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Abstract

Background—The single nucleotide polymorphism 5p12-rs10941679has been found to be

associated with risk of breast cancer, particularly estrogen receptor (ER)-positive disease. We

aimed to further explore this association overall, and by tumor histopathology, in the Breast

Cancer Association Consortium.

Methods—Data were combined from 37 studies, including 40,972 invasive cases, 1,398 cases of

ductal carcinoma in situ (DCIS) and 46,334 controls, all of white European ancestry, as well as

3,007 invasive cases and 2,337 controls of Asian ancestry. Associations overall and by tumor

invasiveness and histopathology were assessed using logistic regression.

Results—For white Europeans, the per-allele odds ratio (OR) associated with 5p12-rs10941679

was 1.11 (95% confidence interval [CI] =1.08–1.14, P=7×10−18) for invasive breast cancer and

1.10 (95%CI=1.01–1.21, P=0.03) for DCIS. For Asian women, the estimated OR for invasive

disease was similar (OR=1.07, 95%CI=0.99–1.15, P=0.09). Further analyses suggested that the

association in white Europeans was largely limited to progesterone receptor (PR)-positive disease

(per-allele OR=1.16, 95%CI=1.12–1.20, P=1×10−18 versus OR=1.03, 95%CI=0.99–1.07, P=0.2

for PR-negative disease; P-heterogeneity=2×10−7); heterogeneity by estrogen receptor status was

not observed (P=0.2) once PR status was accounted for. The association was also stronger for

lower-grade tumors (per-allele OR [95%CI]=1.20 [1.14–1.25], 1.13 [1.09–1.16] and 1.04 [0.99–

1.08] for grade 1, 2 and 3/4, respectively; P–trend=5×10−7).

Conclusion—5p12 is a breast cancer susceptibility locus for PR-positive, lower gradebreast

cancer.

Impact—Multi-centre fine-mapping studies of this region are needed as a first step to identifying

the causal variant or variants.
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Introduction

Genome-wide association studies (GWAS) have identified several single-nucleotide

polymorphisms (SNPs) associated with breast cancer risk. Key to these findings, and to the

more precise estimation of the associated relative risks, has been their replication in large

independent case-control series. SNPs in or close to the genes LSP1, MAP3K1, FGFR2,

TOX3, MRPS30, COX 11, MRPS30, and SLC4A7, and in chromosomal regions 8p24 and

2q35 have all been replicated in the Breast Cancer Association Consortium (BCAC) (1–4)

An Icelandic GWAS and replication study of 5,028 breast cancer cases and 32,090 controls

revealed multiple signals in the 5p12 chromosomal region (5). The most strongly associated

SNP was rs10941679, the minor G allele being associated with an estimated per-allele odds

ratio (OR) of 1.19 (95% confidence interval [CI]=1.11–1.26, P=2.9×10−11). The authors

reported that the increased risk was particularly marked for estrogen receptor (ER)-positive

disease (N=2,726 cases, per-allele OR=1.27, 95%CI=1.19–1.35, P=2.5×10−12; P-

heterogeneity=0.004) (5). In addition, our previous breast cancer GWAS reported evidence

of an association with another SNP on 5p12, rs981782 (P=9×10−6), based on data from

23,408 cases and 24,636 controls from 21 BCAC studies (2). The Icelandic-led study

evaluated both these SNPs in multivariable models and observed that only 5p12-rs10941679

was independently associated with breast cancer risk (5). This SNP was not among those

genotyped in the first phase of our previous GWAS (2).

The aims of the present study were to estimate the relative risk of breast cancer associated

with 5p12-rs10941679 in a much larger case-control series comprising studies participating

in the BCAC, to evaluate its independence of any association with 5p12-rs981782, and to

assess associations by disease subtypes defined by histopathology.

Materials and Methods

Thirty-seven studies from Europe, North America, Australia, and Asia participated in

genotyping for the present study via the BCAC, contributing a total of 41,243 invasive

breast cancer cases, 1,406 cases of ductal carcinoma in-situ (DCIS) and 46,621 controls of

white European origin and 3,082 invasive cases and 2,402 controls of Asian origin. All 37

studies genotyped 5p12-rs10941679. Seven studies also genotyped 5p12-rs981782 in a total

of 8,247 invasive cases and 10,363 controls, all of European origin. Fourteen of the 37

participating studies had already genotyped 5p12-rs981782 in white Europeans as part of the

previously published study (2). Descriptions of studies are provided in Supplemental Table 1

and final sample sizes are presented in Supplemental Table 2.

