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Abstract

Functional linear models are developed in this paper for testing associations between quantitative

traits and genetic variants, which can be rare variants or common variants or the combination of

the two. By treating multiple genetic variants of an individual in a human population as a

realization of a stochastic process, the genome of an individual in a chromosome region is a

continuum of sequence data rather than discrete observations. The genome of an individual is

viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD)

information of the genetic markers. By using techniques of functional data analysis, both fixed and

mixed effect functional linear models are built to test the association between quantitative traits

and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that

the F-distributed tests of the proposed fixed effect functional linear models have higher power

than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for

three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both

rare and common, and (3) the causal variants are common. The superior performance of the fixed

effect functional linear models is most likely due to its optimal utilization of both genetic linkage

and LD information of multiple genetic variants in a genome and similarity among different

individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not

model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect
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models generate accurate type I error rates in simulation studies. We also show that the functional

kernel score tests of the proposed mixed effect functional linear models are preferable in candidate

gene analysis and small sample problems. The methods are applied to analyze three biochemical

traits in data from the Trinity Students Study.
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Introduction

In the last decades, the widespread availability of high-throughput genotyping technology

has made large scale genome-wide association studies (GWAS) possible. Initially, the

research focused on using common genetic variants to detect the association. In recent years,

however, there has been increasing interest in using rare variants in the analysis [Gorlov et

al., 2008; Lin and Tang, 2011; Schork et al., 2009]. The rare variants’ minor allele

frequencies (MAFs) are less than 0.01 ~ 0.05. Much progress has been made in developing

novel statistical methods for rare variant association analysis. According to the literature, the

statistical methods for rare variant association studies are broadly classified as burden tests

and kernel-based approaches [Bansal et al., 2010b; Lee et al., 2012a, b; Wu et al., 2011].

Burden tests are based on collapsing rare variants in a genetic region to be a single variable

that is then used to test for the association with the phenotypes [Han and Pan, 2010; Li and

Leal, 2008; Madsen and Browning, 2009; Morgenthaler and Thilly, 2007; Morris and

Zeggini, 2010; Price et al., 2010; Zawistowski et al., 2010]. The kernel-based tests aggregate

the association between variants and phenotypes via a kernel matrix, which measures the

similarity between individuals [Kwee et al., 2008; Lee et al., 2012a, b; Lin and Schaid,

2009; Liu et al., 2008; Mukhopadhyay et al., 2010; Neale et al., 2011; Wessel and Schork,

2006; Wu et al., 2010, 2011]. In Wu et al. [2011] and Lee et al. [2012a], it was found that

the sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) have

higher power than quite a few burden tests, such as the cohort allelic sums test

[Morgenthaler and Thilly, 2007], the combined collapsing and multivariate method [Li and

Leal, 2008], and the nonparametric weighted sum test [Madsen and Browning, 2009].

A limitation of the existing burden tests and kernel-based approaches is that they do not

utilize the information of linkage and linkage disequilibrium (LD) or correlation of genetic

variants sufficiently. SKAT and SKAT-O do model the similarity between individuals well

and they also take pair-wise LD into account through their kernel matrix, but they do not

model higher order LD among genetic markers. In burden tests, the LD pattern and

information among the genetic variants may be missed/reduced after collapsing rare variants

into a single variable and this can be another reason that the power of burden tests is lower

than that of SKAT or SKAT-O in addition to the reasons reviewed by Wu et al. [2011] and

Lee et al. [2012a].

Next-generation sequencing technologies will detect millions of novel rare variants [Bansal

et al., 2010a; Clarke et al., 2009; Mardis, 2008; Metzker, 2010; Rusk and Kiermer, 2008;
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Shendure and Ji, 2008]. In the presence of very high density of genetic variants by high

resolution genotyping and next-generation sequencing technologies, large numbers of

genetic variants are expected to locate in very narrow regions and the LD levels among

those variants can be very high. The next-generation sequencing data provide a unique

opportunity for statisticians to develop novel models and tests to answer these new

challenges. It is important to develop statistical models to use both GWAS and next-

generation sequencing data in a unified analysis. It is a particularly high priority to develop

novel statistical methods to simultaneously take into account the similarity between

individuals, linkage, and LD or correlation information of genetic variants in order to build

novel new-generation analytical tools [Kiezun et al., 2012; Mechanic et al., 2012].

In this article, we propose to use a functional data analysis (fda) approach to perform

association tests between genetic variants and quantitative traits. The basic idea of the

functional data analysis approach is different from those of either burden tests or kernel-

based approaches [Luo et al., 2011, 2012a, b]. Instead of collapsing genetic variants as

burden tests or building a kernel matrix as SKAT, multiple genetic variants of an individual

in a human population are treated in our approach as a realization of a stochastic process in

the functional data analysis [de Boor, 2001; Ferraty and Romain, 2010; Horváth and

Kokoszka, 2012; Ramsay and Silverman, 1996; Ramsay et al., 2009]. The genetic data of an

individual in a region is a continuum of sequence data rather than discrete observations. The

genome of an individual is viewed as a stochastic function that contains both linkage and LD

or correlation information of the genetic markers.

The framework of considering genetic variant data as a stochastic process is not a strange

idea. To understand this, let us look at one genetic variant case. Everyone agrees that the

data of one genetic marker can be described by a single random variable, and one

individual’s genotype of one genetic marker is one value of the random variable. Now look

at multiple genetic variant data, it is basically a collection of random variables that is exactly

a stochastic process from the textbook or literature, and one individual’s SNP data is a

realization of the stochastic process [Ross, 1996, p41].

By using techniques of functional data analysis, both fixed and mixed effect functional

linear models are built to test the association between quantitative traits and multiple genetic

variants such as single nucleotide polymorphism (SNP) markers adjusting for covariates.

