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Meiosis is essential for plant reproduction because it is the process during which homologous chromosome pairing, synapsis, and
meiotic recombination occur.The meiotic transcriptome is difficult to investigate because of the size of meiocytes and the confines
of anther lobes. The recent development of isolation techniques has enabled the characterization of transcriptional profiles in male
meiocytes of Arabidopsis. Gene expression in male meiocytes shows unique features. The direct interaction of transcription factors
(TFs) with DNA regulatory sequences forms the basis for the specificity of transcriptional regulation. Here, we identified putative
cis-regulatory elements (CREs) associated with male meiocyte-expressed genes using in silico tools. The upstream regions (1 kb) of
the top 50 genes preferentially expressed in Arabidopsis meiocytes possessed conserved motifs. These motifs are putative binding
sites of TFs, some of which share common functions, such as roles in cell division. In combination with cell-type-specific analysis,
our findings could be a substantial aid for the identification and experimental verification of the protein-DNA interactions for the
specific TFs that drive gene expression in meiocytes.

1. Introduction

Meiosis is a special type of cell division that, after two consec-
utive rounds of nuclear divisions, leads to the production of
haploid gametes. The processes of homologous chromosome
pairing, synapsis, andmeiotic recombination all occur during
meiosis. Meiotic recombination is essential for plant repro-
duction and breeding because it ensures equal segregation
and genetic exchange between homologous chromosomes [1–
4]. The male meiocytes of Arabidopsis occupy only a small
fraction of the anther tissue and are surrounded by somatic
anther lobes [5]. An effective meiocyte collection method
was established only recently; this development has enabled
investigations of the meiotic transcriptome [5, 6]. Genome-
wide gene expression analysis revealed unique transcriptome
landscapes during male meiosis [5, 6].

Gene expression in eukaryotic cells is regulated by tran-
scription factors (TFs). There are around 2000 TFs in the
Arabidopsis genome [7], and interactions of theDNA-binding
domains of TFs with specific cis-regulatory elements (CREs)
can activate the expression of several to many thousands of

target genes.The transcriptional domains of regulatory genes
are critically important in many developmental processes
[8]. Meiosis operates in a highly specified cell cluster and
thus requires precise spatial and temporal control [3]. In
Arabidopsis, the expression of many meiotic genes such as
AtDMC1 [9, 10], SDS [11], MMD1 [12], and RCK [13] is
highly regulated. Studying the commonness and distribution
of CREs in the promoters of coexpressed genes can help
facilitate the identification of signaling networks in specific
cell types (e.g., [14–17]). For example, CREs or promoter
motifs have been investigated in sperm cells (mature pollen)
of both rice and Arabidopsis [18, 19].

Transcriptome profiling experiments have shown that
more than 1,000 genes were preferentially expressed in
meiocytes [5]; a high proportion of the promoters of such
preferentially expressed genes were sufficient to drive green
fluorescent protein (GFP) reporter activity in meiocytes [20].
These preliminary studies laid a substantial foundation that
has enabled the mining and the examination of the common
structures of meiotically active promoters. In this study, the
sequences of 50 meiotically active promoters were analyzed.
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The putative CREs in these promoters were identified; these
CREs may be responsible for the high activity of these
promoters in male meiocytes.

2. Materials and Methods

We selected candidate genes from data generated in a previ-
ous mRNA deep-sequencing study of meiosis-specific genes
in Arabidopsis [5]. These included the most highly expressed
genes inmalemeiocytes. In a list with genes that had≥4 times
higher expression in meiocytes than in anthers, top 50 genes
in themeiocytes to seedling comparison list were chosenwith
exclusion of transposable element genes. The difference in
expression between meiocytes and anther, the difference in
expression between meiocytes and seedlings, the annotated
function, and the GO (gene ontology) functional categoriza-
tion of the 50 top genes are presented in Supplemental File
1, available online at http://dx.doi.org/10.1155/2014/708364.
As a negative control, 50 genes randomly selected from an
Affymetrix ATH1 microarray experiment deposited in the
NASC database were analyzed [21]; see Supplemental File 2
for descriptions of these control genes.