All studies provided information on disease status and self-reported race/ethnicity for all

subjects and age at diagnosis for cases. All but five studies (BIGGS, FBCS, HUBCS, RBCS

and UCIBCS) also provided age at data collection for controls. “Selected cases” were a

subset of 7,128 invasive cases selected for inclusion or oversampled by nine studies because

they had bilateral breast cancer, a family history of breast cancer and/or other characteristics

that suggested they were at increased genetic risk (all cases from BBCS, FBCS, GC-HBOC,

kConFab/AOCS, MBCSG, NC-BCFR, OFBCR and RBCS and 211 cases from CNIO-BCS,
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see Supplemental Table 1). ER and progesterone receptor (PR) status were provided for a

subset of cases, respectively, as were human epidermal growth factor receptor 2 (HER2)

status and other histological features including axillary node status and tumor grade, size,

and morphology (see Supplemental Table 3). This histopathology information was generally

abstracted from medical reports.

Subjects who reported having ethnicity other than white European were excluded, with the

exception of those from the three Asian studies, for which only subjects of Asian origin

were included. Only subjects from studies that genotyped at least 30 cases of DCIS were

included in the analyses of risk of DCIS. All subjects gave written informed consent, where

applicable, and each study was approved by the relevant local institutional review boards.

Most studies carried out genotyping using Taqman nuclease assay (Taqman®), with

reagents designed by Applied Biosystems as Assays-by-Design™ and genotyping performed

using the ABI PRISM 7900HT, 7700 or 7500 Sequence Detection Systems according to

manufacturer’s instructions. Three studies used Sequenom’s MassARRAY system and

iPLEX technology (Sequenom, San Diego, CA, USA), with oligonucleotides design carried

out according to the guidelines of Sequenom and performed using MassARRAY Assay

Design software (version 3.1). The method used by each study is identified in Supplemental

Table 2. All studies complied with BCAC genotyping quality control (QC) standards by

including at least 2% of samples in duplicate and a common set of 93 CEPH DNAs used by

the HapMap Consortium (HAPMAPPT01, Coriell Institute for Medical Research, Cambden,

NJ).

Statistical Methods

Departure from Hardy-Weinberg equilibrium (HWE) was tested for in controls from each

centre using Pearson/s χ2 test (1df). The association of each SNP with breast cancer risk was

assessed by estimating genotype-specific and per-allele ORs using logistic regression,

adjusted for study. The exclusion of studies for which the age of controls was not known and

the additional adjustment for age (in 5-year categories and as a continuous covariate) made

no substantial difference to the results. Between-study heterogeneity in ORs was assessed

using a likelihood ratio test (LRT) comparing the model with interaction terms for the per-

allele log-OR by study to the model with no interaction terms. Differences in ORs by

ethnicity (white European, Asian) and age (<40, 40–49, 50–59, 60–69, ≥70 years) were

evaluated using a similar LRT, the latter modeled as a linear trend by fitting the median age

for each of the defined categories.

ORs specific to disease subtypes defined by ER, PR and HER2 status (positive, negative),

by combinations of these markers, and by axillary node status (none, ≥1 affected), tumor

grade (1, 2, ≥3), tumor size (≤10, 11–20, >20mm) and tumor morphology (ductal, lobular),

were estimated for white Europeans using polytomous logistic regression with control status

as the reference outcome. Heterogeneity in the OR by subtypes was tested for by applying

polytomous logistic regression to cases-only, treating the number of minor alleles as the

outcome and restricting, for each explanatory variable, the beta coefficient for the

comparison of 2 to 0 minor alleles to be double that for the comparison of 1 to 0 minor

alleles. This is equivalent to modeling a log-additive per-allele OR and allows multiple
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tumor markers to be modeled simultaneously. Linear trends were tested for grade by fitting

values 1, 2, and 3, and for size by fitting the median value, for the defined categories,

respectively. Enrichment of the risk allele in “selected cases” was assessed using the

likelihood ratio test comparing polytomous logistic regression models with and without the

per-allele OR constrained to be equal for selected and unselected cases, relative to controls

(1df). We minimised bias in the estimation of OR by repeating all analyses after excluding

“selected cases”. All statistical tests were two-sided. The term “genome-wide” statistically

significant is taken to imply p<10−7; otherwise “statistically significant” implies p<0.05. All

analyses were carried out using Stata: Release 10 (6).

