted random variable, lies above or below a threshold (Falconer and

Mackay, 1996). On this scale, estimates of variance explained are

invariant to disease prevalence and study ascertainment. To esti-

mate h2
L, the proportion of phenotypic liability variation which can

be attributed to common SNPs, we first use LDAK (Speed et al.,

2012) to calculate a kinship matrix based on allelic correlations

across autosomes, using an additive encoding of SNPs, with

values centred and scaled to have mean zero and variance one.

Then, including as fixed effects sex and the top five principal

component axes as used in the association analysis above, we

use restricted maximum likelihood (REML) to estimate h2
O
, the

fraction of phenotypic variation on the observed scale (cases 1,

controls 0) attributable to the kinship matrix. h2
L is then related
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to h2
O

via

h2
L ¼ h2

o � K2 1� Kð Þ
2=p 1� p

� �
z2;

where K is the disease prevalence, p is the proportion of cases in

the sample, and z is the standard normal density at the liability

threshold (Dempster and Lerner, 1950; Yang et al., 2011)

(Supplementary Fig. 4). The accuracy of this transformation has

been questioned for extreme prevalences (Yang et al., 2011), so

to test its appropriateness for our study, we simulate phenotypes

with K = 0.005 and P = 1258/6387 (the values we use when ana-

lysing the phenotype all epilepsy). We find that the resulting es-

timates of h2
L are on average 90% of the true values

(Supplementary Fig. 5), indicating that heritability analysis will

tend to moderately underestimate the total variance explained

on the liability scale for low prevalence diseases.

Table 1 reports our estimates of h2
O

and h2
L for all epilepsy, and for

the subtypes focal and non-focal (generalized and unclassified pa-

tients combined). As expected, estimates with imputed SNPs

included are larger than those based only on genotyped SNPs, on

average by about a quarter. The final column reports h2
C, which ad-

justs the corresponding estimate of h2
L for inflation due to population

stratification and genotyping errors (see below). To benchmark esti-

mates of h2
L, it is possible to estimate h2

T, the total liability heritability

for each phenotype from estimates of prevalence and sibling relative

risk (Falconer and Mackay, 1996; Wray et al., 2010). Using the

values reported by Ottman et al. (1998) and Peljto et al. (2014),

we estimate for all epilepsy h2
T = 32% (95% CI 24–41), for focal

epilepsy h2
T = 23% (95% CI 5–43), and for non-focal epilepsy

h2
T = 36% (95% CI 15–59). Despite their limited precision, the esti-

mates of h2
T suggest that for each epilepsy phenotype, common SNPs

are able to explain the majority of liability heritability, and this

conclusion holds for alternative estimates of the population preva-

lence (Supplementary Table 2).

The epilepsy cases were genotyped using a lower coverage

array than the two wild-type control data sets used for this

study (Illumina 660Q as opposed to Illumina 1.2 M), so for the

main analysis we imputed case and control cohorts separately.

However, we additionally imputed all three cohorts together,

starting with the subset of SNPs present on all three arrays. The

resulting estimate for all epilepsy was h2
L = 31.7%, almost identical

to our previous estimate (h2
L = 31.5%), suggesting that with suf-

ficient quality control, separate imputation is not a concern (and

generally much faster). When computing kinships, LDAK adjusts

for uneven tagging (Speed et al., 2012). For comparison, we also

omitted this adjustment, following instead the method of Yang

et al. (2010). For each phenotype, the resulting estimate of h2
L

based on imputed SNPs was lower than that using only genotyped

SNPs (Supplementary Table 3), a paradoxical result that demon-

strates the importance of adjusting for tagging when performing

heritability analysis. An additional benefit of the adjustment is that

for the imputed data only �7% of the 4.3 million SNPs receive a

non-zero weighting, effecting a 14-fold data reduction and speed-

up when subsequently estimating variance explained.

Inflation due to residual familial
relatedness, population structure and
genotyping errors
The reason that we require individuals to be distantly related is be-

cause we want to estimate the variance explained only by causal

variation in linkage disequilibrium with common SNPs. By contrast,

Figure 1 Manhattan plot for single SNP tests of association. Points report -log10 P-values from single-SNP tests of association for the

phenotype all epilepsy (1258 cases, 5129 controls). Red/blue points correspond to genotyped SNPs, grey to imputed. The conventional

threshold for genome-wide significance (5� 10�8) is marked by a horizontal dashed line. Manhattan plots for the phenotypes focal, non-

focal and generalized epilepsy are provided in Supplementary Fig. 3.