One Kb of upstream sequences relative to the transcrip-
tion start sites were retrieved using Regulatory Sequence
Analysis Tools (RSAT, http://rsat.ulb.ac.be/rsat/) [22]. Analy-
sis of known CREs was initially performed using SIGNALS-
CAN program in plant cis-acting regulatory DNA elements
(PLACE, http://www.dna.affrc.go.jp/PLACE/) [23, 24]. Anal-
ysis of statistically overrepresented elements was conducted
by Pscan (http://159.149.160.51/pscan/) [25]. In the Pscanwin-
dow, TAIR gene identifiers of the 50 genes were submitted,
the source organism was specified as Arabidopsis thaliana,
and the region to be analyzed was from −1000 to +0 with
regard to the annotated transcription start site. For assessing
the significance of the results, the 𝑃 values were computed
by Pscan with a 𝑧-test, a test that associated with each
profile the probability of obtaining the same score on a
random sequence set [25]. An element is considered to be
significantly overrepresented if the 𝑃 value is less than 0.01.
Additional analysis for unknown novelmotifs was conducted
by Promzea (http://promzea.org) [26]. 1000 bp long promoter
regions were analyzed and each predictedmotif was provided
with a mean normalized conditional probability (MNCP); a
MNCP score greater than 1 indicates that the motif is more
represented in the input data set compared to a random set
of promoters/first introns [26]. Motifs predicted by Promzea
were compared with experimentally defined motifs in the
PLACE database using STAMP [27]. Strand bias analysis of
putative CREs was performed using Athamap (http://www
.athamap.de/) [28–32], −1000 to 0 regions relative to the tran-
scription start site were analyzed, and the total strand distri-
bution of CREs was the sum of the individual CRE numbers
in each promoter in the “overview” search result.

3. Results and Discussions

Putative 1000 bp promoter regions were selected and their
CREs were analyzed by the use of the PLACE collection. Five

CREs were found in all 50 promoters: DOFCOREZM (5󸀠-
AAAG-3󸀠), CACTFTPPCA1 (5󸀠-YACT-3󸀠, Y=T/C), ARR1AT
(5󸀠-NGATT-3󸀠, N=G/A/C/T), CAATBOX1 (5󸀠-CAAT-3󸀠),
and GATABOX (5󸀠-GATA-3󸀠). The frequencies and distri-
butions of these CREs in each promoter are shown in
Figure 1(a).

DOFCOREZM was the most abundant CRE in the 50
putative promoter sequences. It is a core site for the binding of
Dof proteins in maize.The Dof proteins are a family of plant-
specific TFs that includes Dof1, Dof2, Dof3, and PBF [33, 34].
Maize Dof1 was suggested to be a regulator of the expression
of the C4 photosynthetic phosphoenolpyruvate carboxylase
(C4PEPC) gene [35]. Dof1 also enhances transcription of the
cytosolic orthophosphate dikinase (cyPPDK) genes and the
nonphotosynthetic PEPC gene [33]. Maize Dof2 suppresses
the promoter of C4PEPC [35]; PBF is an endosperm-specific
Dof protein that binds to the prolamin box of a native B-
hordein promoter in barley endosperm [36]. CACTFTPPCA1
is a key component of Mem1 (mesophyll expression module
1) and is found in the distal promoter region of the C4 iso-
form of phosphoenolpyruvate carboxylase (ppcA1) in the C4
dicot Flaveria trinervia; it determines the mesophyll-specific
expression of ppcA1 [37]. ARR1AT is the binding element of
ARR1 found inArabidopsis. ARR1 is a response regulator [38].
CAATBOX1 is responsible for the tissue specific promoter
activity of a pea legumin gene [39]. GATABOX is required
for light-dependent and nitrate-dependent control of tran-
scription in plants [40]. The GATA motif has been found
in the promoter ofthe Cab22 gene that encodes the Petunia
chlorophyll a/b binding protein; this motif is the specific
binding site of ASF-2 [41].

