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Abstract

The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and

postsynaptic neuron. Glutamate is released into the synapse and may occupy and activate

receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a

family of plasma membrane excitatory amino acid transporters (EAATs), also localized to neurons

and astrocytes. The purpose of the present study was to examine EAAT labeling in postmortem

human cortex at the light and electron microscopic levels. Postmortem prefrontal cortex was

processed for EAAT1 and EAAT2 immunohistochemistry. At the light microscopic level, EAAT1

and EAAT2 labeling was found in both grey and white matter. Most cellular labeling was in small

cells which were morphologically similar to glia. In addition, EAAT1 labeled neurons were

scattered throughout, some of which were pyramidal in shape. At the electron microscopic level,

EAAT1 and EAAT2 labeling was found in astrocytic soma and processes surrounding capillaries.

EAAT labeling was also found in small astocytic processes adjacent to axon terminals forming

asymmetric (glutamatergic) synapses. While EAAT2 labeling was most prevalent in astrocytic

processes, EAAT1 labeling was also present in neuronal processes including the soma, axons, and

dendritic spines. Expression of EAAT1 protein on neurons may be due to the hypoxia associated

with the postmortem interval, and requires further confirmation. The localization of EAATs on the

astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of

facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and

EAAT2 can be measured at the EM level in human postmortem tissues will permit testing of

hypotheses related to these molecules in diseases lacking analogous animal models.
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INTRODUCTION

Glutamate levels in the CNS are tightly regulated by a family of excitatory amino acid

transporters (EAATs) localized to neurons and astroglia (for review see Danbolt, 2001). At

most excitatory synapses, perisynaptic-localized EAATs bind and transport glutamate into

astrocytes, where glutamate is converted to glutamine (Ottersen et al., 1992) or is utilized as

a metabolic intermediate for the tricarboxylic acid cycle (Balazs et al., 1970). Glutamine is

shuttled back to the presynaptic terminal via at least two distinct transport systems, and

glutamine may be converted back to glutamate by the enzyme glutaminase, and repackaged

for release from the presynaptic terminal (Sibson et al., 1997). The EAATs have a critical

role in this cycle, as they maintain low basal levels of glutamate in the synapse, facilitating

receptor-mediated responses to glutamate release (Rothstein et al., 1996; Shan et al., 2013).

To prevent non-physiologic (ie pathological) glutamate spillover, EAATs must be expressed

at high levels on the plasma membrane and be localized adjacent to the synapse (Cholet et

al., 2002; O'Shea, 2002). Spillover of glutamate may occur when levels of synaptic

glutamate exceed the capacity of the reuptake machinery to remove glutamate from the

synapse (Tsvetkov et al., 2004; Weng et al., 2007; Drew et al., 2008; Leveille et al., 2008).

The extent or degree of spillover is likely a critical event, since the proximity of

extrasynaptic receptors and adjacent synapses may vary (Rusakov et al., 1998). Physiologic

spillover, in areas such as the hippocampus and cerebellum, facilitates activation of

glutamate receptors on adjacent synapses (Kullman and Aszetly, 1998; Lozovaya et al.,

2004; Marcaggi and Atwell, 2007; Tzingounis and Wadiche, 2007). However, in most brain

regions, the extent of spillover of glutamate is thought to be quite low, and extrasynaptic

glutamate levels are postulated to be tightly regulated, as activation of extrasynaptic

glutamate receptors has potent effects (Hardingham et al., 2002; Hardingham and Bading,

2002; Bridges et al., 2012). For example, activation of extrasynaptic NMDA receptors

promotes initiation of NMDA spikes, while long term depression (LTD) and long term

potentiation (LTP) can be readily induced in the adult cortex by activation of extrasynaptic

NR2B containing NMDA receptors (Massie et al., 2008; Chalifoux et al., 2011).

The cellular distribution of EAATs highlights their importance in synaptic functions. Five

EAATs, which differ in regional and cellular distribution, have been characterized in the

CNS and elsewhere in the body and are well-reviewed by Danbolt (2001). The human and

rodent analogues are: 1) EAAT1 in human (Arriza et al., 1994) or GLAST in rodent (Storck

et al., 1992), 2) EAAT2 in human (Arriza et al., 1994) or GLT-1 in rodent (Pines et al.,

1992), 3) EAAT3 in human (Arriza et al., 1994) or EAAC1 in rodent (Kanai and Hediger,

1992), 4) EAAT4 in human (Fairman et al., 1995), and 5) EAAT5 in human (Arriza et al.,

1997). GLT1 and GLAST have been localized throughout the rodent brain, where GLT is

predominantly in the forebrain, while GLAST is more robust in the cerebellum (Chaudhry et

al., 1995; Lehre et al., 1995). EAAT3 is highly expressed in the cortex, hippocampus,
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striatum, and peripheral tissues (Rothstein et al., 1994). EAAT4 is highly enriched in

cerebellar Purkinje cells, and in astrocytes in the spinal cord and forebrain (Hu et al., 2003).

EAAT5 is expressed predominantly in the retina (Arriza et al., 1997). Of these, EAAT2 is

the most robustly expressed and is the main glutamate transporter in the brain, clearing a

majority of extracellular glutamate in most brain regions (Haugeto et al., 1996; Tanaka et

al., 1997).