Since we treat the genetic data as stochastic functions, the genetic effect of the genetic

variants is modeled as a function. Hence, testing the association between genetic variants

and quantitative traits is equivalent to test if the genetic effect function is 0. This forms the

basis of building valid test statistics.

One important feature of the proposed approaches is that the models and tests can analyze

rare variants or common variants or the combinations of the two. Interestingly, the kernel

machine regression was first proposed to analyze common variants, which forms the basis of

SKAT and SKAT-O to analyze only rare variants while it should be possible to use SKAT

and SKAT-O to analyze the combinations of both rare and common variants [Kwee et al.,

2008; Lee et al., 2012a; Liu et al., 2008; Wu et al., 2010, 2011]. Extensive simulation

analysis was performed to evaluate the robustness and power performance of the proposed
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models and tests. The robustness was evaluated by empirical type I error calculation. The

power performance is primarily based on the comparison with the performance of SKAT

and SKAT-O, simply because SKAT and SKAT-O tend to outperform the burden tests [Lee

et al., 2012a; Wu et al., 2011]. In our simulations, the same sequence data and strategy of

Wu et al. [2011] and Lee et al. [2012a] were used to make the comparison valid. The

methods were applied to analyze three biochemical traits using data from the Trinity

Students Study.

Methods

Functional Linear Model

Consider n individuals who are sequenced in a genomic region that has m variants. We

assume that the m variants are located in a region with ordered physical locations 0 ≤ t1 <· · ·

< tm = T. Here, we assume that each variant’s physical location tj is known, e.g., in terms of

the number of base pairs. To make the notation simpler, we normalized the region [t1, T] to

be [0, 1]. For the i-th individual, let yi denote a quantitative trait, Gi = (gi(t1), …, gi(tm))′

denote the genotype of the m variants, and Zi = (zi1, …, zic)′ denote the covariates. Hereafter

in this article, denotes the transpose of a vector or matrix. For the genotypes, we assume that

gi(tj) (= 0, 1, 2) is the number of minor alleles of the individual at j-th variant located at the

location tj.

In addition to the quantitative traits and covariates, we denote the i-individual’s genetic

variant function (GVF) as Xi (t), t ∈ [0, 1]. Notice that the sample includes n discrete

realizations or observations Gi of the human genome. By using the genetic variant

information Gi, we may estimate the related genetic variant function Xi(t), which will be

discussed below. To relate the genetic variant function to the phenotype adjusting for

covariates, we consider the following functional linear model

(1)

where α0 is the overall mean, α is a c × 1 vector of regression coefficients of covariates, β(t)

is the genetic effect of genetic variant function Xi (t) at the location t, and εi is an error term

that is normally distributed with a mean of zero and a variance of . Note that the genetic

effect function β(t) is a function of the physical location t.

Estimation of Genetic Variant Function

To estimate the genetic variant functions Xi(t), t ∈ [0, 1], we consider the following three

discrete realizations: (1) to model the additive effect of the minor alleles, define Xi(tj) =

gi(tj), (2) to model the dominant effect of the minor alleles, define Xi(tj) = 1 when gi(tj) = 1,

2, and Xi(tj) = 0 when gi(tj) = 0, (3) to model the recessive effect of the minor alleles, define

Xi(tj) = 1 when gi(tj) = 2, and Xi(tj) = 0 when gi(tj) = 0, 1. Using the discrete realizations

(Xi(t1, …, Xi(tm))′, we may estimate the genetic variant function Xi(t), t ∈ [0, 1], by ordinary

linear square smoother [Ramsay and Silverman, 1996, Chapter 4]. Specifically, let ϕk (t), k =
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1, …, K, be a series of basis functions. Denote the m by K matrix Φ as containing the values

ϕk(tj). Then, Xi(t) is estimated by

(2)

where ϕ(t) = (ϕ1(t), …, ϕK(t))′ is a column vector of basis functions. Corresponding to the

above three discrete realizations, the genetic variant functions are called additive, dominant,

and recessive, respectively. In this article, we consider two types of basis functions: (1) the

B-spline basis: Bk(t), k = 1, …, K, and (2) the Fourier basis: ϕ0(t) = 1, ϕ2r−1(t) = sin(2πrt),

and ϕ2r(t) = cos(2πrt), r = 1, …, (K − 1)/2. Here for Fourier basis, K is taken as a positive

odd integer [de Boor, 2001; Ferraty and Romain, 2010; Horváth and Kokoszka, 2012;

Ramsay and Silverman, 1996; Ramsay et al., 2009].

The second approach to estimate the genetic variant functions is to utilize functional

principal component analysis (FPCA) techniques [Goldsmith et al., 2011; Horváth and

Kokoszka, 2012; Ramsay and Silverman, 1996; Ramsay et al., 2009]. To briefly introduce

the main idea of FPCA, let ΣX (s, t) be the covariance function of the genetic variant

function. One may want to notice that the covariance function ΣX (s, t) can be estimated by

the observed genotype data Gi = (gi(t1), …, gi (tm))′, i = 1, 2 …, n [Horváth and Kokoszka,

2012; Ramsay and Silverman, 1996]. Let  be the spectral decomposition

of ΣX(s, t), where λ1 = λ2 = · · · are the non-increasing eigenvalues and ϕk (t), k = 1, 2, …,

are the corresponding orthonormal eigenfunctions. An approximation for Xi (t), based on a

truncated Karhunen–Loève expansion, is , where

K is the truncation lag,  that can be estimated by the observed genotype

data, and ϕ(t) = (ϕ1(t), …, ϕK(t))′.

