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Abstract
Optimal management of patients with renal artery steno-
sis (RAS) is a subject of considerable controversy. There 
is incontrovertible evidence that renal artery stenosis has 
profound effects on the heart and cardiovascular system 
in addition to the kidney. Recent evidence indicates that 
restoration of blood flow alone does not improve renal 
or cardiovascular outcomes in patients with renal artery 
stenosis. A number of human and experimental studies 
have documented the clinical, hemodynamic, and his-
topathologic features in renal artery stenosis. New ap-
proaches to the treatment of renovascular hypertension 
due to RAS depend on better understanding of basic 
mechanisms underlying the development of chronic renal 
disease in these patients. Several groups have employed 
the two kidney one clip model of renovascular hyperten-
sion to define basic signaling mechanisms responsible for 
the development of chronic renal disease. Recent studies 
have underscored the importance of inflammation in the 
development and progression of renal damage in renal 
artery stenosis. In particular, interactions between the 
renin-angiotensin system, oxidative stress, and inflam-
mation appear to play a critical role in this process. In 

this overview, results of recent studies to define basic 
pathways responsible for renal disease progression will 
be highlighted. These studies may provide the rationale 
for novel therapeutic approaches to treat patients with 
renovascular hypertension.
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Core tip: Renovascular hypertension is a common public 
health problem, particularly in older patients with un-
derlying atherosclerotic vascular disease. Recent stud-
ies have shown that restoration of blood flow in these 
patients fails to improve renal function or survival. Re-
cent studies to define basic mechanisms underlying the 
development of chronic renal disease in renin angio-
tensin system (RAS) have shown that pro-inflammatory 
pathways may play a critical role in this process. Thera-
peutic approaches that target inflammatory pathways 
may provide the basis for novel and more effective 
treatments for patients with RAS. 
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RENOVASCULAR HYPERTENSION IS AN 
IMPORTANT CAUSE OF SECONDARY 
HYPERTENSION 
It is well recognized that hypertension is a major public 
health problem. The prevalence of  hypertension is 29% 
in the United States; an additional 28% of  adults have 
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“prehypertension”[1]. Although the most common form 
of  hypertension is “essential” hypertension, there is in-
creasing recognition of  secondary forms of  hypertension 
that contribute to morbidity and mortality in patients 
with hypertension. Many of  these cases have been identi-
fied through use of  imaging modalities to assess patency 
of  the coronary arteries. The prevalence of  renovascular 
hypertension (RVH) is 7% in patients over 65 years of  
age[2]. In patients with coronary artery disease or aortoil-
iac disease, the prevalence of  RVH is as high as 50%[3-5]. 
From 1991-1997, the annualized incidence of  RVH as 
a cause of  end stage renal disease increased by 12.4% 
per year, a larger increase than other causes of  end stage 
renal disease[6]. Atherosclerosis is the most common eti-
ology underlying RVH in this population[7-9]. In addition 
to chronic renal disease, atherosclerotic RVH contributes 
to cardiac morbidity and mortality[10]. For example, recent 
studies have shown that the overall 4-year survival of  
patients undergoing cardiac catheterization was 86% in 
patients without RAS but only 65% in those with RAS[11]. 
The extent of  RAS also predicts survival, with 4-year sur-
vival of  89% in patients with RAS < 75% luminal occlu-
sion, but only 57% in those with > 75% luminal occlu-
sion[10,11]. Optimal treatment of  these patients require the 
development of  animal models to elucidate mechanisms 
of  renal and cardiovascular disease progression. 

ANIMAL MODELS OF RVH
The two kidney 1 clip (2K1C) model of  renovascular hy-
pertension, developed by Goldblatt, has been extensively 
employed to understand the pathogenesis of  renovascu-
lar hypertension[12]. In his original model, dogs subjected 
to renal artery stenosis developed malignant hyperten-
sion, which caused extensive damage to the contralateral 
kidney. More recently, this model has been extended to 
other species, including mice, rats, and pigs[13-19]. In gener-
al, these animals do not develop malignant hypertension, 
and may thereby more accurately model human renal ar-
tery stenosis. In these animals, the stenotic kidney devel-
ops progressive atrophy, whereas the contralateral kidney 
develops hypertrophy but without major histopathologic 
alterations[14]. 

