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The framework of graph theory provides useful tools for investigating the neural substrates of neuropsychiatric disorders. Graph
description measures may be useful as predictor variables in classification procedures. Here, we consider several centrality
measures as predictor features in a classification algorithm to identify nodes of resting-state networks containing predictive
information that can discriminate between typical developing children and patients with attention-deficit/hyperactivity disorder
(ADHD). The prediction was based on a support vector machines classifier. The analyses were performed in a multisite
and publicly available resting-state fMRI dataset of healthy children and ADHD patients: the ADHD-200 database. Network
centrality measures contained little predictive information for the discrimination between ADHD patients and healthy subjects.
However, the classification between inattentive and combined ADHD subtypes was more promising, achieving accuracies
higher than 65% (balance between sensitivity and specificity) in some sites. Finally, brain regions were ranked according to
the amount of discriminant information and the most relevant were mapped. As hypothesized, we found that brain regions in
motor, frontoparietal, and default mode networks contained the most predictive information. We concluded that the functional
connectivity estimations are strongly dependent on the sample characteristics. Thus different acquisition protocols and clinical
heterogeneity decrease the predictive values of the graph descriptors.

1. Introduction

Attention-deficit/hyperactive disorder (ADHD) is a neurode-
velopmental disorder with a prevalence of around 5.3% in
children and adolescents [1]. It is characterized by cogni-
tive and behavioral impairments associated with inattention
and/or hyperactivity and impulsivity symptoms [2].Themost
frequent and investigated ADHD phenotypes are the ones
with predominance of inattentive symptoms and a group
that combines inattention and hyperactivity/impulsivity. As
for most mental disorders, the etiological bases and neural
substrates of ADHD are far from being fully understood.

The search for structural or functional neural correlates of
ADHD, and consequently for potential biomarkers of the
disorder, is crucial in the pursuit of its prevention, early detec-
tion and more effective treatment [3, 4]. For this purpose,
the combination of machine-learning techniques for pattern
recognition and resting-state functional neuroimaging data is
a particularly promising approach [5].

Graph theoretical analysis is an emerging component
in the field of connectomics and brain network analysis
based on neuroimaging data [6, 7]. Descriptors derived
from graph theory are measurements quantifying different
characteristics of the network organization. When applied to
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resting-state fMRI data, graph theoretical measures may be
used to enhance the understanding of resting-state network
(RSN) dynamics [8]. RSNs are characterized by consistent
correlations with the spontaneous fluctuations of the BOLD
signal among certain brain regions. Among the diffuse
RSNs identified via fMRI analysis, specifically sensory-motor,
frontoparietal, basal ganglia, and defaultmode networks have
been implicated in ADHD pathophysiology [9]. Currently,
abnormal interactions within distinct RSNs have been identi-
fied as a key factor in contributing to various neuropsychiatric
disorders [10], in particular within the default mode network
(DMN) [11, 12].

Pattern recognition methods based on machine learning
techniques have shown to be a promising approach to the
analysis of neuroimaging data [13]. Support vector machines
(SVMs) [14] are one of the most frequently used methods
in this field, given their robust properties when dealing with
high dimensional multivariate data in addition to providing
predictions for each individual case. In other words, given a
set of features (e.g., brain measurements) and a label (e.g.,
healthy and patient), SVMs are used to learn a function,
whichmaps the set of features to their respective labels within
a training dataset. Thus, given a new set of features produced
from an unseen observation, SVMs are able to provide a
predicted label for this novel observation.

Graph theory descriptors can be used as predictor vari-
ables (i.e., features) in a machine-learning framework. Merg-
ing graph theoretical approaches and machine learning tech-
niques might provide a better-adjusted way to scrutinize the
impairment of RSNs inADHDaswell asmapping predictions
to a single individual case. In this study, we investigated the
use of network centrality measures as predictive features to
discriminate between typical developing children andADHD
patients with both inattentive and combined presentations.
In addition, we investigated possible differences between
inattentive and combined ADHD groups. The ADHD-200
dataset [15] formed the basis of our analysis. We aimed at
evaluating three issues: (i) themean classification score ([sen-
sitivity + specificity]/2) across distinct acquisition sites; (ii)
the classification score site-by-site (i.e., only the data within
each site are used to train and test the classifier) with a global
classification (i.e., using the data of all sites in a joint analysis);
(iii) brain regions (i.e., network nodes) containing the greater
amount of predictive information to discriminate between
the groups. We hypothesize that frontoparietal, sensory-
motor, and default mode network nodes will have a more
relevant predictive value in the classification.This hypothesis
relies on the potential association between abnormalities in
resting-state networks and the main symptoms of ADHD.