Table 1 Estimates of variance explained by common SNPs

Phenotype Population Sibling Total liability Genotyped SNPs Imputed SNPs

Prevalence Relative risk Heritability, h2
T h2

O
h2

L h2
O

h2
L h2

C

All epilepsy (1258 cases) 0.005 3.3 [2.5–4.3] 32 [24–41] 31 (6) 23 (4) 42 (6) 31 (5) 26

Focal (958 cases) 0.003 2.6 [1.2–5.3] 23 [5–43] 33 (6) 27 (5) 41 (7) 33 (5) 27

Non-focal (300 cases) 0.002 4.7 [2.1–10.8] 36 [15–59] 21 (7) 38 (12) 24 (8) 46 (14) 44

For each phenotypes, we report estimates of h2
O
, the percentage of variance explained on the observed scale (cases 1, controls 0), and h2

L , the corresponding estimate on the

liability scale (standard deviations provided in parentheses). h2
C is obtained from h2

L by subtracting the estimated inflation due to population stratification and genotyping
errors (see text). For comparison, h2

T, the total liability heritability, is estimated for each phenotype based on the prevalence and reported estimates of sibling relative risk
(95% CI shown in square brackets).
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when closely related pairs of individuals are included, they will tend

to share long genomic regions leading to long-range tagging, and

also estimates of h2
L will possibly include contributions from shared

environmental factors. Additionally, estimates will depend on the

degree of relatedness between the sampled individuals, whereas

with unrelated individuals estimates should be stable across popu-

lations (because linkage disequilibrium tends to be stable). We also

wish to avoid population differences between cases and controls;

when these are present, then variants that correlate with these dif-

ferences (for example, SNPs whose allele frequencies vary between

populations) will contribute towards estimates of variance ex-

plained, whether or not they tag true causal variation. We previ-

ously formalized a test to measure inflation of estimates of variance

explained due to residual relatedness and population structure

(Speed et al., 2012). For the phenotype all epilepsy, we calculate

that when including five principal component axes as covariates,

�9% of our estimate of h2
L corresponds to inflation from these

sources (i.e. in absolute terms, our estimate was inflated by

�3%); the 9% value becomes 8% for focal epilepsy and 1% for

non-focal epilepsy (Supplementary Fig. 1). These results indicate

that the cases and controls are sufficiently well-matched with re-

spect to population and that estimates of variance explained are not

substantially affected by residual relatedness.

Estimates of h2
L can also be inflated by genotyping errors, and

strict quality control is required when analysing binary outcomes

for which cases and controls have been genotyped separately

(Yang et al., 2011; Speed et al., 2012). In Appendix 1, we

derive a formula for how the heritability of a binary trait changes

according to relabeling or exclusion of samples. When two or

more control data sets are present, this formula allows us to esti-

mate inflation due to genotyping errors within control individuals;

we provide proof through simulation (Supplementary Fig. 6). For

‘all epilepsy’, we estimate that inflation due to genotyping errors

in controls accounts for �8% of our estimate for h2
L (in absolute

terms 2%); for focal epilepsy this figure is 11%, for non-focal

epilepsy 3% (Supplementary Table 4). Although having only one

case data set prevents us from measuring inflation due to geno-

typing errors among case individuals, given that the same quality

control steps were used, we expect this to be of similar magni-

tude. Our final estimates of h2
L, with these three sources of infla-

tion discounted, are h2
C = 26% for all epilepsy, h2

C = 27% for focal

epilepsy and h2
C = 44% for non-focal epilepsy.

