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Abstract

Complex disorders are typically characterized by multiple phenotypes. Analyzing these phenotypes jointly is expected to be
more powerful than dealing with one of them at a time. A recent approach (O’Reilly et al. 2012) is to regress the genotype at
a SNP marker on multiple phenotypes and apply the proportional odds model. In the current research, we introduce an
explicit expression for the score test statistic and its non-centrality parameter that determines its power. Same simulation
studies as those reported in Galesloot et al. (2014) were conducted to assess its performance. We demonstrate by
theoretical arguments and simulation studies that, despite its potential usefulness for multiple phenotypes, the
proportional odds model method can be less powerful than regular methods for univariate traits. We also introduce an
implementation of the proposed score statistic in an R package named iGasso.
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Introduction

Complex human disorders are often characterized by multiple

phenotypes. Some of them might be categorical while others might

be continuous. For instance, patients with Bardet-Biedl syndrome

often suffer from vision loss, hypertension and high cholesterol

level caused by obesity, polydactyly, and other abnormalities. In

order to map the genetic variants underlying such disorders, it is

highly desirable to analyze all available phenotypes simultaneous-

ly. However, it is challenging to jointly model these phenotypes,

especially when they are of different data types [1].

Let y denote a k|1 vector of k phenotypes on an individual

and g his/her genotype at a marker. If all the components of y are

continuous, one may use MANOVA given genetype g. When the

components of y are of mixed data types, the choices are limited.

One popular method is to first analyze each component

individually and then combine the test statistics through a meta-

analysis [2,3]. These methods model the phenotype vector y in

terms of the genetic data g.

For a single-nucleotide polymorphism (SNP), the distribution of its

genotype g is trinomial. It is appealing to model g as a function of y
[4,5]. Furthermore, since there is a natural ordering in the three

genotypes at the SNP (assuming that the possibility of over-

dominance is ignorable), one can use the ordinal logistic regression

(a.k.a., the proportional odds model or the cumulative logit model)

[6]. One immediate advantage of using the proportional odds model

is that, unlike other methods, there is no need to make assumptions

on the genetic effect such as additive, dominant, or recessive. The

usefulness of this approach has been demonstrated via analyses of

various data [5]. It is one of the best currently available multivariate

methods [7]. However, it is the slowest one [7].

The test used in [5] is the likelihood ratio test (LRT). It involves

numerical maximization under both the null hypothesis and the

alternative hypothesis. We introduce a score test statistic using

standard statistics theory. This statistic is asymptotically equivalent

to the likelihood ratio test but computationally much faster due to

the availability of its explicit expression, a feature useful in

genome-wide association analysis. This explicit expression also

gives insight on how the proportional odds model works in the

context of genetic association analysis.

This report is organized as follows. We first introduce an explicit

form of the score statistic and its non-centrality parameter. The

form of this score statistic provides some insights on the ability of

this method to detect association. The performance of the this

score statistic is evaluated using the same simulation scenarios used

in [7]. Finally, we consider an important case where the phenotype

vector y is univariate and binary to see how this test works for

univariate phenotypes.

Results

The score statistic
The genetic data are assumed to come from a biallelic marker

such as a single-nucleotide polymorphism (SNP). Let a denote the

reference allele and A the other. For simplicity, we use 0, 1, and 2

to represent genotypes AA, Aa, and aa, respectively. Regardless of

the data types of the components of y, the genotype g follows a

trinomial distribution. In most cases, the effect of an allele is
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monotonic. That is, as the number of a alleles increases from 0 to

2, the effect of genotypes AA, Aa, and aa is non-decreasing or

non-increasing. Over-dominance effect exists but is rather rare.

Given this consideration, we model the genotype g in terms of

phenotype y using the proportional odds model [5].

Let pj(y)~ Pr (g~jDy) denote the probability that an individ-

ual’s genotype g is j given phenotypic value y. In the current

situation, the proportional odds model models the cumulative

probabilities p0(y) and p0(y)zp1(y) jointly as follows:

log
p0(y)

1{p0(y)

� �
~a1zbty, ð1Þ

log
p0(y)zp1(y)

p2(y)

� �
~a2zbty: ð2Þ

Here a1 and a2 are intercepts and b is a vector of coefficients.