In postmortem thalamus and cortex in schizophrenia, we have found alterations in EAAT1

and/or EAAT2 expression, as well as changes in the expression of molecules that regulate

these transporters (Huerta et al., 2006; Bauer et al., 2008, Shan et al., 2013, Shan et al.,

2014). In general, these changes are consistent with diminished regional expression of glial

glutamate transporter expression and activity. EAAT1 and EAAT2 expression is generally

found in discrete subsets of glia (Regan et al., 2007). GLAST (EAAT1) knockout mice have

behavioral endophenotypes associated with schizophrenia without a decrease in EAAT2

expression (Karlsson et al., 2008). Thus, we have focused our attention on EAAT1 and

EAAT2 for their potential role in schizophrenia and other severe neuropsychiatric illnesses.

In the present study we have localized these transporters at the light and electron

microscopic level in normal human postmortem frontal cortex. This work has been

presented in preliminary form (Roberts et al., 2011).

MATERIALS AND METHODS

Human postmortem cases

Human brain tissue was obtained with the permission of the next of kin from the Maryland

Brain Collection (IRB# HP-00043632) and the Alabama Brain Collection (IRB#

F080306003). In addition, we have a non-human subjects protocol for tissue from the

Maryland Brain Collection that is used at UAB (N110411002). The tissue was collected

from nine adult control subjects (5 males, 4 females) ranging in age from 32 to 67 years,

with no history of central nervous system disease or neurological disease as determined by

family interviews, autopsy reports (if applicable) and gross neuropathology reports. Eight

cases were used for electron microscopy, and one additional case was used for western blot

analysis. Demographics are presented in Table I.

Mouse

GLAST knockout and heterozygous tissues were provided by Kohichi Tanaka (mice

described in Watase, et al., 1998). Brains were dissected from sacrificed animals, the frontal

cortex removed, and frozen at – 80°C until processed for Western blots.

Antibodies

The EAAT 1 antibody was a polyclonal rabbit antibody purchased from Abcam (http://

www.abcam.com/EAAT1-antibody-ab416.html) and directed at a synthetic peptide

corresponding to 20 residues near the C-terminus of rat EAAT1. The EAAT2 antibody

(http://www.millipore.com/catalogue/item/ab1783) was a polyclonal guinea pig antibody

purchased from Millipore, which is directed at a synthetic peptide from the C-terminus of rat

GLT1. None of the antibodies were affinity purified.
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Tissue processing

Coronal blocks 1 cm thick of the dorsolateral prefrontal cortex were immersed in 4%

paraformaldehyde and 1% glutaraldehyde in 0.1 M phosphate buffer (PB), pH 7.4). Tissue

from cases 1-8 was cut in 10-12 series at a thickness of 40 μm with a vibratome. Adjacent

series of sections were stained for EAAT1, Kluver-Barrera, or EAAT2. Tissue used for

Western Blot analysis was dissected with a scalpel from frozen tissue that had been freshly

frozen on dry ice and stored at −80°C.

Western Blot Analysis

Western blot analysis was performed according to our previously published techniques

(Bauer et al., 2008). Briefly, homogenized human and mouse brain (fresh frozen) from

frontal cortex was prepared for western blot analyses with double distilled filter purified

water (dH20) and sample buffer (4.5% sodium dodecyl sulfate (SDS), 15%

βmercaptoethanol, 0.018% bromophenol blue, and 36% glycerol in 170mM Tris-HCl, pH

6.8) and heated at 70C for 10 minutes. Samples were run on 4–12% gradient gels and

transferred to polyvinylidene difluoride (PVDF) membranes using a semi-dry transblotter

(Bio-Rad, Hercules, CA, USA). The membranes were blocked with LiCor blocking buffer

(LiCor, Lincoln, NE, USA) for 1 hour at room temperature, and then probed with the

primary antibodies. After three 8 minute washes in phosphate buffered saline (PBS), the

membranes were then incubated with the appropriate second antibody with infared-Dye 670

or 800cw labeled in LiCor blocking buffer or 5% bovine serum albumin in PBS for 1 hour at

room temperature. Washes were repeated after the secondary antibody incubation.

Membranes were scanned using a LiCor Odyssey scanner, and the intensity value for each

protein band was measured using the Odyssey 2.1 software.

Kluver-Barrera

Sections were prepared by rinsing in 0.1M phosphate buffer, pH7.4 (PB) (4 × 30 min), and

then placed on charged slides and allowed to dry overnight. Slides were then incubated in

dH2O for 5 minutes, followed by dehydration in 50% ethanol (EtOH) and 70% EtOH for 5

minutes each. Slides were then placed in 0.1% luxol fast blue solution (purchased from

Electron Microscopy Science, item number 26681-01) and placed in a 65 C° water bath with

slight agitation for 24 hours. Once removed, the tissue was rehydrated in 95% EtOH, 70%

EtOH, 50% EtOH, and dH2O for 5 minutes each. Tissue was placed in 0.05% lithium

carbonate solution, aqueous, for 12 minutes with constant agitation, followed by 70% EtOH

(2 min, constant agitation), 70% EtOH (1 min, constant agitation), and 50% EtOH (1 min).