This model has allowed investigators to study the in-
terrelationships between hemodynamic factors and non-
hemodynamic factors responsible for the development 

of  cardiovascular and renal disease (Figure 1). Hemo-
dynamic factors include vasoactive effects mediated by 
activation of  the renin-angiotensin-aldosterone system, 
increased sympathetic nervous activity, and increased 
arterial stiffness. Non-hemodynamic factors include the 
signaling pathways triggered by renal parenchymal cells 
and infiltrating inflammatory cells in the development 
and progression of  renal and cardiovascular disease, and 
include chemokines, reactive oxygen species, and trans-
forming growth factor β (ΤGFβ).

DEVELOPMENT OF CHRONIC RENAL 
DISEASE IN RAS: WHAT DOES THE 
EXPERIMENTAL EVIDENCE TELL US?
Most studies have focused on the role of  renal hypo-
perfusion and subsequent hypoxia on the development 
of  chronic renal damage in the stenotic kidney. It is well 
recognized that reduced blood flow leads to intra-renal 
activation of  the renin-angiotensin system, leading to el-
evated plasma levels of  angiotensin Ⅱ, a potent vasocon-
strictor, and the development of  systemic hypertension. 
However, several recent observations have called this 
paradigm into question. Recent imaging studies to assess 
renal oxygenation have suggested that the stenotic kidney 
is not hypoxic. It is recognized that the kidney receives 
far more blood than needed to support basic metabolic 
demands-indeed, renal tissue requires less than 10% of  
normal blood flow to support basic metabolic needs[20]. 
Furthermore, the kidney has the capacity to adapt to 
significant reduction in the diameter of  renal artery with 
preservation of  renal oxygenation[21]. In both human and 
experimental models, it appears that systemic activation 
of  the renin-angiotensin system is transient, and that 
progression of  renal and cardiovascular disease can occur 
without persistent elevation of  plasma angiotensin Ⅱ lev-
els[22]. These observations have prompted investigations 
into basic signaling pathways triggered by renal artery 
stenosis that may be responsible for maintenance of  sys-
temic hypertension and the development of  chronic renal 
disease.

Although plasma angiotensin Ⅱ levels may not re-
main elevated as cardiac and renal damage progress in 
renal artery stenosis, there is evidence for persistent ac-
tivation of  the intra-renal renin-angiotensin system. The 
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Figure 1  Summary of hemodynamic and non-
hemodynamic pathways responsible for devel-
opment of chronic renal damage in renal artery 
stenosis. 



kidney can produce all elements needed to completely 
activate the renin-angiotensin system, including renin, 
angiotensinogen, angiotensin converting enzyme, and 
angiotensin type 1 and type 2 receptor[23-25]. In the kid-
ney, renin is expressed primarily by the juxtaglomerular 
cells. Angiotensinogen is expressed in proximal tubu-
lar epithelial cells and is secreted into tubular lumens. 
Angiotensin Ⅰ is converted to Angiotensin Ⅱ through 
action of  ACE located on the apical brush border of  tu-
bular epithelium. We have shown that renal expression of  
Ren1 in the stenotic, but not contralateral, kidney persists 
in renal artery stenosis[26]. Based on these considerations, 
we embarked on a series of  studies to compare signal-
ing pathways activated in the stenotic and contralateral 
kidneys during the development and progression of  renal 
damage in renal artery stenosis. A summary of  our find-
ings is highlighted in Figure 2. 

In our initial studies, we correlated histopathologic 
alterations in the stenotic and contralateral kidneys at 
2, 5, and 11 wk following renal artery stenosis surgery 
with signaling pathways that govern cell cycle regulation 
(cyclins D, E, A, and B; p21; p27), proliferation (PCNA, 
ERK, p38 MAPK), fibrosis (TGF-β; Smad2, Smad3, 
Smad4), and inflammation (MCP-1)[14]. The stenotic kid-
ney showed progressive tubular atrophy, which was as-
sociated with interstitial fibrosis and inflammation, which 
closely recapitulates the histopathologic alterations ob-
served in humans with advanced renal artery stenosis[27]. 
The contralateral kidney underwent compensatory en-
largement, which was at least in part through hyperplasia. 
Compensatory enlargement in the contralateral kidney 
occurred in the absence of  significant histopathologic 
alterations. We found that signaling pathways associated 

with cell cycle regulation, inflammation, and fibrosis were 
activated in both kidneys following induction of  renal 
artery stenosis. However, these pathways were transiently 
activated in the contralateral kidney, returning to baseline 
levels by 11 wk, whereas they were progressively and per-
sistently activated in the stenotic kidney. 