This model implies a2§a1 because p0(y)zp1(y)§p0(y). Since

p0(y)zp1(y)~1{p2(y), an alternative form of equation (2) is

log
1{p2(y)

p2(y)

� �
~a2zbty:

Equation (1) models the effect of phenotype y on the odds of

genotype AA versus Aa or aa while equation (2) models the effect

of phenotype y on the odds of genotype aa versus Aa or AA. We

have

p0(y)~
exp (a1zbty)

1z exp (a1zbty)
,

p2(y)~
1

1z exp (a2zbty)
,

and p1(y) is determined by p1(y)~1{p0(y){p2(y). This model

assumes that the difference of the left hand side of (1) or (2) for two

phenotype vectors y1 and y2 depends only on bt(y1{y2) and is

independent of genotype aa or AA:

log
p0(y1)

1{p0(y1)

� �
{ log

p0(y2)

1{p0(y2)

� �
~bt(y1{y2), ð3Þ

~ log
1{p2(y1)

p2(y1)

� �
{ log

1{p2(y2)

p2(y2)

� �
: ð4Þ

That is,

p0(y1)p2(y1)

(1{p0(y1))(1{p2(y1))
~

p0(y2)p2(y2)

(1{p0(y2))(1{p2(y2))

~ exp (a1{a2)

does not depend on the value of y.

Let i be the index for the ith individual in a sample of size n, the

log-likelihood function is

l(a1,a2,b; fyig)~
X

j~0,1,2

X
i:gi~j

log (pj(yi)):

The hypotheses of interest are

H0 : b~0, H1 : b=0: ð5Þ

These hypotheses can be tested by the likelihood ratio statistic.

To introduce the score statistic, define

w~
X

i:gi~0

yiz�pp2

X
i:gi=0

yi

0
@

1
A{

X
i:gi~2

yiz�pp0

X
i:gi=2

yi

0
@

1
A,

where �pp0 and �pp2 are the sample proportions of the genotypes for

which g~0 and 2, respectively. w is the difference of two weighted

summations of yi. The summation in the first pair of parentheses

weights yi with gi~0 more than other yis (i.e., 1 versus �pp2) while the

summation in the second pair of parentheses weights yi with gi~2
more (i.e., 1 versus �pp0). Let �pp1~1{�pp0{�pp2. It is shown in the

Methods section that a score statistic for testing hypotheses (5) is

S~
1

n(1{�pp0)(1{�pp1)(1{�pp2)
wtV{1w,

where

V~n{1
Xn

i~1

yt
iyi{n{1

Xn

i~1

yt
i
:n{1

Xn

i~1

yi

is the sample variance matrix of yi, i~1, . . . , n. The non-centrality

parameter of S is

NCP~
E(w)tV{1E(w)

n(1{p0)(1{p1)(1{p2)
,

where the expectation in E(w) is taken under the alternative. This

NCP can be used to compute power at significance level a in the

following way:

Pr (Xwx2
1{a,k)

where X follows a chi-square distribution with df ~k and non-

centrality parameter NCP and x2
1{a,k is the critical value from a

chi-square distribution with df ~k and non-centrality parameter 0.

Simulation Study
The simulation study consists of two parts. In the first part,

multivariate phenotypes were simulated the same way as in [7].

Genotype data at a single SNP were simulated with minor allele

frequency q under the assumption Hardy-Weinberg equilibrium.

Three phenotypes, denoted by y1,y2, and y3, were simulated using

the following relationship:

y1

y2

y3

0
BB@

1
CCA~

MVN

rG:a1

a2

a3

2
664

3
775,

1{h2
1 rE12

ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

1

q ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

2

q
rE13

ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

1

q ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

2

q
1{h2

2 rE23

ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

1

q ffiffiffiffiffiffiffiffiffiffiffiffi
1{h2

2

q
Symmetry 1{h2

3

2
66664

3
77775

0
BBBB@

1
CCCCA,

where rE12, rE13, and rE23 are pre-spedfied residual correla-

tions between phenotypes excluding the QTL effect, rG~1 or {1
controls the effect direction of y1 (those of y2 and y3 are fixed at 1)

and aj~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

j =2(1{q)q
q

. Three scenarios were considered with
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only 1, 2, or all phenotypes were associated with the SNP. See [7]

for more details. For each simulated data set, the LRT p-value is

obtained from the R package MultiPhen and the score p-value is

obtained from the R package iGasso. Empirical rejection rates

over 1,000 replicates are reported in Table 1. The performance of

the score test is very similar to that of LRT. The empirical power

are very close to the power of LRT reported in [7].