Variance explained by reported
susceptibility loci
The methodology above can also be used to estimate the variance

explained by a subset of SNPs, by using only these SNPs when con-

structing the kinship matrix. Firstly, we consider the 6003 SNPs

within 500 kb of rs2292096 (located at 1q32.1), rs13026414

(2p16.1) and rs72823592 (17q21.32), which correspond to the

three loci identified through previous GWAS (above). The estimate

of h2
L is 50.05%, regardless of which phenotype we consider, and in

all cases not significantly different from zero (Supplementary Table

5). Secondly, we identify a list of 85 genes implicated in previous

epilepsy studies by searching the UniProtKB database (http://www.

uniprot.org) using the keyword ‘epilepsy’. Including the 119 630

SNPs located inside or within 20 kb of the transcription start or end

sites of these genes, we estimate h2
L = 3.9% (SD 1.0%) for the

phenotype all epilepsy; this estimate of variance explained is both

significantly greater than zero (P510�4) and also significantly larger

than expected given the number of SNPs involved (permuted

P50.01; Supplementary Table 5), indicating that these genes do

harbour susceptibility loci, but that collectively they account for a

relatively small fraction of the total heritability of epilepsy.

Estimating the number of causal
variants
We explain how it is possible to gain insights into the number of

causal variants underlying a phenotype by considering possible

ways the total variance explained by common SNPs is distributed

across the genome. By causal variant, we mean any source of genetic

variation which affects the phenotype (here, epilepsy susceptibility).

As we are considering variation tagged by common SNPs, we expect

most of these causal variants to also be common SNPs, but this is not

necessarily the case because common SNPs will to some extent tag

other sources of variation, such as rare variants and copy number

variations (see the ‘Discussion’ section).

For Fig. 2, we base calculations on the results of our association

and heritability analysis for the phenotype all epilepsy; see
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Figure 2 Estimating the number of causal variants. We suppose

heritability is distributed over causal variants either equally

(black), uniformly (red), exponentially (green) or �2 (blue). (A) As

the number of causal variants increases (x-axis), the average

heritability of each variant decreases, and the probability of

single-SNP analysis finding no significant associations increases

(y-axis). For each distribution, our point estimates (lower bounds)

for the number of causal variants are the numbers required for

this probability to exceed 0.5 (0.05), and are marked by vertical

lines. Based on the point estimates, the histograms in B show for

each distribution how much heritability each causal variant ex-

plains. The values above bars report the proportion of variance

explained by causal variants within each tranche.
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Supplementary Fig. 7 for focal and non-focal epilepsy. We fix

the total variance explained by all causal variants at 26%. For

Fig. 2A, we vary the number of causal variants (x-axis) and the

distribution of heritability across these variants (colour), then

calculate the probability that no single variant achieves

P5 1.9� 10�6 from single-SNP association analysis (Appendix

1). For each distribution, we record how many causal variants

are required for this probability to exceed 0.5 (our point esti-

mate) or 0.05 (our estimated lower bound). The most parsimo-

nious scenario is that all causal variants contribute equal

heritability (black line), similar to the distribution so far

observed for human height and schizophrenia (Kemper et al.,

2012), which would suggest 870 causal variants, with a min-

imum of 420. If we instead suppose the distribution of herit-

ability is uniform (red line), 1230 causal variants are required

(minimum 600); if exponential (green line), the distribution con-

sidered by Goldstein (2008), 2160 are needed (minimum 1060);

if ‘�2’ (a gamma distribution with shape parameter 0.5; blue

line), the distribution that applies to heritability contributions if

effect sizes are Gaussian (Yang et al., 2010; Speed et al.,

2012), the number rises to 3390 (minimum 1650).

Given the point estimates for the number of causal variants

for epilepsy, the histograms in Fig. 2B show the spread of her-

itability for each of the four distributions. Regardless of the dis-

tribution considered, the majority of total heritability is

accounted for by variants that each explain 50.04% of pheno-

typic variation. Table 2 shows how the expected success of an

epilepsy GWAS depends on its total sample size n. For example,

if heritability is distributed exponentially with 2160 causal vari-

ants, and n is increased to 20 000, 50 000 or 100 000 (main-

taining a similar case-control ratio) we would expect to detect 6,

103 or 401 of the 2160 causal variants, explaining in total

0.3%, 4.3% or 12.2% of liability variation. The figures are simi-

lar regardless of the assumed distribution, and in all cases,

412 500 samples are required before we can expect to find

at least one causal variant, although the predicted success can

be improved by increasing the ratio of cases to controls

(Supplementary Table 6).