The third approach to deal with the genetic variant functions is to use the genotype data Gi =

(gi(t1), …, gi(tm))′ directly. Then, the focus is to estimate the genetic effect function β(t), and

we call this approach as beta-smooth only approach. The related revised models are

presented below.

Revised Functional Linear Model

First, let us talk about the case of expanding Xi (t) by B-spline basis or Fourier basis

functions. In a similar way to estimate the genetic variant function Xi(t), t ∈ [0, 1], we may

expand the genetic effect β(t) by a series of basis functions ψk(t), k = 1, …, Kβ as β(t) =

(ψ1(t), …, ψKβ(t))(β1, …, βKβ)′, where β = (β1, …, βKβ)′ is a vector of coefficients βk. Note

that the basis functions to expand β(t) can be different from those to expand the genetic

variant functions. Thus, ϕ(t) and ψ(t) can be different. Let θ(t) = (ψ1(t), …, ψKβ(t)′.

Replacing Xi(t) in (1) by X̂
i(t) in (2) and β(t) by the expansion, we have a revised function

linear model
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(3)

where . In the above revised regression

model, one needs to calculate Φ[Φ′Φ]−1 and  in order to get Wi. In the

statistical packages R or Matlab, there are readily available codes to calculate them [Ramsay

et al., 2009]. Thus, the revised regression model (3) transforms the initial model (1) to be

useful for practical data analysis.

In the case of FPCA, we expand the genetic effect β(t) by linear spline basis as

, where κk are knots in the interval [0, 1]; and (t − κk)+

indicates if t is larger than κk, i.e., (t − κk)+ = 0 if t ≤ κk and 1 if t > κk. Thus, θ(t) = (1, t, (t −

κ3)+, …, (t − κKβ)+)′ is a column vector of linear spline basis. In addition, we denote

. Then, the revised model in the case of FPCA is

(4)

When we use B-spline (or Fourier) basis functions to estimate the genetic variant function in

the model (3), the genetic effect function β(t) is expanded by B-spline (or Fourier) basis

functions. In the model (4), β(t) is expanded by the linear spline basis. This provides a wide

range of choices to make comparison.

In the beta-smooth only case, the model (1) is revised as

(5)

In the above model, the integration term  in model (1) is replaced by a

summation term , and we make no assumption about smoothness of the

genetic variant functions Xi(t). The genetic effect function β(t) is assumed to be smooth and

one may estimate it by B-spline or Fourier or linear spline basis functions. Replacing β(t) by

the expansion β(t) = (ψ1(t), …, ψKβ(t))(β1, …, βKβ)′, the model (5) can be revised as

(6)

where . The revised model (6) is

straightforward and less technical. It turns out that model (6) performs very similar to the

corresponding model (3) in our real data analysis and simulation studies.
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F-distributed Tests of Fixed Effect Functional Linear Models

We first consider the fixed effect models (3), (4), and (6), i.e., we treat the regression

coefficients β as unknown constant parameters. Therefore, the revised regression models (3),

(4), and (6) are treated as usual multiple linear regressions that model the genetic effect of

genetic variant functions adjusted for covariates. To test the association between the m

genetic variants and the quantitative trait, the null hypothesis is H0 : β = (β1, …, βKβ)′= 0. By

using the standard statistical approach, we may test the null H0 : β = 0 by a FKβn−Kβ−1-

distributed statistic with degrees of freedom (Kβ, n − Kβ − 1) (Weisberg, 2005). An

alternative approach is to use likelihood ratio tests (LRT) to test the association, which is χ2-

distributed with Kβ degrees of freedom. In Luo et al. (2012a, b), χ2-distributed score

statistics were used to test the association without adjusting for covariates.

Functional Kernel Score Tests of Mixed Effect Functional Linear Models

In the second analysis, we treat the regression coefficients β as a random vector. We assume

that each βk follows a normal distribution with a mean of zero and a variance τ, and β1, …,

βKβ are identically independent. Therefore, models (3), (4), and (6) are treated as linear-

mixed effect models with α0 and α as fixed effect components, and β as a random

component. Denote W = (W1, …, Wn)′ the model matrix of the regression coefficients β.

Then, models (3), (4), and (6) can be viewed as linear-square kernel machine regression with

a kernel  = WW′ proposed in Liu et al. [2007].

To test the association between the m genetic variants and the quantitative trait, one may test

a null hypothesis H0 : τ = 0. A variance-component functional kernel score test as follows

can be used to test the association

(7)

where Y = (y1, …, yn)′ is a vector of trait values, μ̂ is the prediction mean of Y under the null

H0, and  is the estimation of  under the null. That is, μ̂ = α̂
0 + Zα̂, where Z = (Z1, …, Zn)

′ is the covariate matrix, and α̂
0 and α̂ are estimated under the null model by regressing Y on

the covariate matrix Z. As pointed out by the authors of SKAT, an important advantage of

the score test is that it only fits the null model and computationally it is simple and routine

[Kwee et al., 2008; Lee et al., 2012a, b; Liu et al., 2008; Wu et al., 2010, 2011]. The test

statistic  follows a mixture of  distributions. To facilitate the inference, one can

approximate the distribution of S by a scaled χ2 distribution , where δ is scale parameter

and ν is the degree of freedom [Davies, 1980; Duchesne and Lafaye De Micheaux, 2010;

Lin, 1997; Liu et al., 2009]. It can be shown that the mean and variance of  are

given by
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Notice that μ and  are unknown in practice, and they are estimated/replaced by μ̂ and  to

get . To account for this, we replace the mean  by ê = tr(P0 ) by

the same argument as Kwee et al. [2008], where P0 = In – Z(Z′ Z)−1 Z′ and In is the n × n

identity matrix. In addition, the variance  is replaced by

, where Iττ = 2tr [(P0 )2], , and .