2. Materials and Methods

2.1. Data and Image Preprocessing. The publicly available
resting-state fMRI data from the ADHD-200 Consortium
were used in the present study. The images were acquired
at five different sites: Peking University, Kennedy Krieger
Institute, NeuroIMAGE sample, New York University Child
Study Center, and Oregon Health & Science University

(OHSU). The subject sample consisted of 609 subjects, 340
controls (mean age [standard deviation] − 11.59 [2.86] years;
180 males), and 269 patients with ADHD according to DSM-
IV-TR criteria (mean age [s.d.]− 11.58 [2.88] years; 215males).
Among the total number of ADHD patients, 159 fulfilled the
criteria for the inattentive type (mean age [s.d] − 11.24 [3.05]
years, 130 males), while 110 were classified as the combined
type (mean age [s.d.] − 12.08 [2.55] years, 85 males).

All research protocols from institutes contributing to
the ADHD-200 Consortium received local approval by their
respective IRB. All the data distributed via the Interna-
tional Neuroimaging Data-sharing Initiative (INDI) are fully
anonymized in accordance with HIPAA Privacy Rules. Fur-
ther details concerning the sample and scanning parameters
can be obtained by request to the ADHD-200 Consortium.

Step-wise data preprocessing was previously conducted
by the NeuroBureau community using the Athena pipeline
and consisted in the systematic and homogeneous processing
of all resting-state fMRI data. The following steps were
carried out: exclusion of the first four EPI volumes; slice time
correction; deobliquity of the dataset; headmotion correction
using the first volume as a reference; exclusion of voxels at
non-brain regions bymasking the volumes; averaging the EPI
volumes to obtain a mean functional image; coregistration
of this mean functional image to the subjects’ correspondent
anatomical image; spatial transformation of functional data
into template space; extraction of BOLD time series from
white matter and cerebrospinal fluid using masks obtained
from segmenting the structural data; removing trend and
motion effects through linear multiple regression; tempo-
ral band-pass filtering; spatial smoothing using a Gaussian
filter.All preprocessed images are available at the website
http://neurobureau.projects.nitrc.org.

2.2. Connectivity Analysis and Graphs. A representative set
of 400 brain-wide regions of interest (ROIs) was chosen for
defining the network nodes used for connectivity analysis and
the construction of the graphs.The ROIs were determined by
using themethod developed by Craddock et al. [16] based on
the fMRI data of 650 subjects.This atlas is publicly available at
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:
AthenaPipeline. The Pearson correlation coefficient between
each pair of ROIs was calculated and regarded as a proxy of
functional connectivity. The correlation matrix was equated
with the adjacency matrix of an undirected and weighted
graph. Meanwhile, binary adjacency matrices were built
for each subject by applying three different cut-off values
(0.1, 0.15 and 0.25) to the correlation matrix. The cut-offs
were defined within this particular range since the network
becomes too fragmented and granular to allow a proper
graph analysis for higher cut-off values [17]. We evaluated
the predictive power from both weighted and unweighted
graphs. The following centrality measures of the nodes in
the weighted graph were calculated: degree, closeness [18],
betweenness [19], eigenvector, and Burt’s constraint [20].The
degree, closeness, and betweenness were also calculated for
the unweighted graphs.