Overlap between subtypes
We can measure the concordance between focal and non-focal

epilepsy by �, the correlation between the SNP effect sizes for

each phenotype; � close to 1 indicates that the effect sizes for

focal epilepsy are very similar to those for non-focal epilepsy, and

would suggest that the clinical divide of patients into focal and

non-focal has very little genetic basis. Using a bivariate extension

to heritability analysis (Lee et al., 2012), we estimate � = 0.45, a

value significantly lower than 1 (P = 0.007 or P = 0.00002, de-

pending on how the control datasets are matched with focal

and non-focal cases; Supplementary Table 7), indicating that pa-

tients with focal epilepsy are genetically distinct. However, our

estimate of � is also significantly greater than 0 (P = 0.02 or

P = 0.001), indicating that many causal variants are common to

both subtypes. These findings suggest that clinical classifications

could be improved upon and that at present when conducting an

epilepsy GWAS it is advisable to analyse epilepsy subtypes both

separately and together.

Prediction models based on common
single nucleotide polymorphisms
We investigated the potential for predicting an individual’s risk of

developing epilepsy using a linear prediction model constructed

from common SNPs. This model takes the form:

Gi ¼ �ibjXij

where Gi is the predicted risk score for Individual i, Xij is the geno-

typic value of Individual i for SNP j, and bj is the corresponding

SNP effect size. The performance of a prediction model can be

measured by r2
L, the squared correlation between each individual’s

predicted risk Gi and their liability value (r2
L can be computed from

r2
O
, the squared correlation between Gi and case/control status,

using the transformation above). For prediction models con-

structed from common SNPs, h2
L represents an upper bound on

r2
L; how close performance will be to this upper bound in practice

will depend on how accurately the effect sizes can be estimated,

which in turn depends on the available sample size, the genetic

Table 2 Expected success of single-SNP analyses

Equal, 870 Causal loci n = 6387 n = 12 500 n = 20 000 n = 50 000 n = 100 000

Expected number of associations 0.1 0.6 3.9 147 710

% of variance explained 0.0 0.0 0.1 4.4 21.4

Uniform, 1230 Causal loci n = 6387 n = 12 500 n = 20 000 n = 50 000 n = 100 000

Expected number of associations 0.1 0.7 4.6 142 570

% of variance explained 0.0 0.0 0.2 4.9 17.8

Exponential, 2160 Causal loci n = 6387 n = 12 500 n = 20 000 n = 50 000 n = 100 000

Expected number of associations 0.1 0.9 5.7 103 401

% of variance explained 0.0 0.0 0.3 4.3 12.2

Chi Squared, 3390 Causal loci n = 6387 n = 12 500 n = 20 000 n = 50 000 n = 100 000

Expected number of associations 0.1 0.9 5.9 96 360

% of variance explained 0.0 0.1 0.3 4.1 11.1

For each assumed distribution of heritability across causal variants, using the corresponding point estimates for the number of causal variants, we estimate
the expected number of causal variants detected and the total proportion of liability variation these explain, for different total sample size n. We assume the
case-control ratio remains fixed at 1258:5129.
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architecture of the trait, and the performance of the estimation

method used. Even if we constructed a prediction model with r2
L

close to h2
L, due to the low overall prevalence of epilepsy, this

model would still have limited use in identifying individuals from

the general population likely to develop epilepsy. For example, a

prediction model with r2
L = 0.3 would have AUC 0.89

(Supplementary Fig. 8), but assuming a population prevalence

of 0.005, then of the 10% (1%) of individuals with highest pre-

dicted risk, only 3.2% (9.6%) would be expected to develop

epilepsy.

By contrast, for individuals who experience a single, unpro-

voked, non-febrile seizure, the prevalence of epilepsy is much

higher (40–50%; Berg et al., 2010). We therefore explore how

well a SNP-based prediction model can distinguish single-seizure

individuals who have epilepsy (i.e. those destined to have fur-

ther seizures) from those who do not have epilepsy (i.e. for

whom the first seizure remains an isolated event). A major

factor influencing the success of our prediction model is the

distribution of liabilities of non-recurrent individuals. Figure 3A

and B show the ‘Best’ and ‘Worst’ case scenarios. Prediction will

be best when the liability distribution for single-seizure individ-

uals without epilepsy matches that of the general population

(i.e. that of individuals who never experience any seizures), as

then the difference between the average liability values for

single-seizure individuals with and without epilepsy will be great-

est. Conversely, the scenario where single-seizure individuals

without epilepsy have liabilities just below the case/control

threshold will prove most challenging.