Solving the equations δν = ê and 2δ2ν = Îττ gives the approximations of the scale parameter

and the degree of freedom by

Real Data Analysis of the Trinity Students Study

We analyzed the effect of 36 SNP variants in one enzyme gene region on three biochemical

traits in a sample of 2,232 individuals from the Trinity Students Study (see below for a brief

description of the study). Since the raw traits were not normally distributed, we transformed

the three traits by inverse normal rank transformation. We adjusted for three factors: gender,

a continuous covariate of another chemical compound known to affect these biochemical

traits, and a dichotomous covariate to indicate if supplements containing these biochemical

factors was used. We tested the association between the transformed individual traits and the

36 SNPs by F-test statistics of fixed effect models and variance-component functional

kernel score tests of mixed effect models using both B-spline basis and Fourier basis. To

make comparisons with the existing methods in the literature, we applied SKAT in R

package to test the association by both SKAT and SKAT-O.

Details concerning the Trinity Student Study data collection, SNP genotyping, and quality

control procedures are given in Stone et al. [2011] and Mills et al. [2011]. Briefly, this study

enrolled a cohort of 2,524 healthy, ethnically Irish individuals, attending the University of

Dublin, Trinity College during the academic year in 2003–2004. These students ranged in

age from 18 to 28 years. Dietary and supplement questionnaires and blood samples were

collected from participants. Ethical approval was obtained from the Dublin Federated

Hospitals Research Ethics Committee (affiliated with the Trinity College), and reviewed by

the Office of Human Subjects Research at the National Institutes of Health. Written

informed consent was obtained from participants before recruitment. SNP genotyping was

conducted at the Center for Inherited Disease Research (CIDR) (Baltimore, Maryland),

using Illumina 1M HumanOmni1-Quad v1-0 B chips on DNA from 2,438 study samples, 14

blind duplicates, and 105 HapMap controls. The HapMap samples had a 99.71%

concordance rate with their known genotypes and the blind duplicate sample pairs had a

concordance rate of 99.997%. Samples were excluded based on: (1) incomplete phenotype

information (n = 11), (2) gender discrepancy between self-report and genotypes (n = 7), (3)

aberrant ploidy of sex chromosomes (n = 3, one XYY male and two XX/XO mosaic

females), and (4) less than 95% call rate using all SNPs with at least 95% call rate. Further

quality assessment was performed on 1,008,829 SNPs. SNPs were dropped that (1) had less

than 98% call rate, (2) had any Mendelian errors using HapMap trios (n = 583), (3) had
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discordant genotypes using HapMap controls (n = 880), (4) had discordant genotypes from

two or more pairs among the study duplicates (n = 1,765) allowing for one error, (5) were

monomorphic or (6) had low minor allele frequency (MAF < 0.01). SNPs with deviation

from Hardy–Weinberg equilibrium (P-value < 10E-4) were flagged for future reference but

kept in the analysis. Thirty-six high-quality SNPs within one enzyme gene were chosen for

the demonstration of the methods described in this paper.

Numerical Simulations

Two sets of simulations were performed to evaluate the performance of the proposed

methods when sample sizes range from 250 to 2,000. The first one uses the sequence data

used in Wu et al. [2011] and Lee et al. [2012a, b] for two scenarios in empirical power

calculation: (1) the causal variants are all rare; (2) the causal variants are both rare and

common. The sequence data are with European ancestry from 10,000 chromosomes

covering 1 Mb regions using the calibrated coalescent model programed in COSI [Schaffner

et al., 2005]. Using the same strategy of the simulations in Wu et al. [2011] and Lee et al.

[2012a, b], genetic regions of 3 kb length were randomly selected in the simulations for type

I error calculation and power calculations.

The second set of simulations is based on the GWAS data of the Trinity Students Study. We

consider the enzyme gene used in the real data analysis. In the GWAS data of the Trinity

Students Study, 36 SNPs are located in the region. The MAF of the 36 SNPs ranges from

0.05428 to 0.4108. Thus, the 36 SNPs can be treated as common variants if the same cutoff

for rare variants is taken to be 0.03 as in literature of Wu et al. [2011] and Lee et al. [2012a,

b].

Simulations Based on COSI Sequence Data—In this part of simulations, we used the

same strategy as Wu et al. [2011] and Lee et al. [2012a, b] to generate phenotype data and

the same COSI sequence data were used. This guarantees the comparison with SKAT and

SKAT-O to be valid.

Type I error Simulations: To evaluate the robustness of the proposed models and tests, we

generated phenotype datasets by using the model

(8)

where Z1 is a dichotomous covariate taking values 0 and 1 with a probability of 0.5, Z2 is a

continuous covariate from a standard normal distribution N(0, 1), and ε follows a standard

normal distribution N(0, 1). To obtain genotype data, 3 kb subregions were randomly

selected in the 1 Mb region and the ordered genotypes were these SNPs in the 3 kb

subregions. Notice that the trait values are not related to the genotypes, and so the null

hypothesis holds. The sample size of the datasets were taken as 250, 500, 1,000, 1,500,

2,000, respectively. For each sample size case, 106 phenotype-genotype datasets were

generated to fit the proposed models and to calculate the test statistics and related P-values.

Then, an empirical type I error rate was calculated as the proportion of 106 P-values that

were smaller than a given α level (i.e., 0.05, 0.01, and 0.001, 0.0001, respectively).
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Empirical Power Simulations: To evaluate the power performance of the proposed models

and tests, we simulated datasets under the alternative hypothesis by randomly selecting 3 kb

subregions to obtain causal variants for the phenotype values as follows. Once a 3 kb

subregion was selected from the 1 Mb region, a subset of P causal variants located in the 3

kb subregion was then randomly selected to obtain ordered genotypes (g(t1), …, g(tp)).