The mathematical definitions of these measures are
described in Table 1 where 𝑁 is the set of all nodes and
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Table 1

Measure Definition
Degree (𝑘) 𝑘

𝑖
= ∑

𝑗∈𝑁

𝑎

𝑖𝑗

Closeness (𝐿−1) 𝐿

−1

𝑖
=

𝑛 − 1

∑

𝑗∈𝑁, 𝑗 ̸=𝑖
𝑑

𝑖𝑗

Betweenness (𝑏) 𝑏

𝑖
=

1

(𝑛 − 1)(𝑛 − 2)

∑

ℎ,𝑗∈𝑁

ℎ ̸=𝑗, ℎ ̸=𝑖, 𝑗 ̸=𝑖

𝜌

ℎ𝑗
(𝑖)

𝜌

ℎ𝑗

Eigenvector (𝑥) 𝑥

𝑖
=

1

𝑙

∑

𝐽∈𝑁

𝑎

𝑖𝑗
𝑥

𝑖

Burt’s constraint (𝐶) 𝐶

𝑖
= ∑

𝐽∈𝑁\{𝑖}

(𝑎

𝑖𝑗
+ ∑

𝑞∈𝑁\{𝑖,𝑗}

𝑎

𝑖𝑞
𝑎

𝑖𝑗
)

2

edges within a network and 𝑛 is the number of nodes. An
edge between two nodes 𝑖 and 𝑗 is represented by 𝑎

𝑖,𝑗
. In

the undirected graph case, 𝑎
𝑖𝑗
= 1 if there is a connection

between the nodes 𝑖 and 𝑗; otherwise, 𝑎
𝑖𝑗
= 0. In betweenness

definition, 𝜌
ℎ𝑗
is the number of shortest paths between ℎ and

𝑗, and 𝜌
ℎ𝑗
(𝑖) is the number of shortest paths between ℎ and

𝑗 passing through 𝑖. In eigenvector definition, 𝑙 is a constant.
Note that eigenvector and Burt’s constraint are definable only
for weighted graphs.

Degree is a straight and intuitive way to quantify nodes
centrality, and it is defined as the number of edges connected
to a particular node. The closeness centrality is the average
distance between a given node and all other nodes of the
network. Betweenness quantifies the influence of a node and
is defined as the number of shortest paths passing through
it. The basic rationale underlying eigenvector centrality is
that connections with more central nodes increase the
nodes influence in the network. Hence, different weights are
attributed to a vertex depending on the centrality of the
connected nodes. Finally, Burt’s constraint value is inversely
proportional to the number of connections of a node and
increases with the number of strongmutual connections [20].
The uses and interpretations of graph theoretical measures
in the context of fMRI studies were the central topic in an
excellent previous review [7]. All analyses were performed
in the R platform for Computational Statistics (R Project for
Statistical Computing) (http://www.r-project.org/) using the
R igraph package.

2.3. Classifier Implementation and Identification of Discrimi-
native ROIs. The centrality measures of each graph’s nodes
were used as features (i.e., predictor variables) in an inde-
pendent classification analysis. Classification was performed
using a linear support vector machine (SVM) algorithm [14].
The rationale behind SVM is that the determination of the
boundary defined by the predictor variables should maxi-
mize the separation margin between the two groups to be
classified. Accuracy of the classification model was estimated
via a leave-one-subject out cross-validation procedure. The
classifications were based on the discrimination between
typical developing children compared to ADHD patients
(both inattentive and combined, and a comparison between
the ADHD-inattentive andADHD-combined types. For each

graph descriptor, two distinct analyses were carried out: (i) an
independent site-by-site classification using the data within a
single site to train and test the SVM (leave-one-subject-out
score) and (ii) a joint analysis concatenating the data strings
from all sites into a single classification.

Finally, in order to identify the most discriminative
regions, we built brain maps highlighting the 5% brain
regions with greater predictive values. We used the approach
proposed by Mourão-Miranda et al. [21] and Sato et al.
[22]. In brief, the decision function of the linear SVM
used to predict the group of each subject is a hyperplane
equation. This equation is defined by a constant and a set
of coefficients, each one associated to an input feature (i.e.,
a brain region defined by the ROIs). During the classifier
training, these parameters are tuned in order to define the
optimum hyperplane for separating the data. We then used
the absolute values of these hyperplane coefficients (taking
into account the training with all subjects and not the leave-
one-out procedure) to rank the features and highlight the top
5% most discriminative brain regions.