Tissue was checked for differentiation under the light microscope, and then placed in dH2O

(2 × 5 min). The sections were counterstained in 0.1% cresyl violet acetate solution,

aqueous, for 10 minutes, followed by dehydration in 50% EtOH (2 min), 70% EtOH (2

min), 95% EtOH (2 × 2 min), 100% EtOH (2 × 2 min). The tissue was placed in xylene (2 ×

2 min) and was coverslipped using Eukitt.

Immunohistochemistry

Sections were incubated in 1% sodium borohydride, 0.1 M PB solution for 15 minutes, and

then placed in a pre-incubation buffer (10% normal goat serum in 0.01 M PB) for 30
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minutes. Sections were then incubated for 72 hours in the EAAT1 antibody (1:2,000) or the

EAAT2 antibody (1:3,000) in 3% normal goat serum in 0.01 M PB. Sections were

subsequently incubated for 60 minutes in biotinylated goat anti-rabbit IgG (EAAT1) or

biotinylated goat anti-guinea pig IgG (EAAT2) (1:200 dilution in 1.5% normal goat serum

in 0.01M PB), and then in the avidin-biotin peroxidase complex (ABC standard kit) for 45

min (1:100 dilution in 0.01 M PBS for each solution). To visualize the reaction product,

sections were then incubated in diaminobenzidine (110 mg tablet dissolved in 15 ml PBS, 12

μl 30% hydrogen peroxide), with development time varying between 2-7 min. Eliminating

the primary antibody and otherwise processing the tissue in a similar fashion abolished all

staining.

Electron Microscopy

Sections were processed for electron microscopic analysis using standard techniques and flat

embedded. Samples were cut from representative regions, mounted on beam capsules and

thin sectioned. Electron micrographs of neuropil were taken at 5,000-25,000X from serial

sections.

RESULTS

Western Blots

We have previously tested the specificity of EAAT1-2 with Western blot assays using

varying protein concentrations of human brain homogenate and determined that our assays

are in the linear range of the concentrations correlated for each protein to be assayed (Bauer,

et. al., 2008, 2010). For EAAT1-2, digital images were obtained using a LiCor Odyssey

scanner (LiCor, Lincoln, Nebraska, USA) as previously described (Vlachos, et al., 2009;

Zhao, et al., 2009; Figure 1). EAAT1 protein appeared as a monomer at about 65kD.

EAAT2 protein appeared as a monomer (65 kD) and multimer (110kD). Preadsorption with

the EAAT2 immunogen peptide completely abolished staining. The same EAAT1 antibody

that was used for the Western blots and immunohistochemistry did not produce any staining

in Western blots using cortex from GLAST knockout mice (Figure 1). Cortex from

heterozygote mice showed diminished staining compared to wild type mice (Figure 1).

Light microscopy

Kluver-Barrera preparations were used to assess structural normalcy and to identify cortical

layers (Fig 2A). EAAT1 labeling was found in both grey and white matter, with the former

being more heavily and diffusely labeled (Fig. 2B). The intensity of immunoreactivity was

similar among cortical layers I-VI. Cellular labeling was in small cells which were

morphologically similar to glia. Labeled processes were observed throughout the neuropil

and around capillaries. In addition, labeled neurons were also scattered throughout, some of

which were pyramidal in shape. Labeled neurons were more abundant in the deeper layers,

than in middle or superficial layers. In the white matter, EAAT1 was present in small glial

cells, their processes and punctate structures. Labeling was also present around capillaries.

EAAT2 labeling was present throughout the grey and white matter in small cells which are

most likely glial cells and their processes (Fig. 2C). The overall intensity of EAAT2 labeling
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was greater than that of EAAT1. EAAT2 labeling was similar in intensity throughout the

cortical layers. EAAT2 labeling was homogeneously and diffusely distributed in the grey

matter. Unlabeled neurons were surrounded by labeled neuropil. In the white matter, labeled

glial cell bodies morphologically similar to astrocytes were abundant. Labeled thick glial

processes and punctate structures were abundant.

Electron Microscopy

EAAT1 immunoreactivity is found in astrocytes, endothelial cells and neurons. EAAT1

immunoreactivity is located in endothelial cells and astrocytic processes surrounding

capillaries (Fig. 5A,B). Both the nucleus and the cytoplasm of endothelial cells and

astrocytes are immunoreactive (Fig. 5A, C). This localization was present in both grey and

white matter. In grey matter, small astrocytic processes contain immunoreactivity close to

asymmetric synapses (Fig. 5D). Mitochondria in glial processes sometimes display

immunoreactivity.