Is the proportional odds model always more powerful than the

usual tests of association? To address this question, simulation

were conducted on univariate phenotypes. The description of the

simulation studies is provided in the Methods section. In addition

to the proposed score statistic, the other test statistics used in the

simulation include the Pearson’s chi-square test, the Cochran-

Armitage trend test, and the likelihood ratio test for the

proportional odds model. The number of simulation replicates is

fixed at 10,000. The sample size is 2,000. Half of the subjects are

cases and half are controls. The simulated type I error rate for all

these statistics is reported in Table 2. The empirical rejection rates

are very close to their nominal levels, which are 0.1, 0.01, and

0.005. The simulated power is presented in Figures 1, 2, and 3. It

is striking to see that for recessive models the proportional odds

model is the least powerful. For instance, when prevalence K~0:1
and minor allele frequency p~0:3, the power are 0.486 for Chi-

Square test, 0.353 for Trend test, and 0.19 for both LRT and

Score test. For other two models, there are situations it is more

powerful than other methods. The simulated power for the S
statistic is in line with the calculated power reported in Table 3.

Discussion

In this report, we introduced a score test statistic for the

proportional odds model for testing the association between a SNP

and multiple phenotypes and provided an implementation of this

statistic. Same simulation studies as those reported in [7] were

conducted to assess it performance. We also did simulation analyses

to study the performance of proportional odds model for univariate

phenotypes which is covered by [5]. Although appealing to studies

on multiple phenotypes, this method may be less powerful for

univariate traits than regular methods. For case-control data, our

results suggest that the traditional Pearson’s chi-square test and the

Cochran-Armitage trend test are preferred when the disease allele

frequency is less than 0.5 and the disease is recessive.

Nonetheless, the proportional odds model method provides a

convenient way for analyzing multiple phenotypes, especially

when these phenotypes are of different types [5]. If the

proportional odds assumption is of concern, one may remove this

assumption and adopt a multinomial logistic regression. For our

simulation studies, the multinomial logistic regression would be

equivalent to the Pearson’s chi-square test statistic. There are quite

few implementations of the multinomial logistic regression, for

instance, the multinom function in R package nnet.

Methods

Derivation of the score statistic
The first-order derivatives of the log-likelihood function

l(a1,a2,b) are

Ll

La1

~
X

i:gi~0

(1{p0(yi)){
X

i:gi~1

p0(yi)(1{p0(yi))

1{p0(yi){p2(yi)
,

Ll

La2
~
X

i:gi~1

p2(yi)(1{p2(yi))

1{p0(yi){p2(yi)
{
X

i:gi~2

(1{p2(yi)),

Ll

Lb
~
X

i:gi~0

(1{p0(yi))yiz

X
i:gi~1

(p2(yi){p0(yi))yi{
X

i:gi~2

(1{p2(yi))yi,

and the second-order derivatives are

L2l

La2
1

~{
X

i:gi~0

p0(yi)(1{p0(yi))

{
X

i:gi~1

p0(yi)(1{p0(yi))(1{2p0(yi))

p1(yi)
z

p0(yi)
2(1{p0(yi))

2

p1(yi)
2

" #
,

Table 1. Non-centrality value and the associated power (presented in parentheses) for models used in the simulation studies.