A critical role for the p38 MAPK pathway in the 
development of  renal atrophy was established in studies 
using the biochemical inhibitor SB203580[28]. The devel-
opment of  renal atrophy in the stenotic kidney was sig-
nificantly decreased in mice treated with SB203580 at the 
time of  renal artery stenosis surgery. Decreased atrophy 
was associated with reduced interstitial inflammatory in-
filtrates and decreased fibrosis. The p38 MAPK inhibitor 
had no significant effect on blood pressure or on plasma 
renin activity. Of  note, treatment of  mice with the ERK 
inhibitor U0126 did not prevent the development of  re-
nal atrophy, interstitial fibrosis, and interstitial inflamma-
tion (unpublished data). 

In our previous studies, we demonstrated that TGF-
-β and its receptors (RI and RII) are persistently induced 
in the stenotic kidney of  mice subjected to RAS. TGF-β 
has been implicated as a critical mediator of  cell cycle 
regulation, inflammation, and fibrosis in other model sys-
tems[14,29-31]. The TGF-β signaling pathway interacts with a 
number of  other signaling pathways, including the renin-
angiotensin system and the MAPK pathways. TGF-β me-
diates fibrosis through interactions with Smad 2, Smad3, 
and Smad4. Although TGF-β knockout mice have high 
embryonic lethality and develop a systemic inflammatory 
syndrome shortly after birth, Smad3 knockout mice are 
viable and exhibit defects in TGF-β signaling[32]. 

We found that the stenotic kidneys of  Smad3 knock-
out mice are almost completely protected from the devel-
opment of  interstitial fibrosis, tubular atrophy, and inter-
stitial inflammation, despite an elevation of  plasma renin 
activity and a reduction in blood flow of  over 70%[22]. In 
an acute ischemia-reperfusion model, we showed that the 
kidneys of  Smad3 knockout mice were resistant to the 
development of  acute injury[33]. A similar protective effect 
has been observed in Smad3 mice subjected to unilateral 
ureteric obstruction. 

Although we have shown that interruption of  the p38 
MAPK or Smad3-TGF-β signaling pathways prevent the 
development of  renal atrophy, it is not clear how renal 
damage is initiated in this model. For this reason, we have 
conducted a series of  studies to better understand the 
early signaling events and to correlate these with histo-
pathologic alterations during the development of  chronic 
renal disease in this model[26]. At 3 d following renal artery 
stenosis surgery, the stenotic kidney shows minimal histo-
pathologic alterations. In particular, there is no evidence 
of  acute injury to tubular epithelial cells, no significant 
interstitial fibrosis, tubular atrophy, or interstitial inflam-
mation. Despite the normal appearance of  the stenotic 
kidney, the tubular epithelial cells express markers of  oxi-
dative stress. It is recognized that the kidney expresses all 
components of  the NADPH oxidase system[34] and that 
Ang Ⅱ promotes ROS generation through activation of  
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inflammatory response to chronic renal injury may have a 
role in management of  patients with renal artery stenosis. 

CONCLUSION
Optimal management of  patients with RAS is limited by 
our lack of  understanding of  the events leading to the 
development of  chronic renal damage in the stenotic 
kidney, and how these events contribute to cardiovascu-
lar morbidity and mortality. Inhibitors of  P38 MAPK 
and of  Smad3 signaling have been shown to prevent the 
development of  chronic renal damage in experimental 
RAS. In addition to concerns regarding adverse effects 
of  currently available compounds, there is no evidence 
that these agents can prevent the progression of  chronic 
renal damage once clinical manifestations of  renal artery 
stenosis become apparent. Similarly, human trials of  an-
tioxidant therapies to arrest the progression of  systemic 
inflammatory conditions including atherosclerosis have 
been disappointing. Our recent observations, that genera-
tion of  CCL2 and expression of  CCR2 is an early event 
in RAS-an event which precedes the influx of  inflam-
matory cells-merit additional study. In particular, it is not 
known whether abrogation of  CCL2-CCR2 signaling 
with prevent the development of  chronic renal disease in 
RAS or will arrest the progression of  chronic renal dis-
ease once the disease becomes clinically apparent. Studies 
to address these important issues may provide the basis 
for changing the paradigm for treatment of  renal artery 
stenosis from one that emphasizes restoration of  renal 
blood flow to one that focuses on treatment of  the in-
flammatory response to renal artery stenosis. 
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