Meta-analyses were carried out using metan command based on log-transformed OR

estimates and their 95%CI from different reports.

Results

Minimum genotype concordance of 98% for duplicate samples and 95% for the CEPH

samples was observed in all studies, as were minimum genotype calls of 97% for both SNPs

in cases and controls. Evidence of departure from HWE was observed for 5p12-rs10941679

in controls from two studies (FBCS [P = 0.02] and HABCS [P=0.005], Supplemental Table

2); for both studies, cluster plots were double-checked visually and determined to be of high

quality, and all their genotype data were therefore included in the final analysis.

Thirty-four studies successfully genotyped 5p12-rs10941679 in a total of 40,972 invasive

breast cancer cases (7,037 of which were selected for increased genetic risk), 1,398 DCIS

cases, and 46,334 controls of white European origin. Genotypes were also obtained for this

SNP for 3,007 cases and 2,337 controls of Asian origin recruited by three studies. A total of

8,213 invasive cases and 10,340 controls were successfully genotyped for 5p12-rs981782 by

seven studies. Previously published data for this SNP were included from 14 studies to

obtain genotypes for both SNPs in 5p12 for 23,548 invasive cases and 28,142 controls, all of

white European origin. Genotype counts by study are provided in Supplemental Table 4.

The minor G allele of 5p12-rs10941679 was less frequent in white European women (26%)

than in Asian women (49%). Estimated ORs, for invasive breast cancer and DCIS, and by

ethnicity, are presented in Table 1. The genotype-specific OR estimates were consistent with

a log-additive model for white Europeans. The per-G-allele OR estimate was 1.12

(95%CI=1.10–1.15, P=6×10−24), and there was no evidence of heterogeneity in the OR

among studies overall (P=0.1) or among studies of Asians (P=0.3), studies of white

Europeans that included “selected cases” (P=0.3) or studies of white Europeans without

“selected cases” (P=0.2) (Figure 1). This association was maintained at genome-wide

statistical significance when SNP 5p12-rs981782 was included as a covariate in the logistic

regression model (OR=1.11, 95%CI=1.09–1.15, P=6×10−13). For 5p12-rs10941679 the

estimated per-G-allele OR for DCIS was similar to that for invasive disease (OR=1.10,

95%CI=1.01–1.21, P=0.03). The per-G-allele OR for invasive breast cancer did not appear

to be different for Asian women (P-heterogeneity=0.3), but the estimate was lower and not

statistically significant (1.07; 95%CI=0.99–1.15, P=0.09). All further analyses were based

on white European women only.
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We observed weak evidence that the G allele of 5p12-rs10941679 was enriched in “selected

cases” (P=0.06). The estimated per-allele OR was 1.18 (95%CI=1.11–1.24, P=1×10−8)

when comparing cases selected for increased genetic risk to controls from the same studies

and 1.11 (95%CI=1.08–1.14, P=7×10−18) when they were excluded. There was evidence of

an increase in the per-allele OR associated with 5p12-rs10941679 with age (P=0.01), with

estimates of 1.10 (95%CI=1.01–1.19), 1.08 (95%CI=1.02–1.15), 1.14 (95%CI=1.09–1.19),

1.12 (1.07–1.17) and 1.16 (95%CI=1.06–1.26) for white European women aged <40, 40–49,

50–59, 60–69 and ≥70, respectively. This trend was also observed when age was modeled in

years (P=0.02), with an estimated interaction OR of 1.02 (95%CI=1.00–1.04) per G allele,

per 10-year increase in age. The same trend was observed after excluding “selected cases”

(interaction OR=1.02, 95%CI=1.00–1.05, P=0.03).

Results from analyses by breast cancer subtypes defined by histopathological features are

presented in Tables 2 and 3. The number of cases from each study for which this

information was available is presented in Supplemental Table 3. We observed strong

evidence that the per-allele OR associated with 5p12-rs10941679 differed by ER status, PR

status and ER/PR combined (all P<10−5, Table 2). When ER and PR status were modeled

together in the case-only analysis only the association with PR status was maintained

(P=6×10−4, compared to P=0.2 for ER status). The OR estimates by combined ER/PR status

were consistent with the heterogeneity being present by PR rather than ER status.

