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An efficient frequency recognitionmethod is very important for SSVEP-based BCI systems to improve the information transfer rate
(ITR). To address this aspect, for the first time, likelihood ratio test (LRT) was utilized to propose a novel multichannel frequency
recognition method for SSVEP data. The essence of this new method is to calculate the association between multichannel EEG
signals and the reference signals which were constructed according to the stimulus frequency with LRT. For the simulation and
real SSVEP data, the proposed method yielded higher recognition accuracy with shorter time window length and was more robust
against noise in comparison with the popular canonical correlation analysis- (CCA-) basedmethod and the least absolute shrinkage
and selection operator- (LASSO-) based method. The recognition accuracy and information transfer rate (ITR) obtained by the
proposed method was higher than those of the CCA-based method and LASSO-based method. The superior results indicate that
the LRT method is a promising candidate for reliable frequency recognition in future SSVEP-BCI.

1. Introduction

Brain-computer interface (BCI) can provide online commu-
nication between a human or animal brain and external
devices without depending on the normal output pathways
of peripheral nerves and muscles [1]. Research interest has
increased because of its potential application value in neural
engineering and neuroscience [2, 3]. Many EEG signals could
serve as control signals in BCI systems [1, 3]. In recent years,
steady-state visual evoked potentials (SSVEPs) have been
widely used in SSVEP-based BCI [2, 4–6]. SSVEP has the
same fundamental frequency as well as harmonics of the
flickering visual stimulus, and it has high signal-to-noise ratio
(SNR) and stable spectrum [7]. Accordingly, SSVEP-based
BCI usually requires little training effort and achieving high
information transfer rate (ITR) and becomes an important
branch for designing BCI applications [8, 9].

In the SSVEP-based BCI system, the targets are encoded
by a single frequency or various combinations of frequencies.

A command can be transmitted by shifting the subject’s atten-
tion to the corresponding target. Although SSVEP has the
aforementioned characteristics, it is likely to be contaminated
by spontaneous EEG activities and other noises [10, 11]. How
to efficiently recognize the target with short time window
and low error rate is one of the key topics to boost the IRT
of the SSVEP-based BCI systems. Therefore, it is necessary
to develop an efficient frequency recognition method for
SSVEP-based BCI.The existing traditional recognitionmeth-
ods are power spectral density analysis (PSDA) [12] and sta-
bility coefficients (SC) [10], which are mainly based on the
single EEG channel.These methods are sensitive to noise and
need long time window to perform the recognition, which
may limit the real-timeperformance of SSVEP-basedBCIs. In
addition, because users usually have shown large intervaria-
tion in the SSVEP amplitude and distribution, additional cal-
ibration is required for parameter optimization (e.g., channel
selection and appropriate data length) with these traditional
methods [8, 11].
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To overcome the drawbacks in the single channel based
recognition, the multichannel recognition methods have
aroused wide interests. Lin et al. proposed amethod based on
the canonical correlation analysis (CCA) [13]. Another mul-
tichannel recognition method is minimum energy combina-
tion (MEC) method proposed by Friman and his colleagues
[11]. These two methods showed superior performance as
compared to the traditional recognition methods [8, 9]. In
addition, Nan and his colleagues had shown that CCA-based
method could achieve better performance than MEC [14],
and CCA has been widely adopted for frequency recognition
in SSVEP-based BCI systems. Zhang et al. using LASSO-
based frequency recognition method showed that the sparse
regression model greatly improved the classification perfor-
mance over CCA [15]. Therefore, in current work, we will
use the CCA-based method and the LASSO-based method
as the baselines to evaluate the performance of the proposed
method by us.

LRT is a tool to test the independence of two sets ofmulti-
variate variables [16]. In this paper, we proposed a novel
frequency recognition method based on likelihood ratio test
(LRT) to further improve the frequency recognition accuracy
for SSVEP-BCIs. For the first time, the LRT was utilized
to calculate the correlation between the multichannel EEG
signals and the reference signals. Experimental results based
on the simulation and the real EEG data from eleven sub-
jects demonstrate that the proposed method showed better
performance as compared to the CCA-based method and the
LASSO-based method.

2. Materials and Methods

This study was approved by the Institution Research Ethics
Board at the University of Electronic Science and Technology
of China. All participants were asked to read and sign an
informed consent form before participating in the study. All
the participants received monetary compensation for their
time and effort following completion of the experiment.
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𝑇 denotes the complex conjugate transpose of vectors or
matrices.Thenwe have the statisticalmeasurement 𝜆 = 𝑉𝑁/2,
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modified to take account of the number of dimensions [16].
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For frequency recognition, we can calculate the correla-
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with the formulas (4)–(6). Then the frequency of 𝑋 is
recognized as the stimulus frequency corresponding to the
maximal correlation coefficient.