Then, we generated the quantitative traits by

(9)

where Z1, Z2, and ε are the same as in the type I error model (8), and the βs are additive

effect for the causal variants defined as follows. We used |βj | = c | log10(MAFj)|/2, where

MAFj was the MAF of the j-th variant. As in Wu et al. [2011] and Lee et al. [2012a], three

different settings were considered: 10%, 20%, and 50% of variants in the 3 kb subregion are

chosen as causal variants. When 10%, 20%, and 50% of the variants were causal, c = log(7),

log(5), and log(2), respectively. For each setting, 2,000 datasets were simulated to calculate

the empirical power as the proportion of P-values that are smaller than a given α level (i.e.,

0.05, 0.01, and 0.001, respectively).

One may want to notice that only rare variants with MAF < 0.03 were used as causal

variants in the simulations of Wu et al. [2011] and Lee et al. [2012a]. In our simulations, we

considered two scenarios: (1) the causal variants are all rare, and (2) the causal variants are

both rare and common. For each scenario, we performed power calculations by using two

strategies: (1) only rare variants were used to calculate the empirical power levels, and (2)

both rare and common variants were used.

Simulations Based on the SNP Data of the Trinity Students Study

Type I error Simulations: The 36 SNP genotype data in the enzyme gene region of the

Trinity Students Study were used to evaluate the robustness of the proposed models and

tests for the common variant case. We generated 106 phenotype datasets by using the model

(10)

where Z1 is the gender of the individual in the dataset taking values 0 and 1, Z2 is a

continuous biochemical covariate from the dataset, Z3 is a dichotomous covariate to indicate

if supplement was used, and ε follows a standard normal distribution N(0, 1). The

coefficients (−0.5, 0.002, 0.5) were chosen based on an empirical analysis of a trait of the

Trinity Students Study data. Then, a sample of individuals was selected and the genotypes of

36 SNPs of these individuals were taken from the Trinity Students Study database. Notice

that the simulated trait values are not related to the genotypes, and so it can be used to test

the null. Using the genotypes and the simulated phenotype traits, we fitted the proposed

models and calculated the tests to get related P-values. In addition, empirical type I error

rates were calculated as the proportions of P-values which were smaller than a given α level

(i.e., 0.05, 0.01, and 0.001, 0.0001, respectively).
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Empirical Power Simulations: To evaluate the power performance of the proposed models

and related tests for a single common variant as causal variant, we chose one SNP of the 36

SNPs as the causal variant. Based on the genotype G (=0, 1, 2, respectively) of the SNP, we

defined X as follows: (1) for a mode of additive inheritance, X = G; (2) for a mode of

dominant inheritance, X = 1 when G = 1, 2 and X = 0 when G = 0; (3) for a mode of

recessive inheritance, X = 1 when G = 2 and X = 0 when G = 0, 1. We generated phenotype

traits by using the model

(11)

where Z1, Z2, Z3, and ε are the same as in the type I error model (10), and β = 0.0, 0.1, 0.2,

0.3, 0.4, 0.5 is the genetic effect of the minor allele of the causal SNP (i.e., additive effect,

dominant effect, and recessive effect for the three modes of inheritance, respectively).

For each value of genetic effect β = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, we considered five sample

sizes of 250, 500, 1,000, 1,500, 2,000, respectively. For each combination of a genetic effect

and a sample size, 2,000 datasets were simulated to calculate the empirical power as the

proportion of P-values that were smaller than a given α level (i.e., 0.05, 0.01, and 0.001,

respectively).

Parameters of Functional Data Analysis—In the data analysis and simulations, we

used functional data analysis procedure in the statistical package R. We use two functions in

library fda of R package as follows to create basis:

The three parameters were taken as order = 4, bbasis = 15, fbasis = 25 in all data analysis

and simulations to make sure that the type I error rates were properly controlled.

Specifically, the order of B-spline basis was 4, and the number of basis functions of B-spline

was K = Kβ = 15; the number of Fourier basis functions was K = Kβ = 25. In the data

analysis and simulations of FPCA, the number of knots of linear spline basis was taken as

10. To make sure that the results are valid and stable, we tried a wide range of parameters

that 10 ≤ K = Kβ ≤ 25 and the results are very close to each other (data not shown).

Results

Application to the SNP Data of the Trinity Students Study

Table 1 presents the results of SNP data of the enzyme gene of the Trinity Students Study.

We analyzed the data by three types of genetic variant functions: additive, dominant, and

recessive. For all three traits, the results of fixed effect F-distributed tests are far better than

those of SKAT and SKAT-O since the P-values of the fixed effect F-distributed test

statistics in columns 3–7 of Table 1 were much smaller than those of SKAT and SKAT-O in

columns 8 and 9 of Table 1 for most entries. The results of beta-smooth only are identical to

those of smoothing both the genetic variant functions Xi(t) and the genetic effect function
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β(t) except for trait C using Fourier basis functions. Therefore, whether smoothing the

genetic variant functions or not does not have much impact on the results.

The results of functional kernel score tests of mixed effect models are presented in the Table

S1 of Supplementary Materials. The results of functional kernel score tests are somewhat

mixed: for additive genetic variant function and Fourier basis, the functional kernel score

tests perform better than SKAT. For dominant and recessive genetic variant functions and

Fourier basis, the functional kernel score tests may perform poorer than SKAT. For B-spline

basis, the functional kernel score tests may sometimes perform poorer, or sometimes better

than SKAT.