Furthermore, heterogeneity in the OR by PR status was observed when only cases with ER-

positive disease were considered (P=0.005), but not by ER status when only cases with PR-

positive disease were considered (P=0.8). After excluding “selected cases”, the per-G-allele

OR estimates were 1.03 (95%CI=0.99–1.07, P=0.2) for PR-negative disease and 1.16

(95%CI=1.12–1.20, P=1×10−18) for PR-positive disease. We observed no further

heterogeneity by HER2 status (P=0.3). The trend of increasing per-allele OR with age

remained apparent when only the risk of PR-positive disease was considered (interaction

OR=1.03, 95%CI=1.00–1.06, P=0.05).

There was also clear evidence that 5p12-rs10941679 was more strongly associated with the

risk of lower-grade breast cancer (P=5×10−7, Table 3). When grade and PR status were

modeled together in a case-only analysis, evidence of heterogeneity was observed for both

tumor characteristics (P<0.002). After excluding “selected cases”, the per-G-allele OR

estimates were 1.20 (95%CI=1.14–1.25), OR=1.13 (95%CI=1.09–1.16) and OR=1.04

(95%CI=0.99–1.08) for grade 1, 2 and 3/4 disease, respectively). Further restriction to PR-

positive cases gave consistent results [OR=1.22 [95%CI=1.14–1.30], OR=1.15

[95%CI=1.10–1.20] and OR=1.07 [95%CI=1.00–1.15], respectively). We also assessed the

association of 5p12-rs10941679 with risk of different grades of DCIS and, while based on

limited data (N=210, 102 and 124 cases with grade 1, 2 and 3 DCIS, respectively), the per-

allele OR estimates were consistent with the trend observed for invasive disease (OR=1.33

[95%CI=0.88–2.02], OR=1.08 [95%CI=0.78–1.49] and OR=0.98 [95%CI=0.72–1.33] for

grade 1, 2 and 3 DCIS, respectively). There was no evidence of heterogeneity in per-G-allele

OR by nodal status, tumor size or tumor type.

Further to our previous report of a possible association with breast cancer risk of variant

rs981782, also in 5p12, we genotyped this SNP in an additional 8,213 invasive cases and
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10,340 controls from studies participating in the BCAC and found no evidence of

association (per-G-allele OR=0.97, 95%CI=0.93–1.02, P=0.2, Table 4). When we added in

data for participants genotyped as part of the previous study (2), to give a combined total of

23,548 invasive cases and 28,142 controls of white European origin, the per-G-allele OR

estimate was 0.95 (95%CI=0.92–0.97, P=2×10−5). The MAF for controls genotyped using

Taqman, iPlex and the GWAS SNP-array (2) were similar (0.47, 0.45 and 0.50,

respectively). This possible association was attenuated, but still nominally statistically

significant, when 5p12-rs10941679 was also included in the logistic regression model

(OR=0.97, 95%CI=0.94–0.99, P=0.007). The per-allele OR estimate for each SNP adjusted

for the other was unchanged after excluding “selected cases”. The estimated linkage

disequilibrium coefficient (r2) between the two SNPs was 0.04, both across all white

European subjects genotyped (N=52,506) and for controls only (N=28,142).

Discussion

This analysis of 40,972 invasive cases and 46,334 controls from 37 studies definitively

confirms the 5p12-rs10941679 as a breast cancer susceptibility locus in white European

women. After excluding cases selected for increased genetic susceptibility, we estimated an

OR for white European women of 1.11 per G allele (95%CI=1.08–1.14). This association

was independent of a possible association with 5p12-rs981782 and appeared to be stronger

for older women.

The estimated OR for Asian women (3,007 cases and 2,337 controls) was consistent with

that for European women, but the confidence limits were too wide to demonstrate a definite

association (OR=1.07, 95%CI=0.99–1.15). The Shanghai Breast Cancer Study also

estimated a per-G-allele OR of 1.07 (95%CI=0.99–1.15) using data from 2,950 cases and

2,986 controls (7). Assessed together, these two large studies suggest that 5p12-rs10941679

is associated with increased breast cancer risk in Asian women (meta-analysis OR=1.07

(95%CI=1.02–1.13, P=0.01), although even larger studies will be required to precisely

estimate the corresponding OR.