For the best case scenario, Fig. 3C shows how prediction

accuracy depends on r2
L. To achieve AUC 0.75, r2

L = 0.1 is

required (green line). Given such a model, if we were to pick

the 10% (20%) of individuals with highest predicted risk, we

would expect 80% (75%) of these to experience a second seiz-

ure, and we would have identified �18% (33%) of the indi-

viduals that will subsequently develop epilepsy. However, under

the worst case scenario, performance is much poorer, and even

a prediction model with r2
L = 0.3 would only achieve AUC 0.60

(Supplementary Fig. 8). These results demonstrate the need to

recruit to studies individuals who experience a single seizure but

do not develop epilepsy, as then it will be possible to investi-

gate which liability distribution is most appropriate, and there-

fore be more precise about the potential success of prediction

models in diagnosing epilepsy following a single epileptic

seizure.

Figure 3 Performance of prediction models for single-seizure patients. A and B illustrate the two extreme cases for the distribution of

liabilities for single-seizure individuals who do not have epilepsy. In the ‘Best Case Scenario,’ their liability distribution matches that of

population controls, while in the ‘Worst Case Scenario,’ their liabilities lie just below the case/control threshold. C and D show, again for

the Best and Worst Case Scenarios, how the receiver operating curve depends on the proportion of variance explained by the prediction

model (varied between 5% and 30%, indicated by line colour); the AUC (area under receiver operating curve) for each line is provided in

parentheses.
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Discussion
We have shown how knowledge of h2

L, the total proportion of

liability variation explained by common SNPs, tells us a large

amount about the genetic architecture of the trait under consid-

eration. Although we have focused on epilepsy, the same tech-

niques can be used to improve our understanding of any disease.

We have estimated that h2
L is at least 26% for the phenotype all

epilepsy and 27% for focal epilepsy, in both cases indicating that

common SNPs explain the majority of heritability. By combining

results from association and SNP-based heritability analysis, we

have provided evidence that epilepsy has many hundreds of sus-

ceptibility loci, and that studies comprising tens of thousands of

samples and examining the genome in higher resolution (e.g.

through full sequencing or via imputation against more compre-

hensive reference panels) will be required before we can expect to

discover a reasonable number of susceptibility loci through single-

SNP analyses.

Heritability analysis can also be used to investigate the genetic

concordance between subtypes. We have demonstrated that focal

and non-focal epilepsy have distinct genetic architectures, reinfor-

cing the view that epilepsy is a genetically heterogeneous trait and

that association analyses should take account of clinically defined

subtypes; but at the same time, we also found significant overlap

between the two subtypes, meaning there is room for subtype

definitions to be improved. Ideally, we would have considered

subtypes more specific than the two broad categories considered

here, but this was not feasible with the sample size available, thus

emphasizing the importance of enhanced scientific collaboration to

better understand the relationships between the many clinically

defined epilepsy subtypes.

h2
L provides an upper bound for r2

L , the performance of linear

prediction models based on common SNPs. Although for polygenic

traits it is unrealistic to expect to achieve r2
L very close to h2

L (or,

equivalently, r2
O

close to h2
O
), with large samples sizes, it should

be possible to make reasonable progress. For example, for human

height, h2
O

has been estimated to be 0.45 (Yang et al., 2010),

and r2
O

= 0.36 has been achieved (Makowsky et al., 2011). If,

relatively speaking, we are able to do even half as well for

epilepsy, the resulting prediction model would explain �10% of

liability variation and could be used, along with clinical factors, to

identify which single-seizure patients are at high risk of experien-

cing subsequent seizures, therefore satisfying the risk-based def-

inition of epilepsy recently adopted by the ILAE, and are likely to

benefit from immediate treatment with anti-epileptic medication.