Type I Error Simulation Results

The empirical type I error rates are reported in Tables 2 and 3 in the main text, and Tables

S2, S3, and S4 in the Supplementary Materials. For each entry of empirical type I error

rates, we generated 106 datasets. Results of four different α = 0.05, 0.01, 0.001, and 0.0001

levels were reported. When additive genetic variant function was used, Tables 2 and 3 and

supplementary Table S2 reported the results based on COSI sequence data and the enzyme

gene SNP data of the Trinity Students Study, respectively. In Tables S3 and S4 of the

Supplementary Materials, we used dominant and recessive genetic variant functions,

respectively, based on the enzyme gene SNP data.

For the proposed F-distributed test statistics of the fixed effect functional linear models, all

empirical type I error rates are around the nominal α levels (columns 3–7 of Table 2,

columns 3 and 4 of Table 3 and supplementary Tables S2, S3, and S4). Therefore, the F-

distributed test statistics of fixed effect functional linear models controlled type I error rates

correctly over all sample sizes and all significance levels. For the variance-component

functional kernel score tests of mixed effect functional linear models, the empirical type I

error rates are around the nominal α = 0.05 and α = 0.01 levels, but are generally higher than

the nominal α = 0.001 and α = 0.0001 levels (columns 5 and 6 of Table 3 supplementary

Tables S2, S3, and S4). In addition to the results reported, we also calculated the type I error

rates of LRT statistics of the fixed effect functional linear models. For large sample size

cases (1,500 and 2,000), the type I error rates of LRT statistics are around all the nominal α

= 0.05, 0.01, 0.001, and 0.0001 levels; when the sample sizes are 250, 500, and 1, 000, the

type I error rates are around the α = 0.05, 0.01 nominal levels, but higher than the smaller

nominal 0.001 and 0.0001 levels (data not shown).

Therefore, the fixed effect functional linear models and related F-tests are very robust and

can be useful in the whole genome-wide and whole exome association studies, while the

mixed effect functional linear models can be useful in candidate gene analysis. One may

want to notice that the proposed methods are reasonably robust for small sample size cases.

Interestingly, the variance-component functional kernel score tests of mixed effect models

are counter-conservative at the nominal α = 0.001 and α = 0.0001 levels in Table 3 and

supplementary Tables S2, S3, and S4, based on both the enzyme gene SNP and COSI

sequence data, since large sample sizes can lead to higher type I error rates.
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Statistical Power of the Proposed Tests and SKAT

We compared the power performance of the proposed tests with SKAT and SKAT-O based

on both the simulated COSI sequence data and the SNP data of the Trinity Students Study.

The proposed tests are those considered in the type I error simulations, i.e., the F-distributed

test statistics of fixed effect functional linear models and two variance-component functional

kernel score tests of mixed effect functional linear models, respectively. The empirical

power levels are reported in the figures both in the main text and in the Supplementary

Materials. In Figures 1–6, and supplementary Figures S1–S6, the results of the proposed F-

tests of the fixed effect models are compared with those of SKAT and SKAT-O based on the

COSI sequence data. Supplementary Figures S7–S11 compared the power performance of

the proposed tests with single causal SNP regression, SKAT and SKAT-O based on the

enzyme gene SNP data.

In the legend of all the Figures, “GVF&Beta, B-sp” (or “GVF&Beta, F-sp”) means that both

genetic variant function and genetic effect function β(t) were smoothed by B-spline (or

Fourier) basis functions, “Beta, B-sp” (or “Beta, F-sp”) means that only the genetic effect

function β(t) was smoothed by B-spline (or Fourier) basis functions (i.e., beta-smooth only),

“FKST” means that functional kernel score tests were used to calculate the power level

based on the mixed effect models, “B-sp” means B-spline basis was used, and “F-sp” means

Fourier basis was used. In addition, the F-test statistics are used except for “FKST.”

Simulation Results Based on COSI Sequence Data When the Causal Variants
Can Be Both Rare and Common—In Figures 1, 2, 3, and supplementary Figures S1,

S2, and S3, the causal variants can be both rare and common. In Figures 1, 2, and 3, both

rare and common variants were used in the analysis while only rare variants were used in the

analysis in supplementary Figures S1, S2, and S3. In Figure 1 and supplementary Figure S1,

all causal variants have positive effects; when 20%/80% causal variants have negative/

positive effects, we present the results in the Figure 2 and supplementary Figure S2; when

50%/50% causal variants have negative/positive effects, the results are presented in the

Figure 3 and supplementary Figure S3.

The proposed F-distributed test statistics of the fixed effect functional linear models have

higher power than that of SKAT and SKAT-O, except that the SKAT-O has slightly higher

power for small and moderate sample size cases of n = 250, 500 in plots (a3), (b3), and (c3)

of a single supplementary Figure S1. When both rare and common variants were used in the

analysis (Fig. 1, 2, and 3), the power of the proposed F-distributed test statistics of fixed

effect functional linear models are usually much higher than that of SKAT and SKAT-O for

small and moderate sample size cases of n = 250, 500. If only rare variants were used in the

analysis, the power will be dramatically reduced. To see this, let us compare the

corresponding power levels of Figure 1 and supplementary Figure S1 (or Fig. 2 and

supplementary Fig. S2 or Fig. 3 and supplementary Fig. S3). Figure 1 (or Fig. 2 or Fig. 3)

provides higher power levels than those of supplementary Figure S1 (or supplementary Fig.

S2 or supplementary Fig. S3).
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Simulation Results Based on COSI Sequence Data When the Causal Variants
Are Only Rare Variants—In Figures 4, 5, 6 and supplementary Figures S4, S5, and S6,

the causal variants are only rare variants. In Figures 4, 5, and 6, only rare variants were used

in the analysis while both rare and common variants were used in supplementary Figures S4,

S5, and S6. In Figure 4 and supplementary Figure S4, all causal variants have positive

effects; when 20%/80% causal variants have negative/positive effects, we present the results

in Figure 5 and supplementary Figure S5; when 50%/50% causal variants have negative/

positive effects, the results are presented in Figure 6 and supplementary Figure S6.