EAAT1 labeling is also present in neuronal profiles. Immunoreactivity is present in neuronal

soma in both the nucleus and cytoplasm (Fig. 6A). Ribosomes and rough endoplasmic

reticulum (rER) are labeled within the cytoplasm (Fig. 6A). Within axons, labeling is

present in the axon initial segment, predominantly on the fasciculations of microtubules, one

of their defining characteristics (Fig. 6B). EAAT1 immunoreactivity is present in some

myelinated axons (Fig. 5C, 6C). In axon terminals, immunoreactivity is light and patchy

(Fig. 6D). Dendrites and spines also displayed immunoreactivity (Figs. 6E,F). EAAT1

immunoreactivity is deposited at the postsynaptic density and at times elsewhere in the

spine. Labeling is also found in discrete deposits in the neuropil in structures too small to be

identified (Fig. 6B). Although EAAT1 labeling is present in glial cells and neurons, the

mitochondria within these cells are usually not immunoreactive.

EAAT2 is prominently deposited in glial profiles. Astrocytic soma are labeled on

polyribosomes and rER (Fig. 7A). Labeled astrocytic processes are abundant throughout the

neuropil and are in close contact with asymmetric synapses (Figs. 7 B-E). The amount of

immunoreactivity varies from light (Fig. 7B,D,E,F) to heavy (Fig. 7C). Labeling occurs

throughout the astrocyte, on its cytoplasmic membrane, on the outer mitochondrial

membrane, and on rER and polyribosomes. EAAT2 labeling is deposited on the astrocytic

membrane that is immediately adjacent to asymmetric synapses.

EAAT2 labeling is occasionally observed in neuronal profiles (Fig 7F, 8A,B). The somata of

neurons are lightly labeled on ribosomes and rER (Fig. 8A). Dendritic spines contain

immunoreactivity on the postsynaptic density (Figs. 7E, 8B) and at times elsewhere in the

spine (Fig. 7F). The most predominant neuronal labeling is on the PSD of asymmetric

synapses. Labeled astrocytic processes are the predominant and most robustly labeled

elements throughout the neuropil.

DISCUSSION

The results of the present study describe EAAT1 and EAAT2 labeling in prefrontal cortex in

human postmortem control brains at the light and electron microscopic level. To our
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knowledge these results are the first to describe the electron microscopic localization of

EAAT1 and EAAT2 in normal postmortem human brain, though there is one report of

EAAT2 localization in surgical specimens of cortex adjacent to tumors (Melone et al., 2011)

and one report from hippocampal resections (Bjornsen et al., 2007). EAAT1 labeling was

located in astrocytes, neurons, and endothelial cells. EAAT1 labeling was located on the

plasma membrane of astrocytes, in the soma and nucleus. In neurons, labeling was present in

the soma, all parts of the axon, dendritic spines and the post synaptic density (PSD). EAAT2

labeled astrocytic processes were the predominant and most robustly labeled elements

throughout the neuropil. Within astrocytes, the plasma membrane and mitochondria were the

most heavily labeled. EAAT2 immunoreactivity was also present in neuronal profiles, the

most predominant location being the postsynaptic density of asymmetric synapses.

While most of the work on EAAT1 and EAAT2 localization in the CNS has been done in

human and rodent, EAATs have been localized in a variety of other species such as sheep

(Northington et al., 1999), rabbits, cats, pigs, monkeys (Reye et al., 2002a; Williams et al.,

2005) and even caterpillars (Gardiner et al., 2002)(Summarized in Tables II-IV). There have

been quite a few disagreements as to where the EAATs are localized, with the literature

continually evolving. For example, EAAT1 and EAAT2 were originally thought to be

confined to astrocytes (Chaudhry et al., 1995; Lehre et al., 1995; Milton et al., 1997), but

later studies began to identify them in neuronal processes as well (Brooks-Kayal et al., 1998;

Chen et al., 2002, 2004; Meloni et al., 2009, 2011). Interestingly, the cellular localization of

EAAT1 and EAAT2, as well as some of the other EAATs, varies across developmental

stages (Bar-Peled, et al., 1997; Northington et al., 1999; DeSilva et al., 2007, 2012), with

disease processes (Rothstein et al., 1995; Proper et al., 2002; Maragakis et al., 2004) and

experimental manipulation (Xu et al., 2003, Sullivan et al., 2007). Thus, inconsistencies in

localization may be due in part to the examination of different splice variants (Holmsmeth et

al., 2009), different species, normal vs. diseased tissue, varying brain regions, different

stages of development and/or variations in methodologies (such as using antibodies directed

to different amino acid sequences of the transporters). The results of the present study for

EAAT1 show neuronal localization, which is a departure from most of the current literature,

while our results on EAAT2 are consistent with most studies. Therefore, we will discuss

various technical issues as well as how our data are supported by the literature.

Technical issues

Diaminobenzidine (DAB) has been criticized as capable of diffusing to areas where the

antigen is not actually located and thus creating nonspecific labeling at the ultrastructural

level (Danbolt, 2001). However, eliminating the primary antibody as a control abolished any

DAB staining. There is an immense literature using DAB at the ultrastructural level to

visualize various antibodies, showing unique staining patterns for each antibody; this would

not be possible if DAB labeling was nonspecific. Importantly, our EAAT2 data are highly

consistent with other reports using immunogold labeling in human cortical biopsies (Meloni

et al., 2011).