Frequency of Allele a Effect of Allele a

K p Recessive Additive Dominant

0.01 0.1 — 4.6780 (0.2597) 14.4110 (0.8387)

0.3 2.8697 (0.1329) 9.7282 (0.6225) 18.5977 (0.9339)

0.4 6.9507 (0.4323) — —

0.1 0.1 — 5.7000 (0.3374) 17.6383 (0.9182)

0.3 3.4771 (0.1730) 11.7847 (0.7343) 22.5123 (0.9737)

0.4 8.4233 (0.5379) — —

The relative genotype risks are f1=f0~1, f2=f0~1:5 for recessive models; f1=f0~1:5, f2=f0~1:5 for dominant models; and f1=f0~1:25, f2=f0~1:5 for additive models.
doi:10.1371/journal.pone.0106918.t001
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L2l

La1La2

~
X

i:gi~1

p0(yi)(1{p0(yi))p2(yi)(1{p2(yi))

p1(yi)
2

,

L2l

La1Lbt ~{
X

i:gi=2

p0(yi)(1{p0(yi))y
t
i ,

L2l

La2
2

~{
X

i:gi~1

p2(yi)(1{p2(yi))(1{2p2(yi))

p1(yi)
z

p2(yi)
2(1{p2(yi))

2

p1(yi)
2

" #

{
X

i:gi~2

p2(yi)(1{p2(yi)),

L2l

La2Lbt ~{
X

i:gi=0

p2(yi)(1{p2(yi))y
t
i ,

L2l

LbLbt~{
X

i:gi=2

p0(yi)(1{p0(yi))yiy
t
i{

X
i:gi=0

p2(yi)(1{p2(yi))yiy
t
i :

Under H0 : b~0, pj(yi),j~0, 1, 2 no longer depends on yi. So

their values are simply denoted by p0,p1, and p2, respectively. Let

Table 2. Simulated type I error rate in the case of a univariate phenotype under various generating models.

Penetrance (K) Frequency of Allele a (p) Significance Level Test Statistic

Trend Chi-Square LRT Score

0.01 0.1 0.1 0.085 0.095 0.091 0.091

0.01 0.007 0.007 0.006 0.007

0.005 0.005 0.004 0.004 0.004

0.3 0.1 0.077 0.091 0.082 0.082

0.01 0.009 0.008 0.010 0.010

0.005 0.006 0.002 0.005 0.005

0.1 0.1 0.1 0.096 0.099 0.101 0.102

0.01 0.011 0.009 0.010 0.010

0.005 0.006 0.006 0.007 0.007

0.3 0.1 0.116 0.117 0.109 0.108

0.01 0.009 0.011 0.010 0.010

0.005 0.006 0.007 0.003 0.003

0.01 0.1 0.1 0.085 0.095 0.091 0.091

0.01 0.007 0.007 0.006 0.007

0.005 0.005 0.004 0.004 0.004

0.3 0.1 0.077 0.091 0.082 0.082

0.01 0.009 0.008 0.010 0.010

0.005 0.006 0.002 0.005 0.005

0.1 0.1 0.1 0.096 0.099 0.101 0.102

0.01 0.011 0.009 0.010 0.010

0.005 0.006 0.006 0.007 0.007

0.3 0.1 0.116 0.117 0.109 0.108

0.01 0.009 0.011 0.010 0.010

0.005 0.006 0.007 0.003 0.003

0.01 0.1 0.1 0.085 0.095 0.091 0.091

0.01 0.007 0.007 0.006 0.007

0.005 0.005 0.004 0.004 0.004

0.3 0.1 0.077 0.091 0.082 0.082

0.01 0.009 0.008 0.010 0.010

0.005 0.006 0.002 0.005 0.005

0.1 0.1 0.1 0.096 0.099 0.101 0.102

0.01 0.011 0.009 0.010 0.010

0.005 0.006 0.006 0.007 0.007

0.3 0.1 0.116 0.117 0.109 0.108

0.01 0.009 0.011 0.010 0.010

0.005 0.006 0.007 0.003 0.003

The test statistics are: Trend — Cochran-Armitage trend test; Chi-Square — Pearson’s chi-square test; LRT — the likelihood ratio test for the proportional odds model
computed by using the polr function in the R package MASS; Score — the proposed score statistic computed by using the SNPass.test function in the R package iGasso.
doi:10.1371/journal.pone.0106918.t002
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a~(a1,a2)t. The expected Fisher information matrix evaluated at

H0 : b~0 is

I~{

E(L2l=La2
1) E(L2l=La1La2) E(L2l=La1Lbt)