The proposed F-distributed test statistics of fixed effect functional linear models have higher

power than that of SKAT and SKAT-O, except that the SKAT-O has slightly higher power

for small and moderate sample size cases of n = 250, 500 in some plots (a3), (b3), and (c3)

of Figure 4 and supplementary Figure S4. When only rare variants are causal, if only rare

variants were used in analysis, the tests have higher power levels in Figure 4 (or 5 or 6) than

those in supplementary Figure S4 (or S5 or S6) if both rare and common variants in the

analysis.

Statistical Power Based on the Enzyme Gene SNP Data of the Trinity Students
Study—Supplementary Figures S7, S8, S9, S10, and S11 report the results of power

simulations based on the enzyme gene SNP data of the Trinity Students Study and model

(11), when one SNP is the only causal variant for the modes of additive, dominant, and

recessive inheritance.

As expected, single causal SNP regression model provides the highest power compared with

the proposed tests, and SKAT and SKAT-O. For the mode of additive inheritance, the

proposed test statistics have substantially higher power than that of SKAT and SKAT-O

except for small sample sizes n = 250. Interestingly, the functional kernel score test of B-

spline offers the second highest power for small and moderate sample sizes of n = 250 and

500 as shown in graphs (a1), (a2), and (a3) of supplementary Figures S7 and S8. For the

mode of dominant inheritance, the two F-distributed tests of the fixed effect models and the

functional kernel score test of B-spline have higher power than that of SKAT and SKAT-O.

For the mode of recessive inheritance, only the two F-distributed tests of fixed effect models

offer good power when the sample size n ≥ 1, 000. Both the two functional kernel score tests

of mixed effect models and SKAT/SKAT-O have minimal power.

General Observation—The results of the proposed F-tests are very similar in the Figures

1, 2, and 3 (or in the supplementary Figs. S1, S2, and S3, or in the Figs. 4, 5, and 6, or in the

supplementary Figure S4, S5, and S6), when all causal variants have positive effect, 20%/

80%, and 50%/50% causal variants have negative/positive effects, respectively. Therefore,

the proposed tests are very robust to the proportion of causal variants that were positively/

negatively related to the trait. Although SKAT-O has higher power than the proposed F-tests

in some plots (a3), (b3), and (c3) of supplementary Figures S1 and S4 and Figure 4, the

power levels of SKAT-O are not higher anymore in the other figures. This shows that the

presence of both negative and positive effects of causal variants has little impact on the

proposed F-tests, but can affect SKAT-O much more severely.
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In total, we compared five F-test statistics of the fixed effect models: two are based on B-

spline basis functions, two are based on Fourier basis functions, and one is based on FPCA.

In the two F-tests to use B-spline (or Fourier) basis functions, one is to smooth both the

genetic variant functions and the genetic effect function β(t), and the other is only to smooth

the genetic effect function β(t) (i.e., beta-smooth only). Generally, the five F-test statistics of

the fixed effect functional linear models have similar power, although the two tests of

Fourier basis have slightly higher power and the test of FPCA has slightly lower power and

the two tests of B-spline basis have power levels right in the middle. Such as in the real data

analysis, the power levels of beta-smooth only are almost identical to those of smoothing

both the genetic variant functions and genetic effect function β(t) by B-spline basis (or

Fourier basis). Therefore, the proposed F-tests of the fixed effect models have superior

performance, and the tests do not strongly depend on whether the genotype data are

smoothed or not. In addition, the F-tests do not strongly depend on which basis functions are

used.

For the fixed effect functional linear models, we calculated the empirical power levels of the

LRT statistics, which provide very similar power levels as the F-tests (data not shown). We

also explored the power performance of the variance-component functional kernel score

tests of mixed effect functional linear models for COSI sequence data, and it was found that

they have less power than the proposed F-tests and SKAT (data not shown).

Discussion

In this paper, we develop functional linear models to test association between a quantitative

trait and rare variants or common variants or the combinations of the two. The basic

philosophy is to treat the observed genetic variant data as single entities/functions, rather

than as a sequence of discrete observations. Although the observed genetic data Gi = (gi(t1),

…, gi(tm))′ (or their modified versions that we called dominant or recessive) are always

discrete, we view them as realizations of continuous genetic variant functions Xi(t) at the

location t. Here, t is simply the location of the genetic variant in the genome, which is a

continuum, rather than discrete. We believe that the genetic variant functions have an

intrinsic functional structure. By using modern state-of-the-art functional data analysis

techniques, the observed high dimension genetic variant data can be used to estimate the

genetic variant functions based on B-spline or Fourier basis functions or FPCA [de Boor,

2001; Ferraty and Romain, 2010; Horváth and Kokoszka, 2012; Ramsay and Silverman,

1996; Ramsay et al., 2009]. Then, the estimated genetic variant functions are used in the

functional linear regression models to connect to the phenotype adjusting for covariates.

To test the association, we proposed F-distributed test statistics of fixed effect functional

linear models and functional kernel score tests of mixed effect functional linear models. The

models and tests are very flexible and computationally efficient. Specifically, we have

developed codes based on the procedure of functional data analysis in the statistical package

R to facilitate data analysis and simulations. Since SKAT and SKAT-O were shown to be

advantageous over several burden tests for a range of genetic models, we focused on

comparing power performance of our tests with SKAT and SKAT-O [Lee et al., 2012a; Wu

et al., 2011]. To make our comparison reasonable, we used exactly the same simulated COSI
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sequence data of Wu et al. [2011] and Lee et al. [2012a, b]. In addition, we performed

simulations based on the SNP data of the Trinity Students Study to evaluate the performance

of the proposed tests in the case of common variants. Before that, we evaluated the

robustness of the proposed models and tests by empirical type I error calculations.