2.2. CCA-Based Frequency Recognition. CCA is a multivari-
able statistical method to explore the underlying correlation
between two sets of variables [17]. When using CCA for
frequency recognition, we also require the reference signals
described in formula (7) [13]. With CCA, we can find the
weight vectors𝑊

𝑥
and𝑊

𝑦
to obtain the maximum canonical
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For𝑋 and each reference signal 𝑌
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(𝑚 = 1, 2, . . . ,𝑀), we

can obtain a maximum canonical correlation 𝜌
𝑚
by formula

(8) and use these coefficients to recognize the frequency of
𝑋. Similar to LRT-based method, the frequency of 𝑋 is the
stimulus frequency corresponding to themaximal correlation
coefficient [13].

2.3. LASSO-Based Frequency Recognition. LASSO-based stim-
ulus frequency recognition model showed that the sparse
regression model greatly improved the classification perfor-
mance overCCA [15]. For a SSVEP response𝑥, and the design
matrix 𝑌 = [𝑌
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where 𝑁
𝑐
is the number of the used channels and 𝑁

ℎ
is the

number of harmonics.
Similar to CCA-based method, the frequency of 𝑋 is the

stimulus frequency corresponding to the maximal contri-
bution degree [15]. For the details about the LASSO-based
method, please refer to the reference [15].

2.4. Simulation. The main purpose of this simulation was to
study the antinoise capability of CCA-basedmethod, LASSO-
based method, and LRT-based method. We chose four fre-
quencies, that is, 7.5Hz, 8.6Hz, 10Hz, and 12Hz, to simulate

the SSVEP signals. For each frequency, we generated 8 sinu-
soidal signals to simulate 8 channels of SSVEPs.The sampling
rate was 250Hz, and the signals lasted for 10 seconds. Then,
Gaussian white noise was added to the sinusoidal signals
to simulate the noise-contaminated signals. Finally, the two
methods were used for frequency recognition, and the time
window length was 1 s as that used in the simulation by Lin
et al. [13]. The accuracy was used to evaluate the recognition
result, which was the ratio of the number of correct recog-
nition operations to the 40 recognition operations. At each
SNR level, the procedurewas repeated 50 times, and themean
accuracies across 50 runs are reported. To show the influence
of the SNR on the accuracy of these methods, SNRs ranging
from −7 db to −20 db were considered to add the noises. The
SNR is defined as follows:

SNR = 10 log
𝑃signal

𝑃noise
= 10 log

(𝐴/√2)

𝜎2
, (12)

where 𝑃signal and 𝑃noise are the power of the signal and the
power of the noise, respectively. 𝐴 is the amplitude of the
sinusoidal signals, and 𝜎2 is the variance of the noise [13, 14].

2.5. Offline Experiment. To further evaluate the performance
of the three methods, the real SSVEP data was also used. The
SSVEP data was from an offline SSVEP-based BCI experi-
ment in our lab with 4 frequencies, that is, 7.5Hz, 8.6Hz,
10Hz, and 12Hz. The flickering stimulus was presented by a
computer through a control program realized by C++Builder
and Windows DirectX API. A laptop with a 13󸀠󸀠 screen and a
60Hz refresh rate was used to present the stimuli.

The experiment was performed in a normal room. EEG
signals were recorded from the scalp via 8 Ag/AgCl recording
electrodes with a Symtop Amplifier (NIL System, Chengdu,
China). The electrodes were placed at P3, P4, O1, O2, Pz, Oz,
PO7, and PO8. Fcz and Afz were adopted as the reference
and ground, respectively. Data were sampled at 1000Hz and
filtered with a band-pass filter from 0.5 to 30Hz and a
50Hz notch filter. Impedances were kept below 5 kΩ. Eleven
healthy right-handed subjects (two female and nine male,
age ranging from 21 to 25 years) participated in this study.
All subjects had normal or corrected-to-normal vision.These
subjects did not have any history of epileptic seizure ormental
disease. Six were naive to the SSVEP-based BCI equipment
and paradigm. During the experiment, the subjects were
seated in a comfortable armchair, 60 cm away from the center
of the laptop monitor. The subjects were instructed to gaze
binocularly at each frequency flickering stimulus for 30 s,
followed by a rest period of approximately 1-2min.