3. Results

3.1. Classifier Accuracy. Table 2 depicts the scores for the
between-group condition comparing typical developing chil-
dren with ADHD patients. The highest score obtained via
site-by-site analysis was 73% using weighted betweenness at
theOHSU site. However, this findingwas not replicated at the
other sites. In thewhole-sample analysis the highest scorewas
58%, achieved with eigenvector centrality.

Table 3 shows the scores for the discrimination analysis
between inattentive and combined ADHD subtypes. This
analysis was more promising and several measures achieved
scores greater than 65% across multiple sites. The highest
score obtained via site-by-site analysis was 77% when using
the degree measure with unweighted graphs (with a 0.15 cut-
off) at OHSU.The highest score in whole-sample analysis was
61%, achieved when using unweighted degree (with a 0.25
cut-off).

Interestingly, the mean score (across sites) and the score
from whole-sample classification were very similar, except
when using betweenness and degree in unweighted graphs
(Figure 1). In this exception, the mean score was greater than
the whole sample classification score.

3.2. Brain Regions with Higher Predictive Value. Regarding
the identification of the brain regions with greater contri-
bution to prediction, we chose only the classifications with
accuracy above 70%. Figure 2 illustrates the discriminant
regions for weighted betweenness centrality in healthy versus
ADHD groups at OHSU. Several cerebellar and cortical
regions were observed including left cerebellum, cerebellar
vermis, bilateral occipital cortex, left inferior temporal gyrus,
left parietal cortex, right dorsolateral prefrontal cortex, and
left frontal pole.

Figure 3 depicts the regions in which centrality measures
contributed to the classification of the ADHD types in
the OHSU sample. Betweenness centrality contributed most
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Figure 1: Classification scores ([specificity + sensitivity]/2) for each centrality measure.

to classification in the following brain regions: thalamus,
left cerebellar cortex, right occipital cortex, right temporal
cortex, right precuneus, and right dorsomedial prefrontal
and parietal cortices. The brain regions in which degree
centrality contributedmostly to classification of ADHD types
are also depicted in Figure 3.They include the right temporal
and frontal cortices, precuneus and bilateral sensory-motor
cortex, dorsal anterior cingulate cortex (dACC), and bilateral
parietal regions. In the case of eigenvector centrality, the
highest classification scores were obtained in orbitofrontal
cortex (OFC), dACC, bilateral temporal cortex, right parietal
cortex, motor areas, basal ganglia, and bilateral cerebellum.

4. Discussion

At present, resting-state fMRI is a well-established tool for the
assessment of spontaneous brain activity. Graph theoretical
measures provide a suitable framework for the investigation

of the structures of complex neural networks. In addition, the
application of machine-learning algorithms has been of great
impact on developing more advanced neuroimaging studies
of psychiatric disorders [13]. In the present work, we aimed
to explore the use of graph-derived measures of resting-state
BOLD signal as features to discriminate between ADHD
types and healthy subjects. In order to estimate the “real-
world” reproducibility of the classification procedure, we
analyzed data collected at five distinct sites, which differed in
terms of MRI scan specifications and acquisition parameters.
Finally, we mapped the brain regions in which centrality
graph-derived measures showed the greatest contribution
to classification. This mapping could provide some insight
into the pathophysiological mechanisms of ADHD from a
network analysis perspective.

When the whole sample was used, none of the centrality
measures had a relevant predictive power beyond chance.
However, significant prediction values were observed at the
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Figure 2: Discriminant regions for betweenness centrality (weighted graph) in typical developing versus ADHD classification at OHSU.

OHSU site. Thus both within- and between-site variability
have a negative impact on the extraction of predictive
information and consequently on classification. In the OHSU
sample, betweenness centrality measures contained predic-
tive information for the classification of ADHD and control
subjects with a score of 73%. After an extensive analysis
of sample characteristics and acquisition parameters, we
hypothesize that the classification score at OHSU was higher
than the other scores for two main reasons: (i) the sample
was approximately balanced between typically developing
controls (42 subjects) andADHDpatients (35 subjects), while
the group sizes were very different at the other sites; (ii)
OHSUEPI acquisition has the largest voxel size (3.8mm) and
the 3T system was equipped with a 12 channels head coil (as
opposed to 8) which increases the signal-to-noise ratio.