Postmortem Interval: The effect of postmortem interval (PMI) on the localization of EAATs

in mice has shown that the localization diffuses after 12 hours raising concern over the effect
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of PMl in human studies (Li et al., 2012). Our postmortem tissue used for electron

microscopy was fixed in eight hours or under, so there should be minimal diffusion due to

PMI. Also, the effect of PMI on a small mouse brain is likely to be much more dramatic

than in the much larger human brain, meaning that the PMI could probably be much longer

in humans without deleterious effects. Several studies using postmortem human tissue with

PMIs equivalent to or greater than ours show no correlation between PMI and EAAT protein

levels and/or show a similar distribution to that of the present study, suggesting that EAAT

protein is not degraded in tissues with PMIs < 20. (Ikematsu et al., 2001; Bauer et al, 2008;

Shan et al., 2013, 2014). There were no qualitative differences in staining pattern between

the brains used in the present study, where the PMIs ranged from four to eight hours.

Finally, the ultrastructural data in human hippocampal resections (Bjornsen et al., 2007) and

cortical biopsies (Meloni et al., (2011), which have no postmortem interval, are largely in

agreement with our data in postmortem tissue.

Antibodies—The antibodies we used are well characterized and have been used by us

previously (Bauer et al. 2008; Shan et al., 2013, 2014). In the present study EAAT1 showed

no reactivity in the GLAST knockout brain tissue and EAAT2 labeling was abolished with a

blocking peptide. These antibodies were directed against the C-terminus, typical of most

antibodies to EAAT1 and EAAT2 (see Tables II and III). Antibody cross reactivity with

other EAATs is not likely to be a confound for two reasons. First, the antibodies we used are

at the C-terminus end and there is no sequence homology between EAATs in that region in

rodent or human (Arriza et al., 1994). Secondly, preadsorption of individual EAAT

antibodies with peptides at the C-terminal domains of other EAATs does not abolish any

immunoreactivity (Rothstein et al., 1994).

Thus, any localization differences we report herein, from that observed previously, are

probably not due to artifacts of DAB, diffusion or degradation during the PMl, antibody

specificity or cross reactivity with other EAATs, such as those found predominantly in

neurons. However, hypoxia associated with the process of dying, as well as during the

postmortem interval, may impact transporter expression in neurons. In a porcine model of

hypoxia, pigs were exposed to lower oxygen levels for 45 minutes and allowed to recover

for 72 hours (Sullivan et.al. 2007). In this study, protein for a splice variant of EAAT1,

lacking exon 9, was expressed in neurons in brain tissues from hypoxic animals. This

EAAT1 variant was detected with C-terminal antibodies, but not N-terminal antibodies.

Although brains from subjects with prolonged agonal status were excluded from our study,

expression of EAAT1 in neurons in postmortem brain could be due to mild to moderate

hypoxia associated with dying and the human brain collection process. Taken together, our

data and the hypoxia findings suggest that EAAT1 may be expressed in neurons.

Interestingly, one study found EAAT1 expression in neurons using C-terminal antibodies

(Rothstein et al, 1994). Subsequent confirmation studies using N-terminal antibodies did not

detect EAAT1 (Lehre et al., 1995), and it was concluded that the studies with the C-terminal

antibodies must have been an artifact (Ginsburg et al., 1995). We used a C-terminal antibody

and the isoform of EAAT1 expressed in neurons was only detectable with a C-terminal

antibody, providing a parsimonious explanation for the all of the previous divergent findings

for this protein.
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At the light microscopic level, EAAT1 was distributed throughout the neuropil in small

processes and punctate structures, in glial cells and in selected neurons. We found EAAT2

localized most heavily in astrocytic processes and their cell bodies, in both grey and white

matter in agreement with previous studies (Danbolt et al., 1992; Torp et al., 1994; Lehre et

al., 1995). Previous results of EAAT2 labeling in cortex have described two patterns, regular

and irregular. We found the EAAT2 labeling to be homogeneously distributed in the form of

small punctate structures throughout the neuropil and in the soma and proximal processes of

cells with astrocytic morphologies. Thus, our results are consistent with what has been

described as the regular pattern (Melone et al., 2011) and observed by several investigators

(Rothstein et al., 1995; Bar-Peled et al., 1997; Ikematsu et al., 2001; Bjornsen et al., 2007).

Notably, long PMIs (>20 hours)have been associated with the irregular pattern of staining

(Milton et al., 1997; Proper et al., 2002), and our postmortem intervals were very short (<10

hours).

EAAT1 and EAAT2 labeled astrocytes were most often observed around asymmetric

synapses, characteristic of glutamatergic synapses. However, EAAT labeled astrocytic

processes were not exclusively around excitatory synapses. EAAT1 and EAAT2 labeled

astrocytic processes were adjacent to many types of neuropil profiles, including symmetric

synapses, which are characteristic of inhibitory transmission. Our data are consistent with

other results showing EAAT2 or GLT1 labeling located both adjacent to and far from

synapses (Chaudhry et al., 1995; Bjornsen et al., 2007; Minelli et al., 2001). The EAATs

function to remove glutamate from the synaptic cleft, begging the question of why are

EAATs localized in regions where there are no synapses, such as the white matter, and

throughout the grey matter neuropil far from excitatory synapses? Glutamate may enter the

extracellular space in several ways: 1) spillover following release at the synapse; 2) non

vesicular release, sometimes called leaking; 3) exocytosis from astrocytes; and 4) release by

the cystine / glutamate antiporter (Montana et al., 2004; Hayden and Carmigoto, 2006;

Baker et al., 2008; Parpura et al., 2011; Bridges et al., 2012). Glutamate has been measured

in the white matter in humans by in vivo imaging (Ota et al., 2012; for review see Marsman

et al., 2013) and plays an important role therein (for review see Matute and Ransom, 2012).