Based on the EEG data, we evaluated the performances of
the three methods using different time window, that is, 0.5 s,
0.75 s, 1 s, 1.25 s, 1.5 s, 1.75 s, and 2 s. For each time window,
we extracted nonoverlapping segments from the 30 s data
of each frequency and pooled all the segments for the four
frequencies together. Afterward, we used the three methods
to conduct the frequency recognition. The accuracy, which
was the ratio of the number of segments correctly classified
to the number of total segments, was used to evaluate the
performances of the three methods.
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2.6. Information Transfer Rate (ITR). In this study, informa-
tion transfer rate (ITR) was adopted as the criteria to evaluate
the BCI system [1]. If𝑁 possible selections exist in one trial, if
each selection is of the identical probability to be selected by
the user, if the probability (𝑃) that the desired selection will
actually be selected is always the same, and each of the other
(i.e., undesired) selections has the same probability of being
selected (i.e., (1−𝑃)/(𝑁−1)), then the bit rate (in bits min−1)
can be computed as follows:

Bt = log
2
𝑁 + 𝑃log

2
𝑃 + (1 − 𝑃) × log

2
[
1 − 𝑃

𝑁 − 1
] . (13)

Then, the ITR (bits/min) is equal to Bt multiplied by the
selection speed (i.e., trials per minute).

For our offline analysis, we used a simulation method to
conduct a simulated online ITR test [4]. A 0.5 s was set to
simulate the interval which was given to the subjects to shift
gaze as the online situation. Therefore, a trial period was 0.5
plus the window length which was used to obtain a frequency
recognition result.

3. Results

For the simulation, Figure 1 shows the average recognition
accuracies of the 2 methods at various SNR levels. The LRT-
based method significantly differed from the CCA-based
method when the SNR was lower than −13 db and from the
LASSO-basedmethods when the SNRwas lower than −15 db,
which demonstrates that the LRT-based method showed
higher accuracy and better robustness to decreased SNRs.

For the offline EEG data, Table 1 summarizes the recog-
nition accuracies and Table 2 shows the ITR for the eleven
subjects with different time window lengths by the three
methods. At each time window length, most of the subjects
showed better performance by LRT-based method than the
other two methods. Figures 2 and 3 present the paired 𝑡-test
significance test results for the recognition accuracies and
ITR of the three methods, respectively. The results show that
the proposed method is significantly better than the CCA-
based method at most time window lengths, especially for
the shorter time window lengths. It also suggests that our
method ismore efficient and robust thanCCA-basedmethod.
FromFigures 2 and 3, the results of the LASSO-basedmethod
were worse than those of the CCA-based method, which
was different from the simulation result as in Figure 1 (not
consistent with the results in [15]).The use of signals within a
broader area can introduce more noise and negatively impact
recognition accuracy. Multichannel detection methods, that
is, the LRT-based and the CCA-based methods, benefit
from an optimized combination of multiple signals and have
greater robustness against noise, thus improving the results.
For the LASSO-based method, it calculates the classification
features from each channel independently, such that those
features from the low SNR channels can deteriorate its
recognition performance.
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significant difference between twomethods (paired 𝑡-test,𝑃 < 0.05).
The error bars represent standard deviations. A time window length
of 1 s was used for recognition.
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Table 1: Recognition accuracies (%) for eleven subjects by the three methods with seven different time windows. The better results for each
subject are displayed in bold at each time window.

Time Method Subjects Average
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

0.5 s
LRT 57.1 69.6 37.9 71.7 83.3 90.0 54.6 37.5 65.4 48.3 82.9 63.5
CCA 42.9 69.2 36.3 64.6 81.3 90.4 49.2 33.8 65.0 47.5 79.2 59.9
LASSO 43.8 46.3 33.8 65.4 60.4 67.5 39.2 31.3 50.8 37.1 42.1 47.0

0.75 s
LRT 65.6 83.8 45.6 83.1 91.9 98.1 61.9 45.0 76.9 63.1 93.8 73.5
CCA 65.0 81.9 38.1 81.9 88.8 95.6 61.9 40.0 72.5 60.6 91.9 70.7
LASSO 57.5 61.9 41.3 80.6 82.5 80.0 46.3 30.0 60.6 46.3 53.1 58.2

1 s
LRT 71.7 90.8 50.8 88.3 95.0 98.3 74.2 51.7 85.8 72.5 96.7 79.6
CCA 69.2 92.5 44.2 85.8 90.8 97.5 65.8 47.5 87.5 72.5 95.8 77.2
LASSO 64.2 74.2 44.2 87.5 88.3 89.2 48.3 40.8 65.0 56.7 56.7 65.0