We have taken care to avoid overestimating h2
L. In particular, we

recognize that even with stringent quality control, genotyping errors

can inflate estimates; for this reason, we have proposed a way to

assess and adjust for this effect that we recommend using alongside

an existing check for inflation due to population structure and re-

sidual relatedness (Speed et al., 2012). There are many factors that

might lead to underestimation of variance explained. For example,

for prevalences similar to that of epilepsy, we have found that the

liability transformation, relied upon for converting values between

the observed and liability scale, can result in underestimation of h2
L

by about a tenth. A more subtle effect comes from the implicit

assumption that the population controls are epilepsy-free.

However, even supposing 0.5% of controls (26 individuals) actually

have epilepsy, we show that our estimate of h2
L would be only

1� (1� 0.005)2� 1% lower than the true value (see Appendix 1

and Supplementary Fig. 9). Imputing genotypes increased our esti-

mate of h2
L by about a quarter. However, despite the high coverage

of the 1000 Genome reference panel, it remains that some causal

variation will be missed or only partially tagged.

Finally, it should be remembered that while we have focused on

common SNPs, these will partially tag rare causal variants, and so

our estimate of h2
L will include a contribution from these (Dickson

et al., 2010). Similarly, although we assume a linear model, we can

still detect additive components of effects that are dominant or

epistatic (Zuk et al., 2012). However, for many applications, how

much of h2
L is truly attributable to common variation, rather than

rare variants and epistasis, is of little importance. For example, our

ability to detect a rare causal variant through a GWAS depends not

on how much variance the causal variant explains directly, but on

the variance explained by the best tagging common SNP, and like-

wise for loci harbouring interactions. Similarly, the success of a

prediction model is how much variation it explains, not the accur-

acy of the individual effect size estimates.
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Appendix 1

Details of methods and quality control
steps

Estimating the number of causal variants

h2
O

indicates the proportion of phenotypic variance explained (on

the observed scale) by common SNPs. For each source of causal

variation, let h2
j denote the variance explained by the SNP best

tagging this source of variation. We considered four distributions

for h2
j : equal, uniform (with lower bound zero), exponential and

‘�2’ (a gamma distribution with shape parameter 0.5). Each distri-

bution was uniquely determined by the number of causal SNPs:

given that there are J causal SNPs, we supposed the jth has

h2
j = F�1(j / (1 + J), where F is the cumulative density function of

the assumed distribution (however, we checked that results were

very similar if instead values of h2
j were drawn at random from the

distribution). Given h2
j , the corresponding test statistic from
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standard linear regression has a �2 distribution with non-centrality

parameter nh2
j /(1� h2

j ), where n is the sample size. Knowing this,

we can calculate Pj, the probability that the SNP surpasses a given

significance threshold, and in turn P* =
Q

(1� Pj), the probability

that no SNP achieves significance. Note that we have assumed a

model where each causal variant is tagged by only one SNP, when

in reality each is likely to be tagged multiple times. Therefore, we

are likely to under-estimate Pj (albeit only slightly, as the set of SNPs

tagging each causal variant will be highly correlated), and in turn

will tend to under-estimate the number of causal variants required

to achieve P*40.5 or P*40.05.

Performance of prediction models

We generated prediction models empirically. For example, to con-

struct a prediction model explaining 10% of liability heritability,

we first sampled predicted values, Gi, for 1 000 000 individuals

from a Gaussian distribution with mean 0 and variance 0.1, then

generated liability values, Li, by adding to each Gi a Gaussian error

term with mean 0 and variance 0.9. Individuals with

Li4T
�1(0.995) = 2.58 were cases, the remainder were controls

(T represents the cumulative density function of the standard

normal distribution). To consider population prediction, all indivi-

duals were considered. To consider prediction for single-seizure

individuals, we focused on a subset containing 45% cases (the

average proportion of single-seizure individuals who will experi-

ence a second seizure; Berg et al., 2010). For the best case sce-

nario, we picked controls at random; for the worst case scenario,

the controls were individuals with T
�1(0.99)5 Li5T

�1(0.995),

i.e. liability values just below the case/control threshold.