Although the EAATs certainly regulate glutamate at excitatory synapses, their role in

glutamate regulation may not be restricted to the synapse.

One possible explanation for the expression of EAATs far from synapses is that they

regulate and partition glutamate levels in distinct extracellular pools or microdomains.

Evidence for extracellular (and extrasynaptic) glutamate microdomains includes a large

body of work that has described localization of functional glutamate receptors outside of

synapses, as well as the observation that glial cells may form electrically-independent

morphological structures of unknown function that ensheath neuronal structures (Grosche et

al., 1999, 2002; Szabadkai and Rizzuto, 2007; Spat et al., 2009; Genda et al., 2011). It may

be that glutamate microdomains are formed by specialized protein clusters on the

membranes of astrocytic processes opposed to extrasynaptic glutamate receptors expressed

on specialized regions of neuronal membranes (Grosche et al., 1999; Genda et al., 2011;

Shan et. al., 2012). Diffusion of glutamate between domains or domains and synapses could

be limited by the dense expression of glutamate transporters between these specialized

structures (Danbolt et al., 1998; Shan et al., 2012).
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Many previous studies of EAAT1 have reported localization only in astrocytes, including

processes in perivascular locations (Chaudhry et al., 1995; Lehre et al., 1995; Haugeto et al.,

1996; Williams et al., 2005; Bjornsen et al., 2007). However, some studies localized EAAT1

to endothelial cells as well (O'Kane et al., 1999; Hawkins et al., 2006; Helms et al., 2012), as

we show in the present study at the ultrastructural level. Our results, that EAAT1 is localized

in astrocytic endfeet and endothelial cells, supports a role for EAAT1 in maintaining

glutamate concentrations across the blood brain barrier, as previously posited (O'Kane et al.,

1999; Hawkins et al., 2006; Helms et al., 2012). The observation that EAAT1 is present in

two cell types associated with the blood brain barrier, whereas EAAT2 is only present in

astrocytic end feet, might suggest a more prominent role for EAAT1 than EAAT2 in

maintaining glutamate concentrations at this site.

Our finding of EAAT1 protein expression in neurons was somewhat unexpected because

EAAT1 has been considered by many to be only a glial transporter (see Table II). That said,

several studies have supported a neuronal localization of EAAT1 (Rothstein et al., 1994;

Bar-Peled et al., 1997; Sullivan et.al., 2007; Ritter et al., 2011) and EAAT2 (Melone et al.,

2009, 2011). In fact, it has been suggested (Conti et al., 1998) that the division of EAATs

into neuronal and glial transporters is no longer warranted. In the present study, EAAT1 was

frequently observed in axons and axon terminals, and EAAT2 was observed occasionally in

axon terminals. Excitatory amino acids are taken up into presynaptic terminals (Divac et al.,

1977; Storm-Mathisen and Iversen, 1979; Storm-Mathisen and Wold, 1981; Taxt and Storm-

Mathisen, 1984; Gundersen et al., 1993, 1996). It has been suggested (Danbolt, 2001) that

the molecular basis of this uptake cannot be accounted for solely by the expression of the

neuronal glutamate transporter EAAT3/EAAC1. The location of EAAT1 in axon terminals,

the postsynaptic density and in perisynaptic astrocytes suggests that it may have important

and possibly multiple roles for regulating synaptic glutamate. Taken together, EAAT1 and

EAAT2 might to have a role in presynaptic glutamate regulation.

Our data show EAAT1 and EAAT2 on the postsynaptic density, and elsewhere in the spine.

Using immunoprecipitation studies, Ritter et al. (2011) found that the C-terminus portion of

GLAST (EAAT1) robustly co-immunoprecipitated with the post synaptic density domains

of two scaffolding proteins (Na+/H+ exchanger regulatory factors 1 and 2, NHERF-1 and

NHERF-2). The interaction of EAAT1 with proteins in the postsynaptic density supports our

data localizing EAAT1 in the post synaptic density. EAAT2 has not always been found in

dendritic spines (Table III), but Chen et al, (2004) have localized GLT1a labeling on the

postsynaptic density in spines receiving asymmetric synapses. In other studies, GLT1b was

found to interact with proteins located in the postsynaptic density, PSD-95 (Gonzalez-

Gonzalez et al., 2008) and the NMDA receptor NR1 (Bassan et al., 2008), placing GLT1b at

the postsynaptic density. These data suggest that postsynaptic glutamate reuptake may not

be limited to EAAT3, whose postsynaptic localization is well-characterized (Levenson et al.,

2002).