1.25 s
LRT 82.3 93.8 57.3 91.7 99.0 100.0 80.2 53.1 90.6 69.8 97.9 83.2
CCA 80.2 91.7 47.9 90.6 95.8 99.0 77.1 50.0 91.7 70.8 99.0 81.3
LASSO 75.0 82.3 43.8 90.6 93.8 91.7 56.3 38.5 75.0 60.4 53.1 69.1

1.50 s
LRT 88.8 96.3 61.3 93.8 100.0 100.0 82.5 58.8 95.0 76.3 98.8 86.5
CCA 85.0 96.3 53.8 92.5 97.5 100.0 77.5 55.0 93.8 75.0 98.8 84.1
LASSO 71.3 81.3 56.3 95.0 96.3 95.0 56.3 45.0 75.0 65.0 58.8 72.3

1.75 s
LRT 88.2 98.5 60.3 97.1 98.5 100.0 85.3 57.4 97.1 89.7 100.0 88.4
CCA 88.2 98.5 54.4 95.6 97.1 100.0 88.2 61.8 95.6 88.2 100.0 88.0
LASSO 75.0 86.8 57.4 100.0 98.5 97.1 57.4 51.5 79.4 72.1 55.9 75.5

2 s
LRT 90.0 100.0 65.0 93.3 98.3 100.0 85.0 61.7 98.3 85.0 100.0 88.8
CCA 88.3 98.3 60.0 93.3 98.3 100.0 86.7 65.0 98.3 86.7 100.0 88.6
LASSO 83.3 88.3 65.0 98.3 98.3 98.3 70.0 51.7 81.7 76.7 73.3 80.5

Table 2: The information transfer rate (bits/min) for 11 subjects by the three methods with seven different time windows. The better results
for each subject are displayed in bold at each time window length.

Time Method Subjects Average
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

0.5 s
LRT 20.1 37.9 3.5 41.5 65.1 82.4 17.2 3.3 31.3 10.9 64.1 34.3
CCA 6.6 37.3 2.7 30.1 60.5 83.5 11.7 1.7 30.7 10.2 56.0 30.1
LASSO 7.2 9.2 1.7 31.3 24.2 34.5 4.2 0.9 13.2 3.1 6.0 12.3

0.75 s
LRT 25.3 53.0 6.9 51.7 70.4 88.0 21.0 6.5 41.0 22.3 75.2 41.9
CCA 24.5 49.5 2.9 49.5 63.2 80.2 21.0 3.7 34.3 19.6 70.4 38.1
LASSO 16.4 21.0 4.4 47.2 50.6 46.1 7.3 0.4 19.6 7.3 12.5 21.2

1 s
LRT 27.7 56.4 8.8 51.8 65.4 74.0 30.7 9.4 47.4 28.6 69.5 42.7
CCA 24.8 59.9 5.0 47.4 56.4 71.7 21.2 6.8 50.3 28.6 67.3 40.0
LASSO 19.7 30.7 5.0 50.3 51.8 53.4 7.3 3.5 20.4 13.1 13.1 24.4

1.25 s
LRT 35.9 53.7 11.6 49.9 65.3 68.6 33.2 8.9 48.0 21.9 62.4 41.8
CCA 33.2 49.9 6.0 48.0 57.7 65.3 29.5 7.1 49.9 22.8 65.3 39.5
LASSO 27.2 35.9 4.1 48.0 53.7 49.9 10.9 2.2 27.2 13.8 8.9 25.6

1.50 s
LRT 39.5 51.4 12.7 47.0 60.0 60.0 31.6 11.1 49.0 25.0 56.6 40.4
CCA 34.6 51.4 8.2 44.9 53.8 60.0 26.2 8.8 47.0 23.8 56.6 37.7
LASSO 20.4 30.3 9.6 49.0 51.4 49.0 9.6 4.1 23.8 15.3 11.1 24.9

1.75 s
LRT 34.4 49.7 10.7 47.1 49.7 53.3 31.1 9.1 47.1 36.2 53.3 38.3
CCA 34.4 49.7 7.5 44.5 47.1 53.3 34.4 11.6 44.5 34.4 53.3 37.7
LASSO 21.1 32.7 9.1 53.3 49.7 47.1 9.1 6.2 25.1 18.8 8.3 25.5

2 s
LRT 32.9 48.0 12.3 36.9 44.4 48.0 27.7 10.4 44.4 27.7 48.0 34.6
CCA 31.1 44.4 9.5 36.9 44.4 48.0 29.4 12.3 44.4 29.4 48.0 34.3
LASSO 26.0 31.1 12.3 44.4 44.4 44.4 15.4 5.6 24.6 20.3 17.8 26.0
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4. Discussion and Conclusion

Efficient frequency recognition is critical for a high perfor-
mance SSVEP-based BCI system. The popular multichannel
frequency recognition methods benefit from an optimized
combination of multiple signals and have better robustness
against noise. These methods always achieve higher recogni-
tion accuracy and increase the convenience of the BCI system
for users due to the nonrequirement for specific channel
selection and data calibration [8, 9, 11, 13].