After extensive simulation analysis, it is shown that the proposed F-distributed tests of the

fixed effect functional linear models have higher power than that of SKAT and SKAT-O for

most cases of three scenarios: (1) the causal variants are all rare, (2) the causal variants are

both rare and common, and (3) the causal variants are common. The superior performance

of the fixed effect functional linear models is most likely due to its optimal utilization of

both genetic linkage and LD information of multiple genetic variants in a region of the

human genome and the similarity between different individuals, while SKAT and SKAT-O

only model the similarities but they do not model linkage and LD information sufficiently.

In addition, the proposed F-tests of the fixed effect models generate accurate type I errors in

simulation studies. We also show that the functional kernel score tests of mixed effect

models can be useful in candidate gene analysis and small sample problems. The methods

are applied to analyze three biochemical traits in one enzyme gene region of the Trinity

Students Study.

One question about the proposed approach is the accuracy of the estimation of the genetic

variant functions, which can be relieved by fast moving next-generation sequencing

technologies that will detect millions of novel rare variants and will have profound impacts

on genetic studies. By adding more and more variants into the human genome including rare

and common variants, the estimation of the genetic variant functions can be vastly improved

and one may obtain almost the entire spectrum of DNA sequence of an individual.

Since the genotype data can only take 0, 1, and 2 values, one concern is that it may not make

sense to smooth them. To investigate the issue, we explored two alternative approaches:

FPCA and beta-smooth only. Neither FPCA nor beta-smooth only approach assumes any

smoothness of the genotype data. In both real data analysis and simulation studies, we found

that beta-smooth only approach offers identical or very similar results as the approach of

smoothing both the genetic variant functions (or genotype data) and the genetic effect

function β(t). Therefore, the performance of the proposed fixed effect models does not

strongly depend on whether the genotype data are smoothed. In addition, the results do not

strongly depend on which basis functions are used. Moreover, the results are similar and

stable when the number of basis functions is in a range of 10 ≤ K = Kβ ≤ 25.

Intuitively, beta-smooth only approach makes sense in genetic analysis. To understand this,

assume that the trait is affected by one causal variant. Then, the variants around the causal

variant can have impact on the trait due to the linkage disequilibrium. Thus, smoothing β(t)

makes sense. The logic applies to the case of the existence of multiple causal variants of

complex traits. If multiple causal variants exist, the variants around the causal variants may

have impact on the trait, again, due to the linkage disequilibrium. Hence, there is less

concern to smooth the genetic effect function β(t).
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The basic idea of the proposed approaches is different from those of burden tests and kernel-

based methods, which do not view the genetic variant data as single entities/functions or do

not use their functional properties sufficiently. Although the proposed functional kernel

score tests of the mixed effect models are statistically kernel-based, they are actually based

on functional representation of the genetic variant data that includes information of linkage,

LD, and similarity simultaneously. Basically, our approaches are functional, but burden tests

and kernel-based methods are not.

In terms of practical applicability, the proposed tests can be used in both candidate gene

analysis and genome-wide association analysis. Specifically, the proposed F-distributed tests

of the fixed effect models are good for both since they control type I error rates accurately at

all α = 0.05, 0.01, 0.001, and 0.0001 levels. The functional kernel score tests of the mixed

effect models would be more appropriate for candidate gene analysis since they only control

type I error rates accurately at α = 0.05 and 0.01 levels. The proposed models and tests can

be used for analysis of rare variants or common variants or the combinations of the two,

which makes the proposed approaches very attractive. It is our hope that the proposed

research can help in the search of genetic variants that are responsible for complex diseases,

and stimulate further interest and research in developing statistical methods for analysis of

next-generation sequence data and GWAS data by using the fascinating functional data

analysis techniques.

Computer Program

The methods proposed in this paper are implemented by using procedure of functional data

analysis (fda) in the statistical package R. The R codes for data analysis and simulations are

available from the web http://www.nichd.nih.gov/about/org/diphr/bbb/software/Pages/

default.aspx

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The empirical power of the F-test statistics of the fixed effect models (3), (4), and (6), and

SKAT and SKAT-O using both rare and common variants in analysis, when causal variants

were both rare and common, and all causal variants had positive effects. The simulations

were based on COSI sequence data.
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Figure 2.
The empirical power of the F-test statistics of the fixed effect models (3), (4), and (6), and

SKAT and SKAT-O using both rare and common variants in analysis, when causal variants

were both rare and common, and 20%/80% causal variants had negative/positive effects.

The simulations were based on COSI sequence data.
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Figure 3.
The empirical power of the F-test statistics of the fixed effect models (3), (4), and (6), and

SKAT and SKAT-O using both rare and common variants in analysis, when causal variants

were both rare and common, and 50%/50% causal variants had negative/positive effects.

The simulations were based on COSI sequence data.
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Figure 4.
The empirical power of the F-test statistics of the fixed effect models (3), (4), and (6), and

SKAT and SKAT-O using rare variants in analysis, when causal variants were only rare, and

all causal variants had positive effects. The simulations were based on COSI sequence data.
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Figure 5.
The empirical power of the F-test statistics of the fixed effect models (3), (4), and (6), and

SKAT and SKAT-O using rare variants in analysis, when causal variants were only rare, and

20%/80% causal variants had negative/positive effects. The simulations were based on

COSI sequence data.
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Figure 6.
The empirical power of the F-test statistics of the fixed effect models (3), (4), and (6), and

SKAT and SKAT-O using rare variants in analysis, when causal variants were only rare, and

50%/50% causal variants had negative/positive effects. The simulations were based on

COSI sequence data.
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