Our observations of EAAT2 labeled mitochondria, especially in astrocytes, is supported by

Genda et al., (2011) whose data suggests that GLT-1 exists in a multiprotein complex in

close association with mitochondria. These authors demonstrated co-localization of

mitochondria and GLT-1 in astrocytic processes of organotypic hippocampal slices and in
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vivo. It is unclear why electron microscopic studies have not discussed GLT1/EAAT2

labeling on mitochondria (Chaudry et al., 1995; Lehre et al., 1995; Haugeto et al., 1996;

Chen et al., 2004). However, labeled mitochondria are illustrated, but not discussed in both

rodent (Lehre et al., 1995; see Fig. 12a), and human (Melone et al., 2011; see fig. 5c). The

functional significance of EAAT2 labeled mitochondria is unclear. Distinct subtypes of

glutamate transporters (non-EAAT) are expressed on mitochondria (Fiermonte et al., 2002;

Berkich et al., 2007; Palmieri, 2004). The calcium-binding mitochondrial carrier protein

Aralar1, and the mitochondrial glutamate carriers 1 and 2 (GC1 and GC2) move glutamate

across the mitochondrial membrane from the cytosol. Our data suggest that some

mitochondria in astrocytic processes also have EAAT2 in the mitochondrial outer

membrane. Another possibility is that one or more of these other transporters may have an

epitope detectable by our EAAT2 antibody. However, there is no overlap of the sequences

of these proteins (based on Protein BLAST, unpublished observation) for the EAAT2

epitope used to generate the EAAT2 antibody. Finally, it may be that EAAT2 is trafficked to

the mitochondria where mitochondrial proteins interact and join a so-called glutamate

transport protein complex before insertion in the plasma membrane (Genda et al., 2011;

Shan et al., 2014). Regardless of the functional role or the orientation in the mitochondrial

membrane, further study of the selective localization of EAAT2 to mitochondria is

warranted.

Summary

EAAT1 localization has not been previously studied in human cortex at the electron

microscopic level. We found that EAAT1 was distributed in more varied cell populations

and intracellular locations than EAAT2, suggesting more diverse functions. Our finding of

EAAT1 protein expression in neurons could be secondary to the brain collection process,

and needs to be confirmed with follow up studies. The predominant localization of EAAT2

on the astrocytic plasma membranes adjacent to excitatory synapses is consistent with the

function of facilitating glutamate reuptake and limiting glutamate spillover. Neuronal and

extrasynaptic localization suggests additional functions, especially for EAAT1, which has a

more diverse distribution than EAAT2. Finally, establishing that EAAT1 and EAAT2 may

be studied at the ultrastructural level in postmortem brain extends the tools available to

study neuropsychiatric diseases which do not have animals models that fully recapitulate the

illness.
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Highlights

EAAT1-2 protein expression may be assessed by electron microscopy in postmortem

brain

EAAT2 expression in postmortem brain is very similar to findings in other species

EAAT1 protein was found in many cell types, including astrocytes and neurons

EAAT1 expression in neurons may be secondary to hypoxia
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Figure 1.
Western blots of human cortical homogenate (lanes 2-6, 10 ug of total protein/lane from

case #9). A,B) Lane 1 shows the molecular weight standards. Blots A and B were generated

from the same gel and transblot. Blot A was probed with EAAT2 antibody preincubated

overnight with a blocking peptide (Lane 2, 90:1 molar equivalents peptide: antibody)

identical to the peptide used to make the antibody. Blot B was probed with EAAT2 antibody

(1:1000) that was not incubated with blocking peptide. Both blots were imaged together

with a Licor scanner under identical conditions. EAAT2 monomer (65 kD) and multimer are

present in lane 3, but not lane 2, which was blocked with the peptide. C) Blot C was probed

with EAAT1 antibody (1:500). EAAT1 monomer (65 kD) is indicated by arrow; sample run

in duplicate. D) Western blot analysis of EAAT1 expression in the rodent frontal cortex in

GLAST knockout mice (KO, lanes 1 and 2), GLAST heterozygous mice (H, lanes 3 and 4),

and wild type mice (WT, lanes 5 and 6). EAAT1 migrates as a monomer (about 60 kDa) and

multimer (about 120 and 180 kDa). The two lanes for each mouse are duplicates.
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Figure 2.
A) Kluver-Barrera stain used to identify cortical layers and asses cytoarchitectural integrity.

The lines indicate separate cortical layers. B) EAAT1 localization. C) EAAT2 localization.

The black line in all three images delineates the boundary between white matter and grey

matter. All images are from case #5. Scale bars= 250 μm (A), 500 μm (B,C).
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Figure 3.
Light micrographs of EAAT1. A) Labeling in white matter. EAAT1 is present in glial cell

bodies (arrows), processes (arrowheads) and punctate structures (encircled). Note the

staining around a capillary (upper left). B) EAAT1 is present throughout the neuropil and in

scattered neurons (dashed arrows) and glial cells (black arrows) in layer III. Apical dendrites

are labeled, at least in proximal portions (solid arrows with balls). C) In layer V fewer

labeled neuronal somata (dashed arrows) are present, and unlabeled large dendrites (dashed
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arrows with balls) are seen coursing through the labeled neuropil. Glial profiles (arrows and

arrowhead). All images are from case #4. Scale bars =100 μm.
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Figure 4.
Light micrographs of EAAT2. A) Labeling in white matter is very heavy. EAAT2 is present

in glial cell bodies (black arrows), processes (arrowheads) and punctate structures

(encircled). Note the staining around the capillary (right edge). Case #5. B) In layer III,

EAAT2 is present throughout the neuropil, where it avoids neurons (black dashed arrows).