The initial paper on 5p12-rs10941679, based on 6,145 cases and 33,016 controls, reported a

larger per-G-allele OR for breast cancer in general of 1.19 (95%CI=1.11–1.28) (5). This

larger initial estimate probably reflects “winner’s curse” whereby the estimated OR in the

study discovering the association tends to be overestimated (8). Stacey et al. (5) also

reported that the increased risk associated with 5p12-rs10941679 was limited to ER-positive

disease and consistent results have been observed in other studies (7, 9). We replicated this

finding, but our larger sample size enabled us to carry out a more detailed analysis that

revealed a stronger association with PR-positive disease (per-G-allele OR=1.16,

95%CI=1.12–1.20). The heterogeneity in the OR by ER status appeared to be driven by the

correlation between ER and PR status. Furthermore, we have established that the association

is also stronger for lower grade tumors in general, and lower grade PR-positive tumors

specifically. Stacey et al. (5), also noted a possibly larger OR for lower grade tumors, but

not after ER-status was taken into account. This multifaceted heterogeneity has also been

observed for 10q26-rs2981582, which appears to be associated with increased risk of lower

grade ER-positive tumors (10).
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In our previous GWAS, we observed that the minor G allele of 5p12-rs981782 in the same

region was associated with reduced risk of breast cancer. The estimated per-G-allele OR for

white European women was 0.94 (95%CI=0.91–0.97, P=9×10−6), based on data from

20,649 cases of invasive breast cancer and 22,578 controls from 19 studies participating in

the replication stages (2 and 3) (2). We did not replicate this association in the present study

of 8,247 cases and 10,363 controls, but our result (OR=0.97, 95%CI=0.93–1.02, P=0.2) was

not inconsistent with the existence of a modest protective effect. Reeves et al. (11) studied

5p12-rs981782 in 10,306 cases and 10,309 controls from the Million Women Study and

estimated a per-G-allele OR of 0.94 (95%CI=0.91–0.98, P=0.003). Stacey et al. (5) also

evaluated this SNP in 5,028 cases and 32,090 controls and reported the corresponding OR to

be 0.96 (95%CI=0.92–1.01, P=0.1). The Cancer Genetic Markers of Susceptibility

(CGEMS) project studied SNP 5p12-rs4866929, which is in high linkage disequilibrium

with 5p12-rs981782 (r2=0.96), in a total of 5,692 cases and 5,576 controls and obtained an

OR estimate of 0.97 (95%CI=0.91–1.03, P=0.4) (3, 9). When combined together in a meta-

analysis, these results for 5p12-981782 (excluding those from CGEMS) give an estimated

OR of 0.95, 95%CI=0.93–0.97, P=5×10−8), suggesting that this SNP is associated with a

modest reduction in breast cancer risk.

It is less clear whether the association between 5p12-rs981782 and breast cancer risk is

independent of the effect marked by 5p12-rs10941679. In contrast to the findings of Stacey

et al. (5), in the present study (23,548 cases and 28,142 controls) the evidence of association

for 5p12-rs981782 remained after adjusting for 5p12-rs10941679 (P=0.007), although the

effect was slightly attenuated. Furthermore, the correlation between these two SNPs was too

weak (r2=0.04, N=52,506) for the association seen with 5p12-r981782 to be due to

confounding by 5p12-rs10941679. However, it remains possible that these two associations

are driven by a variant correlated with both SNPs. Stacey et al. (5) found that a third SNP

nearby, 5p12-rs4415084 was associated with breast cancer risk, independently of 5p12-

rs10941679 (r2=0.51 between the two SNPs). Multi-centre fine-mapping studies of this

region are needed to obtain the samples sizes required to identify the causal variant or

variants behind these multiple small signals.

As discussed by Stacey et al. (5), 5p12-rs10941679 resides between two genes: MRPS30,

which encodes the smaller 28S subunit of the mitochondrial ribosome and has pro-apoptotic

properties (12), and FGF10, a fibroblast growth factor which is amplified in around 10% of

breast cancers (13), although there is a recombination hotspot separating this SNP from

FGF10. Therefore, as for the vast majority of low-penetrance breast cancer susceptibility

loci identified by GWAS, an implicated gene or functional mechanism remains to be

elucidated.