Dilution of heritability

Suppose for a trait that the total proportion of phenotypic variance

explained by common SNPs is h2. We show theoretically in the

Supplementary material and through simulation in Supplementary

Fig. 9, that if a proportion p of controls have been wrongly labelled

as cases, and a proportion p’ of cases are in fact controls, then the

estimate of variance explained will reduce to (1� p� p’)2 h2.

Inflation due to genotyping errors

Suppose the control samples come from two datasets, of sizes n1

and n2. In Supplementary Note 2, we show that the estimate of

total variance explained can be written as(1)

h2 ¼
nAnU

n2
T þ

n2
1

n2
U

G1 þ
n2

2

n2
U

G2

� �2

ð1Þ

where T denotes the true proportion of phenotypic variance

explained, while G1 and G2 correspond to inflation due to geno-

typing errors within control data sets 1 and 2. It follows that if we

were to perform heritability analysis using only control data set 1

and cases, then using only control data set 2 and cases, the cor-

responding estimates of variance explained are expected to equal

h2
1 ¼

nAn1

ðnA þ n1Þ
2
ðT þ G1Þ and h2

2 ¼
nAn2

ðnA þ n2Þ
2
ðT þ G2Þ:

Therefore, based on estimates of h2, h2
1 and h2

2, we are able to

estimate T, G1 and G2, from which our heritability estimate

adjusted for genotyping errors within controls is nAnUT/n2. We

demonstrate the effectiveness of this approach through simulation

in Supplementary Fig. 6. The method can readily be extended to

accommodate additional control and case datasets.

Data quality control
Our raw data set comprised 5667 controls used by The Wellcome

Trust Case Control Consortium (2930 from the 1958 Birth Cohort

and 2737 from the National Blood Service) and 1485 cases. For

cases (genotyped on Illumina 660Q), we excluded samples with

average heterozygosity outside [0.281, 0.299] (44 samples

removed) or missing values for 42% of genotypes (11 additional

samples removed). To check the quality of the Illumina sequen-

cing, we re-genotyped 30 SNPs using a Sequenom array, and

excluded samples with three or more mismatches (five additional

samples removed). Finally, we excluded 64 further samples that

seemed to be duplicates (estimated kinship 40.9 with another

sample). For the controls (genotyped on Illumina 1.2 M), we fol-

lowed the recommendations of the Wellcome Trust, excluding 231

samples from the 1958 Birth Cohort and 236 from the National

Blood Service, then checked that no individuals remained with

extreme heterozygosity, missingness or evidence for duplication.

We next ensured there were no pairs of individuals with estimated

kinship 40.1875 (15 samples lost), then removed 36 potential

outliers identified through principal component analysis. Finally,

to reduce the levels of relatedness to those expected by chance,

we filtered 83 samples so that no pair remained with estimated

kinship 40.026, the absolute value of the minimum observed

(Yang et al., 2010). At this point, there remained 5129 controls

and 1298 cases (of which 958 were focal, 151 were generalized

and 149 were unclassified, whereas 40 had status unknown and

were excluded from subsequent analyses). Further phenotypic

details are provided in Supplementary Table 1, and a principal

component plot is provided in Supplementary Fig. 10.

Before imputation, we excluded SNPs with minor allele fre-

quency 50.01, call rate 50.95, or P410�6 from a test for

Hardy-Weinberg Equilibrium. We imputed against the 1000

Genome June 2011 (interim) reference panel using IMPUTE2

with default parameter values (The 1000 Genomes Project

Consortium, 2010; Howie et al., 2011). Before association and

heritability analysis, we performed SNP quality control a second

time, removing those with (expected) minor allele frequency

50.01, (expected) call rate 50.995, INFO 50.98 or, if a geno-

typed SNP, r2 50.95 (the latter two metrics are scores computed

by IMPUTE2). These thresholds are much stricter than those typi-

cally used for marginal association analysis. However, with herit-

ability analysis, it is necessary to be far more cautious, especially

when cases and controls have been genotyped separately, as even

slight errors can accumulate over SNPs to produce greatly inflated

estimates of variance explained (Yang et al., 2011; Speed et al.,

2012). For heritability analysis, we used the remaining 4 238 038

autosomal SNPs, of which 299 735 were directly genotyped. For

the association analysis, we additionally considered the 89 281

SNPs passing quality control on chromosome X.
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