In addition to the five CREs that were found in all 50
promoters, there are 13 CREs that were found in at
least 80% of the promoters (Figure 1(b)). These include
GT1CONSENSUS (5󸀠-GRWAAW-3󸀠, R=A/G, W=A/T),
POLLEN1LELAT52 (5󸀠-AGAAA-3󸀠), GTGANTG10 (5󸀠-
GTGA-3󸀠), EBOXBNNAPA (5󸀠-CANNTG-3󸀠, N=G/A/C/T),
MYCCONSENSUSAT (5󸀠-CANNTG-3󸀠, N=G/A/C/T),
WRKY71OS (5󸀠-TGAC-3󸀠), ROOTMOTIFTAPOX1 (5󸀠-
ATATT-3󸀠), OSE2ROOTNODULE (5󸀠-CTCTT-3󸀠), NOD-
CON2GM (5󸀠-CTCTT-3󸀠), TAAAGSTKST1 (5󸀠-TAAAG-3󸀠),
IBOXCORE (5󸀠-GATAA-3󸀠), EECCRCAH1 (5󸀠-GANTTNC-
3󸀠, N=G/A/C/T), and INRNTPSADB (5󸀠-YTCANTYY-3󸀠,
Y=T/C, N=G/A/C/T). Among these, seven elements are
found in genes specifically expressed in particular organ.
POLLEN1LELAT52 is one of two codependent regulatory
elements responsible for pollen specific activation of tomato
(Lycopersicon esculentum) LAT52 gene [42]. GTGANTG10
is found in the promoter of the tobacco late pollen gene
g10 [43]. EBOXBNNAPA is a motif associated with storage
proteins [44]. TAAAGSTKST1 is a target site in the control
of guard cell-specific gene expression [45].

Six of the 13 CREs distributed in at least 80% of
the examined promoters are annotated as being involved
in plant responses to environmental factors, for example,
GT1CONSENSUS for light and salicylic acid [46, 47], MYC-
CONSENSUSAT for cold [48–50], WRKY71OS for gib-
berellin and pathogenesis [51, 52], IBOXCORE and INRNTP-
SADB for light [53–55], and EECCRCAH1 for CO

2
[56, 57].
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Figure 1:Distribution andoccurrence of enrichedPLACEmotifs in the promoters of 50 genes preferentially expressed duringmeiosis. (a) Five
common CREs found in all of the 50 promoters; (b) 13 CREs present in at least 80% of the promoters.
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Figure 2: Sequence logos of overrepresented sequences in the promoters of genes preferentially expressed during meiosis, detected using
Pscan. Letters in the logos abbreviate the nucleotides (A, C, G, and T) and are sized relative to their occurrence.

The involvement of these CREs in responses to environ-
mental factors points to possible roles for these elements in
combining signals from meiotic process and environmental
factors, especially light and stress.

The aforementioned PLACE motifs represent the basic
CREs required for a promoter but may not be statistically
overrepresented as compared with the average level of CREs
in the Arabidopsis genome. Among the PLACE motifs that
were present in at least 80% of the promoters we examined
(Figure 1), 17 of 18 are also present in rice sperm cell-specific
genes [18]. The only exception to this striking similarity was
the EECCRCAH1 CRE.

We further searched for motifs that were statistically
overrepresented.That is, the frequency of an element in the 50

examined promoters is above the average level of the Ara-
bidopsis genome. Six overrepresented putative TF binding site
motifs were identified in our Pscan analysis (Figure 2 and
Table 1).When we used 50 randomly selected genes (negative
control) as input, only one such overrepresented motif was
detected (Supplemental File 3), indicating that the meiot-
ically active promoter sequences possess more conserved
sequences.

Themost significantly abundant motif detected by Pscan,
CTCAGCG, is the binding sequence of Arabidopsis CELL
DIVISION CYCLE 5 (AtCDC5), which is expressed exten-
sively in shoot and root meristems and may function in cell
cycle regulation [58, 59]. This result suggests that similar
regulatory machinery functions in meiocytes and meristems
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Table 1: Description of the most abundant motifs in promoters of genes preferentially expressed during meiosis, detected using Pscan.