E(L2l=La1La2) E(L2l=La2
2) E(L2l=La2Lbt)

E(L2l=La1Lb) E(L2l=La2Lb) E(L2l=LbLbt)

0
BBBB@

1
CCCCA

~
(1{p0)(1{p2)

p1

np0(1{p0) {np0p2 p0p1

Pn
i~1 yt

i

{np0p2 np2(1{p2) p1p2

Pn
i~1 yt

i

p0p1

Pn
i~1 yi p1p2

Pn
i~1 yi p1(1{p1)

Pn
i~1 yiy

t
i

0
BBBBB@

1
CCCCCA

~
Iaa Iab

It
ab Ibb

 !
,

Figure 1. Simulated power for recessive model. The relative genotype risks are f1=f0~1, f2=f0~1:5. K represents disease prevalence and p is
the frequency of allele a. The abbreviations for the test statistics are the same as in Table 2.
doi:10.1371/journal.pone.0106918.g001
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where the matrix partition is in an obvious manner. By standard

asymptotic theory, the score statistic is

S ~wt½Ibb {It
abI{1

aa Iab �{1w

~
1

n(1{p0)(1{p1)(1{p2)
wtV{1w,

where w is Ll=Lb evaluated at H0:

w ~(1{p0)
X

i:gi~0

yiz(p2{p0)
X

i:gi~1

yi{(1{p2)
X

i:gi~2

yi

~
X

i:gi~0

yizp2

X
i:gi=0

yi

0
@

1
A{

X
i:gi~2

yizp0

X
i:gi=2

yi

0
@

1
A:

Figure 2. Simulated power for additive model. The relative genotype risks are f1=f0~1:25, f2=f0~1:5. K represents disease prevalence and p is
the frequency of allele a. The abbreviations for the test statistics are the same as in Table 2.
doi:10.1371/journal.pone.0106918.g002
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The unknown values of p0, p1, and p2 are estimated by their

sample genotype proportions, respectively.

Simulation Studies
Here is a description of the simulation procedure for the case of

a dichotomous phenotype. Suppose the trait is Mendelian. Let p0,

p1, and p2 denote the frequencies of genotypes AA, Aa and aa in

general population and f0, f1, and f2 their penetrances,

respectively. The prevalence of the disease would be K~p0f0

zp1f1zp2f2. The genotype frequencies in cases are p1j~pjfj=

K , j~0,1,2, and in controls are p0j~pj(1{fj)=(1{K), j~0,1,2.

In this situation, the variance of y is w(1{w) where w is the

proportion of cases. The non-centrality parameter (NCP) of test

statistic S is equal to

NCP ~
E(w)2

n(1{p0)(1{p1)(1{p2):w(1{w)

~
nw(1{w)

½K(1{K)�2
: ½p2(K{f2){p0(K{f0)zp0p2(f2{f0)�2

(1{p0)(1{p1)(1{p2)
:

Let p be the population frequency of allele a. Assuming Hardy-

Weinberg equilibrium in the population, the frequencies of

genotypes AA, Aa, and aa are p0~(1{p)2,p1~2p(1{p), and

p2~p2, respectively. Let ci~fi=f0, i~1,2, be the relative risk of

genotype i to genotype 0. A data generating model is completely

determined by K , p, c1, and c2. This is because

f0~K=(p0zc1p1zc2p2), f1~c1f0, and f2~c2f0. Hence the

genotype frequencies in cases and controls are determined and

Figure 3. Simulated power for dominant model. The relative genotype risks are f1=f0~1:5, f2=f0~1:5. K represents disease prevalence and p is
the frequency of allele a. The abbreviations for the test statistics are the same as in Table 2.
doi:10.1371/journal.pone.0106918.g003
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data can be simulated. We consider a dominance model (c1~c2), a

recessive model (c1~1), and an additive model (c1~(1zc2)=2).

The NCPs for the models used in simulation are reported in

Table 3. So are the power associated with these NCPs.

R function SNPass.test
The R function SNPass.test in the package iGasso implements

the proposed score statistic. R users can download and install

iGasso from CRAN (http://cran.r-project.org/) or any CRAN

mirror.
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