In this study, a multichannel frequency recognition
method based on LRT is proposed, which adopts LRT to
calculate the correlation coefficient between EEG data and
reference signals for frequency recognition. From the simu-
lation and offline experiment, we could see that LRT-based
method can achieve higher recognition accuracy in shorter
time window and is of better robustness against noise than
the CCA-based method and the LASSO-based method. The
accurate detection of the intention of the user with short data
lengths is crucial for developing a high-performance SSVEP-
based BCI system [10]. Furthermore, short data acquisition
can prevent fatigue to some extent because of shorter gazing
time. In current study, we just demonstrated the superiority
of LRT based on offline analysis. In the future, we will realize
LRT-based method in the online BCI system to further test
its online performance.

For the LASSO-based method, it can yield better perfor-
mance in extracting robust and detectable features of SSVEP,
and the ITR obtained by the LASSO model is significantly
higher than that of the CCA-based method when only three
channels O1, O2, and Oz are used [15]. However, in our
offline data analysis, the results of the LASSO-based method
were worse than those of the CCA-basedmethod when using
eight channels (Figures 2 and 3). We further used the data
from O1, O2, and Oz to run the frequency recognition as
in the reference [15]. The result was shown in Figure 4. It
seems that the LASSO-based method was better than the
CCA-based method (consistent with the results in [15]). The
proposed LRT-based method was better than the CCA-based
method and showed similar performance to the LASSO-
based method under most time windows. At this point, we
may infer that the LRT-based method can effectively extract
robust and detectable features of SSVEP that are interfered by
other noises. Although the results were similar for the LRT-
based method and LASSO-based method when only using
channels O1, O2, andOz, the former did not require a penalty
parameter that is necessary for the latter to generate the
desired performance. Accordingly, the LRT-based method
is indicated to be a promising candidate for the frequency
recognition.

The linear correlation may not extract the nonlinear
structure in multichannel EEG signals. To further improve
the performance of LRT-based method, we will take into
account the nonlinearity between two EEG signals in our
future study. In addition, the correlation computedwith LRT-
based may be used for brain activity analysis in fMRI data
[18], EEGdata [19], multimodal data [20], and so forth. Itmay
be another important future direction.
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Figure 4: Average accuracies of the three methods at different time
window lengths with the three channels (O1, Oz, and O2). The
asterisk denotes the significant difference between two methods
(paired 𝑡-test, 𝑃 < 0.05).

The reference signals used in this study were the precon-
structed sine-cosinewaves according to the stimulus frequen-
cies. These reference signals may fail to provide the subject-
specific and intertrial feature information. In order to further
improve the accuracy of the frequency recognition methods,
two methods, that is, L1-regularized multiway canonical cor-
relation analysis and multiset canonical correlation analysis,
were presented to refine the reference signals [21, 22]. For
each subject, these two methods generate the optimized
reference signals which extract the SSVEP features from the
training data. Hence, it is worthy of further study to adopt the
refined reference signals in our proposed frequency method
to further improve its performance and fuse the existed
frequency recognition method to generate more robust and
efficient BCI system [13, 15, 23].

The stimulus frequency set may be an important param-
eter for high performance BCI system. The frequencies
may influence the recognition performance to some degree
because different subjects may have their favored frequencies
[4, 11]. In this study, the 10Hz was chosen because it is
an integer divider of the screen refresh rate (60Hz) and
produces strong SSVEP. In the experiment, we did not
observe significant negative effects from the alpha rhythm on
SSVEP. One future improvement of the system could be to
add a frequency selection procedure to choose the optimal
frequency combination for each user. With the frequency
selection procedure, we may avoid the possible negative role
of the alpha and provide themore efficient BCI system for the
users.

In summary, a novel frequency recognition method was
proposed based on the LRT, and its efficiency was validated
with both simulation data and offline real EEG data. The
results indicated that the new method outperformed the
popular CCA-based method and the LASSO-based method
in some concerned aspects like short time window and
robustness to noise. It may be a new promising candidate for
frequency recognition to develop SSVEP-based BCI systems
with high performance.
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