Pscan ID TF name Class of the TF Family of the TF 𝑃 value References
MA0579.1 CDC5 Helix-turn-helix Myb 1.89231𝑒 − 05 Hirayama and Shinozaki [58]
MA0586.1 SPL14 Zinc-coordinating SBP 6.00715𝑒 − 05 Liang et al. [60]
MA0583.1 RAV1 EcoRII-fold ABI3VP1 0.000477606 Kagaya et al. [61]
MA0567.1 ERF1 Beta-Hairpin-Ribbon AP2 MBD-like 0.000997537 Godoy et al. [88]
MA0123.1 ABI4 Beta-Hairpin-Ribbon AP2 MBD-like 0.00108575 Niu et al. [71]
MA0553.1 SMZ AP2-ERF AP2-ERF 0.00224012 Unpublished

and that such machinery leads to high mitotic or meiotic
cell division activity. Another overrepresentedmotif contains
the core binding motif GTAC that is recognized by the
plant-specific SQUAMOSA promoter binding protein (SBP)
domain transcription factor AtSPL14, which is involved in
plant development and resistance to programmed cell death
[60]. The binding motif of the RAV1 (RAV: for related
to ABI3/VP1) DNA binding protein is overrepresented in
the Pscan search results [61]; RAV1 is a regulator of plant
development and is involved in plant responses to biotic
and abiotic stress [62–65]. Another overrepresented motif
is recognized by ERF1; a TF that belongs to the EREB/AP2
family and regulates plant responses to jasmonate, ethylene,
and fungi [66–70].The statistically overrepresented CE-1 like
sequence CACCG is an ABA response sequence in a number
of ABA-related genes, and it is the target of the maize abscisic
acid insensitive 4 (ABI4) protein [71]. Another Pscan motif,
the SCHLAFMÜTZE (SMZ) binding site, is the target of
an AP2-like transcription factor that acts as a repressor of
flowering [72].

As a complement to our Pscan analysis, we searched for
novel promoter DNA motifs associated with upregulation
in Arabidopsismeiocytes using the Promzea motif discovery
tool [26]. Nine overrepresented motifs were detected by
Promzea with MNCP scores >1 in the promoters of the 50
meiotically active genes; five were detected in the promoters
of the 50 randomly selected control genes (Supplemental File
4).This result supports the result from the Pscan analysis that
meiotically active promoters possess more conserved motifs
than randomly selected promoters. The 14 motifs matched
to different experimentally defined motifs in the literature
(Figure 3 and Supplemental File 5).

Motif1 from the Promzea analysis was statistically close
to the TATABOX1 element, an element that is critical
for the initiation of tissue specific transcription (Figure 3)
[73, 74]. Motif4 matched the phosphate response domain
GMHDLGMVSPB [75]. Motif3 matched the experimentally
defined motif PIIATGAPB, which is responsible for light-
activated gene expression [75]. Motif2 matched the E2FAT
motif that is the binding site of E2F. The E2F transcription
factors control the cell cycle by regulating the transcription of
genes required for cell cycle and DNA replication [76]; these
processes are obviously important in meiosis. Motif8 was
similar to the pathogen/elicitor-related element TL1ATSAR
[77]. Of the nine motifs predicted by Promzea, four motifs
(Motif5, Motif6, Motif7, and Motif9) were enriched with CG,
a property found in regulatory elements that is related to
DNA methylation. CpG methylation is known to suppress

transcription [78]. The presence of CG-enriched motifs
identified in our analysis suggests that like gene activation,
gene repression is also important for meiotically active gene
regulatory networks, for example, the suppression ofmeiosis-
restricted processes in somatic tissues. In addition, motif
comparison analysis using STAMP found that these motifs
possess other properties: Motif9 matched to INTRONLOER
that is involved in 3󸀠 intron-exon splice junctions in plants
[79], Motif5 matched to REGION1OSOSEM that is involved
in the control of transcription by ABA [80], Motif6 matched
to the tissue specific expression element BS1EGCCR [81],
and Motif7 matched to the ammonium response element
AMMORESVDCRNIA1 [82].