A potential limitation of our study was that information on tumor histopathology was not

available for all cases and, where it was, these data were predominantly abstracted from

medical records, rather than being obtained through a standardised pathology review. Thus

some misclassification may have been present and this may have attenuated some

associations with tumor phenotype. However the strong association with PR and ER status

suggests that this effect was minimal, at least for the features examined here.
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In conclusion, 5p12-rs10941679 is a confirmed marker of breast cancer susceptibility. In

white European women it is associated with increased risk of lower-grade, PR-positive

tumors. These findings suggest that commonly collected tumor characteristics other than ER

status can be used to identify subtypes of breast cancer with distinct etiology, and that large

collaborative studies are required to identify the genetic contributions specific to each of

these.
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Figure 1. Association of 5p12-rs10941679 with risk of invasive breast cancer, by study
Per-allele odds ratios (OR) and 95% confidence intervals (CI), with studies grouped into

those that recruited Asian women and white European women. The latter group is further

divided into those including “selected cases” likely to be at higher genetic risk (marked by

an asterisk) and those with unselected cases. The area of the box/diamond is inversely

proportional to the standard error of the log OR estimate.
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Table 1

SNP 5p12-rs10941679 and risk of breast cancer

Group/invasiveness/genotype Controls, N (%) Cases, N (%) OR (95%CI) P

White European women

 Invasive disease (34 studies)

   AA 25,622 (55) 21,241 (52) 1.00

   AG 17,668 (38) 16,671 (41) 1.14 (1.11–1.17) 9×10−19

   GG 3,044 (6.6) 3,060 (7.5) 1.22 (1.15–1.29) 2×10−12

  per G-allele 1.12 (1.10–1.15) 6×10−24

  Adjusted for 5p12-rs981782*

   AA 15,648 (56) 12,243 (52) 1.00

   AG 10,684 (38) 9,598 (41) 1.14 (1.10–1.18) 2×10−11

   GG 1,810 (6.4) 1,707 (7.3) 1.19 (1.11–1.28) 3×10−6

  per G-allele 1.11 (1.09–1.15) 6×10−13

White European women

 DCIS (15 studies)

   AA 14,187 (55) 726 (52) 1.00

   AG 9,733 (38) 578 (41) 1.17 (1.04–1.31) 0.009

   GG 1,662 (6.5) 94 (6.7) 1.10 (0.88–1.38) 0.4

  per G-allele 1.10 (1.01–1.21) 0.03

Asian women

 Invasive disease (3 studies)

   AA 612 (26) 765 (25) 1.00

   AG 1,155 (49) 1,460 (49) 1.03 (0.90–1.18) 0.6

   GG 570 (24) 782 (26) 1.14 (0.98–1.33) 0.09

  per G-allele 1.07 (0.99–1.15) 0.09

OR, odds ratio; CI, confidence interval; DCIS, ductal carcinoma in situ

*
SNP 5p12-981782 included under a codominant model (2df), based on data on both variants available from 19 studies, including previously

published data on 5p12-rs198782 (2).
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Table 4

SNP 5p12-rs981782 and risk of invasive breast cancer in white European women

Group/genotype Controls, N (%) Cases, N (%) OR (95%CI) P

Subjects genotyped for the present study (7 studies)

  AA 2,845 (28) 2,310 (28) 1.00

  AG 5,162 (50) 4,048 (49) 0.95 (0.89–1.02) 0.2

  GG 2,333 (23) 1,855 (23) 0.94 (0.87–1.03) 0.2

 per G-allele 0.97 (0.93–1.01) 0.2

Combined analysis* (19 studies)

  AA 7,815 (28) 6,890 (29) 1.00

  AG 14,056 (50) 11,626 (49) 0.93 (0.90–0.97) 0.001

  GG 6,271 (22) 5,032 (21) 0.90 (0.86–0.95) 3×10−5

 per G-allele 0.95 (0.92–0.97) 2×10−5

Adjusted for rs10941679* (19 studies)

  AA 7,815 (28) 6,890 (29) 1.00

  AG 14,056 (50) 11,626 (49) 0.95 (0.91–0.99) 0.02

  GG 6,271 (22) 5,032 (21) 0.93 (0.89–0.98) 0.009

 per G-allele 0.97 (0.94–0.99) 0.007

OR, odds ratio; CI, confidence interval

*
based on white European subjects genotyped for 5p12-rs10941679 and 5p12-rs981782, including previously published data on the latter (2)
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