When the 5% nodes with greater predictive values were
mapped, a sparse pattern of brain regions was observed. In
fact, widespread brain alterations in ADHD are supported
by findings of impaired interregional connectivity between
the nodes of large-scale functional networks (reviewed in
[9]), and both task-related and resting-state fMRI studies
described atypical activations in frontal, temporal, and pari-
etal lobes as well as in cerebellum [23–25].

A promising finding was observed for the degree cen-
trality in the whole sample analysis on the classification

of the disorder types. In the within-site analyses, relatively
high scores were observed for degree, betweenness, and
eigenvector centralities.However, as the sample size is smaller
in these cases, variability is increased. Moreover, the mean
scores of within-site analyses were almost identical to the
ones from the whole sample analysis. Brain regions mapped
for betweenness measures included nodes of the right fron-
toparietal network. This network has been implicated in
attentional and executive processes and is thought to be
impaired in ADHD. Cubillo et al. [23] have shown reduced
interregional functional connectivity between frontoparietal
network nodes during a stop and switching task in ADHD
patients when compared to control subjects. Of particular
note is the thalamus, which forms part of this attentional
network [26, 27], and consequently may play a key role
in ADHD. In fact, reduced regional activations in bilateral
thalami have been reported in ADHD. Additionally, reduced
connectivity between the thalamus and right prefrontal
region, occurring concurrently with increased connectivity
between the thalamus and occipital lobes, has been found
in ADHD in an fMRI study using a sustained attention task
[28]. Interestingly, betweenness is the number of shortest
path lengths that pass through a node, which is consistent
with the purported structural position of the thalamus as
a relay to the whole cortex sheet. We speculate that a high
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Figure 3: Discriminant regions for unweighted betweenness, weighted degree, and weighted eigenvector centrality in the classification
between ADHD types at OHSU.

betweenness value for the nodes of the attentional network is
compatible with the function of switching attention focus to
different stimuli or tasks.

The measure of degree centrality, when applied to the
separation between ADHD types, produced the highest
classification scores in areas of the sensory-motor network
and of theDMN,mainly in parietal cortex and the precuneus.
These findings are in agreement with our hypothesis, based
on consistent results in the literature [9]. In fact, it is
quite intuitive that motor network connectivity should be

altered in a disorder characterized by hyperactivity. It is
coherent that the measure of degree centrality (the number
of nodes that connect to a given node) contains more
discriminative information in these areas, since the motor
network fundamentally comprises the output of the central
nervous system. It is also expected that motor regions
contain information which enables discrimination between
inattention with or without hyperactivity. The eigenvector
centrality was also found to contribute more to classification
within the motor network, as well as within orbitofrontal
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cortex, dorsal anterior cingulate cortex, parietal regions, basal
ganglia, and the cerebellum. Orbitofrontal areas have been
classically implicated in impulse control mechanisms and
appear to have impaired activation in ADHD patients [26].
Finally, alterations of DMN activity have also been proposed
as a key part of ADHD pathophysiology [29]. In summary,
functional networks implicated in attention, hyperactivity,
and impulsivity contained predictive information for the
discrimination between ADHD inattentive and combined
subtypes.

In conclusion, a novel approach of applying graph the-
oretical measures was shown to be useful for testing our
hypothesis regarding resting-state network impairment in
ADHD disorder. In particular, distinct patterns of network
dysfunction were evident for both inattentive and combined
ADHD subtypes. The classification scores for discriminat-
ing between ADHD and healthy subjects were close to
chance. Clearly, within-site analysis improves prediction
levels when compared to whole sample analysis, suggesting
that heterogeneity across the sites may strongly limit the
application of the method as a potential clinical support.
The functional connectivity estimation is strongly dependent
on the samples’ characteristics. Thus, in order to advance
the pathophysiological knowledge of ADHD, we emphasize
the importance of further multicentric studies with more
homogeneous acquisitions.
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