In the promoters of the negative genes, CREs are almost
equally distributed on both the sense and the antisense
strands (CREs on sense strand/CREs on antisense strand =
2742/2706 = 1/0.987); however, comparatively large numbers
of CREs are located on the antisense strand compared to
the sense strand of the meiotically active promoters (CREs
on sense strand/CREs on antisense strand = 2758/2941 =
1/1.066). Interestingly, a similar bias of CRE distribution on
the antisense strand is observed in promoters of rice sperm
cell-specific genes [18].

The information from this study can be used in efforts
to characterize the interactions between regulatory elements
and TFs in meiocytes. Cell-type-specific analysis of TF
expression is one of the strategies for sorting true protein-
DNA interaction from numerous potentially spurious candi-
dates [83]. For example, one of the PLACE motifs identified
in this study, the GATABOX (Figure 1(a)), is the binding
motif of the conserved C2C2-GATA TFs that have two
GATA zinc fingers [40]. There are 29 C2C2-GATA family
members that have been identified in Arabidopsis. They are
highly expressed in early flower domains, and a few are
involved in flower development [84, 85]. In our analysis, we
identified two members of this family of TFs that are highly
expressed in male meiocytes (AT5G47140 and AT1G08000,
Table 2). Therefore, AT5G47140 and AT1G08000 are better
candidates than otherC2C2-GATA familymembers for being
proteins that can bind to GATABOX CREs in meiocytes. E2F
transcription factors are essential for the regulation of the
cell cycle and DNA replication. Three classical E2F proteins
(E2Fa–c) and three atypical E2F proteins (E2Fd–f) have been
characterized in Arabidopsis [86, 87]. Among these, E2Fa
(AT2G36010) and E2Fe (AT3G48160) are highly expressed in
meiocytes (Table 2); they may therefore be better candidates
than other E2Fs for being proteins that can bind to E2FAT-
like CREs in meiocytes, and this may link the E2Fs to the
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G, and T) and are sized relative to their occurrence. The 𝑒-value for STAMP is indicated by the false discovery ratio (FDR).

Table 2: Transcriptional factor genes preferentially expressed dur-
ing meiosis with putative target binding sites highly enriched in
meiocytes. Numbers in the boxes are ratios of read counts that
indicate the difference in expression in bidirectional comparisons
between each of the tissue pairs.M:meiocytes; A: anther; S: seedling.

Gene ID (name) M/A M/S A/S
AT5G47140 2.30 4.09 1.78
AT1G08000 1.02 2.43 2.37
AT2G36010 (E2Fa) 0.73 2.19 3.01
AT3G48160 (E2Fe) 0.76 2.19 2.88

control of meiotic processes such as the meiotic cell cycle and
DNA replication.

More than half of the overrepresented CREs identified
in this study are binding sites of TFs that function in plant
responses to environmental factors. We therefore infer that,

during meiosis, exogenous signals are perceived largely
through particular CRE and that this is especially likely for
light and stress signals [89–92].

4. Conclusions

In this study, which aimed to identify CREs associated with
genes preferentially expressed during meiosis, we analyzed
1 kb upstream regions of the 50 genes that were highly
expressed in Arabidopsis meiocytes. Although the CREs in
10 promoters of meiotically active genes were analyzed in
our previous study [20], here we performed a more compre-
hensive in silico study with a larger number of genes. The
CREs that we identified in the promoters of these 50 genes
may be responsible for the high activity of corresponding
promoters inmalemeiocytes.The information obtained from
this study can be used to identify TFs that regulatemeiotically
active gene expression and, more attractively, the synthesis
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of artificial promoters that could drive high gene expression
in meiocytes. As meiosis is evolutionarily conserved, the
information on transcriptional domains obtained from the
model system Arabidopsis has value not only in assessing
the conservation of functional pathways in meiosis of other
eukaryotes but also in applications seeking to improve crop
plants.
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web tools for the analysis and identification of co-regulated
genes,” Nucleic Acids Research, vol. 35, no. 1, pp. D857–D862,
2007.

[31] N. Ole Steffens, C. Galuschka, M. Schindler, L. Bülow, and R.
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