Case #7. C) Layer V is similar in appearance to layer III. Case #5. Scale bars =100 μm.
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Figure 5.
Electron micrographs of EAAT1 in glial profiles. A) A capillary in the grey matter is shown

with two red blood cells in the lumen. Labeling occurs in the endothelial cell (dotted

arrows), and the surrounding astrocytic endfeet (arrows). Basal lamina is indicated by

arrowheads. B) A capillary in the white matter is shown with one red blood cell (RBC), a

labeled endothelial cell (dotted arrows) and labeled astrocytic endfeet (arrows). Both the

nucleus (nuc) and the cytoplasm of the endothelial cell are immunoreactive (dotted arrows).

C) A protoplasmic astrocyte in white matter is labeled (arrows) in both the nucleus (nuc) and

the cytoplasm. The cell is surrounded by myelinated axons, some of which are labeled

(black and white arrows). D) A labeled (arrows) astrocytic process (astro) close to an
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asymmetric synapse (black and white arrow) on a spine (s). Scale bars = 2μm (A,C) and 0.5

μm in D.
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Figure 6.
Electron micrographs of EAAT1 in neuronal profiles. A) EAAT1 labeling in a neuronal

soma. This neuron was identified by morphological criteria and only a portion of it is shown

due to space limitations. Labeling is present in the nucleus (arrowhead) and in the cytoplasm

on rER and free ribosomes (arrows). Unlabeled mitochondria (m) are present. B) An axon

initial segment (AIS) has immunoreactivity deposited on the fasciculated microtubules

(arrows). An adjacent astrocytic process (astro) is labeled (dotted arrow). EAAT1

immunoreactivity is also found in discrete deposits (arrowheads) in the neuropil in structures
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too small to be identified. C) Three myelinated axons (MA) are shown, one of which is

labeled (arrow). Case #7. D) Labeling is found in axon terminals (AT) where it is light and

patchy (arrows). Both terminals (AT) are forming synapses with spines (s) (black and white

arrows). Immunoreactivity is also found on astrocytic membranes (dotted arrows). E) An

axon terminal (AT) forms an asymmetric synapse (black and white arrow) with a labeled

(arrows) spine (s). EAAT1 immunoreactivity is deposited at the postsynaptic density and

elsewhere in the spine. F) Two spines (s) emerge (thick arrows) from a labeled dendrite

(den). Labeling (thin arrows) is found in the dendrite, the bifurcated spines at the

postsynaptic density (black and white arrows) and elsewhere in the spine. Scale bars=0.5um.
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Figure 7.
Electron micrographs of EAAT2 in glial profiles. A) EAAT2 labeling in an astrocyte in the

white matter. Polyribosomes and rER are labeled (arrows). Case #3. B-F) Examples of

labeled astrocytic processes (astro) in close contact with asymmetric synapses (black and

white arrows). B) An axon terminal (AT) forms an asymmetric synapse with a spine (s). A

labeled (arrows) astrocytic process is adjacent to the terminal and EAAT immunoreactivity

is located right at the synapse. C) An example of a heavily labeled astrocytic process

adjacent to a synapse. Immunoreactivity (arrows) is abundant on the cytoplasmic membrane,
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within the cytoplasm, and on the mitochondria. D) An image of a lightly labeled astrocytic

(astro) process adjacent to two synapses formed on spines (s). Immunoreactivity (arrows) is

present on the astrocytic cytoplasmic membrane, within the cytoplasm, and on part of the

mitochondrion. The spine (s) in the upper left contains some immunoreactivity (arrowhead).

Both postsynaptic densities are also labeled. E) An example of a thin labeled astrocytic

process adjacent to the asymmetric synapse on a dendrite (den). There is no

immunoreactivity on the PSD (black and white arrow). F) An example of a synapse (black

and white arrow) on a dendrite (den) where the PSD is labeled. Labeled astrocytic (astro)

processes are nearby and adjacent to the synapse. A labeled spine (s) is nearby, with a

labeled PSD (black and white arrow) as well as labeleing (arrow) elsewhere in the spine.

Mitochondria (m) are identified throughout the figures. Scale bars = 2μm (A), 0.5 μm (B-E).
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Figure 8.
Electron micrographs of EAAT2 in neuronal profiles. A) The soma of a neuron showing

immunoreactivity on polyribosomes (arrows). A perineuronal glial process (astro) contains

immunoreactivity as well (arrows). (Case #8) B) An axon terminal (AT) forms an

asymmetric synapse (black and white arrow) with a spine (s). The PSD is labeled (arrow).

An adjacent astroglial (astro) process is also labeled (arrows). (Case #5) Scale bars= 2 μm

(A), 0.5 μm (B).
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