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Abstract

The process of glutamate release, activity, and reuptake involves the astrocyte, the presynaptic and
postsynaptic neuron. Glutamate is released into the synapse and may occupy and activate
receptors on both neurons and astrocytes. Glutamate is rapidly removed from the synapse by a
family of plasma membrane excitatory amino acid transporters (EAATS), also localized to neurons
and astrocytes. The purpose of the present study was to examine EAAT labeling in postmortem
human cortex at the light and electron microscopic levels. Postmortem prefrontal cortex was
processed for EAAT1 and EAAT2 immunohistochemistry. At the light microscopic level, EAAT1
and EAAT?2 labeling was found in both grey and white matter. Most cellular labeling was in small
cells which were morphologically similar to glia. In addition, EAAT1 labeled neurons were
scattered throughout, some of which were pyramidal in shape. At the electron microscopic level,
EAAT1 and EAAT?2 labeling was found in astrocytic soma and processes surrounding capillaries.
EAAT labeling was also found in small astocytic processes adjacent to axon terminals forming
asymmetric (glutamatergic) synapses. While EAAT2 labeling was most prevalent in astrocytic
processes, EAAT1 labeling was also present in neuronal processes including the soma, axons, and
dendritic spines. Expression of EAAT1 protein on neurons may be due to the hypoxia associated
with the postmortem interval, and requires further confirmation. The localization of EAATS on the
astrocytic plasma membrane and adjacent to excitatory synapses is consistent with the function of
facilitating glutamate reuptake and limiting glutamate spillover. Establishment that EAAT1 and
EAAT?2 can be measured at the EM level in human postmortem tissues will permit testing of
hypotheses related to these molecules in diseases lacking analogous animal models.
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INTRODUCTION

Glutamate levels in the CNS are tightly regulated by a family of excitatory amino acid
transporters (EAATS) localized to neurons and astroglia (for review see Danbolt, 2001). At
most excitatory synapses, perisynaptic-localized EAATS bind and transport glutamate into
astrocytes, where glutamate is converted to glutamine (Ottersen et al., 1992) or is utilized as
a metabolic intermediate for the tricarboxylic acid cycle (Balazs et al., 1970). Glutamine is
shuttled back to the presynaptic terminal via at least two distinct transport systems, and
glutamine may be converted back to glutamate by the enzyme glutaminase, and repackaged
for release from the presynaptic terminal (Sibson et al., 1997). The EAATS have a critical
role in this cycle, as they maintain low basal levels of glutamate in the synapse, facilitating
receptor-mediated responses to glutamate release (Rothstein et al., 1996; Shan et al., 2013).

To prevent non-physiologic (ie pathological) glutamate spillover, EAATSs must be expressed
at high levels on the plasma membrane and be localized adjacent to the synapse (Cholet et
al., 2002; O'Shea, 2002). Spillover of glutamate may occur when levels of synaptic
glutamate exceed the capacity of the reuptake machinery to remove glutamate from the
synapse (Tsvetkov et al., 2004; Weng et al., 2007; Drew et al., 2008; Leveille et al., 2008).
The extent or degree of spillover is likely a critical event, since the proximity of
extrasynaptic receptors and adjacent synapses may vary (Rusakov et al., 1998). Physiologic
spillover, in areas such as the hippocampus and cerebellum, facilitates activation of
glutamate receptors on adjacent synapses (Kullman and Aszetly, 1998; Lozovaya et al.,
2004; Marcaggi and Atwell, 2007; Tzingounis and Wadiche, 2007). However, in most brain
regions, the extent of spillover of glutamate is thought to be quite low, and extrasynaptic
glutamate levels are postulated to be tightly regulated, as activation of extrasynaptic
glutamate receptors has potent effects (Hardingham et al., 2002; Hardingham and Bading,
2002; Bridges et al., 2012). For example, activation of extrasynaptic NMDA receptors
promotes initiation of NMDA spikes, while long term depression (LTD) and long term
potentiation (LTP) can be readily induced in the adult cortex by activation of extrasynaptic
NR2B containing NMDA receptors (Massie et al., 2008; Chalifoux et al., 2011).

The cellular distribution of EAATS highlights their importance in synaptic functions. Five
EAATSs, which differ in regional and cellular distribution, have been characterized in the
CNS and elsewhere in the body and are well-reviewed by Danbolt (2001). The human and
rodent analogues are: 1) EAAT1 in human (Arriza et al., 1994) or GLAST in rodent (Storck
etal., 1992), 2) EAAT2 in human (Arriza et al., 1994) or GLT-1 in rodent (Pines et al.,
1992), 3) EAAT3 in human (Arriza et al., 1994) or EAACL in rodent (Kanai and Hediger,
1992), 4) EAAT4 in human (Fairman et al., 1995), and 5) EAATS5 in human (Arriza et al.,
1997). GLT1 and GLAST have been localized throughout the rodent brain, where GLT is
predominantly in the forebrain, while GLAST is more robust in the cerebellum (Chaudhry et
al., 1995; Lehre et al., 1995). EAAT3 is highly expressed in the cortex, hippocampus,
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striatum, and peripheral tissues (Rothstein et al., 1994). EAAT4 is highly enriched in
cerebellar Purkinje cells, and in astrocytes in the spinal cord and forebrain (Hu et al., 2003).
EAATS is expressed predominantly in the retina (Arriza et al., 1997). Of these, EAAT2 is
the most robustly expressed and is the main glutamate transporter in the brain, clearing a
majority of extracellular glutamate in most brain regions (Haugeto et al., 1996; Tanaka et
al., 1997).

In postmortem thalamus and cortex in schizophrenia, we have found alterations in EAAT1
and/or EAAT?2 expression, as well as changes in the expression of molecules that regulate
these transporters (Huerta et al., 2006; Bauer et al., 2008, Shan et al., 2013, Shan et al.,
2014). In general, these changes are consistent with diminished regional expression of glial
glutamate transporter expression and activity. EAAT1 and EAAT2 expression is generally
found in discrete subsets of glia (Regan et al., 2007). GLAST (EAAT1) knockout mice have
behavioral endophenotypes associated with schizophrenia without a decrease in EAAT?2
expression (Karlsson et al., 2008). Thus, we have focused our attention on EAAT1 and
EAAT2 for their potential role in schizophrenia and other severe neuropsychiatric illnesses.
In the present study we have localized these transporters at the light and electron
microscopic level in normal human postmortem frontal cortex. This work has been
presented in preliminary form (Roberts et al., 2011).

MATERIALS AND METHODS

Human postmortem cases

Mouse

Antibodies

Human brain tissue was obtained with the permission of the next of kin from the Maryland
Brain Collection (IRB# HP-00043632) and the Alabama Brain Collection (IRB#
F080306003). In addition, we have a non-human subjects protocol for tissue from the
Maryland Brain Collection that is used at UAB (N110411002). The tissue was collected
from nine adult control subjects (5 males, 4 females) ranging in age from 32 to 67 years,
with no history of central nervous system disease or neurological disease as determined by
family interviews, autopsy reports (if applicable) and gross neuropathology reports. Eight
cases were used for electron microscopy, and one additional case was used for western blot
analysis. Demographics are presented in Table I.

GLAST knockout and heterozygous tissues were provided by Kohichi Tanaka (mice
described in Watase, et al., 1998). Brains were dissected from sacrificed animals, the frontal
cortex removed, and frozen at — 80°C until processed for Western blots.

The EAAT 1 antibody was a polyclonal rabbit antibody purchased from Abcam (http://
www.abcam.com/EAAT1-antibody-ab416.html) and directed at a synthetic peptide
corresponding to 20 residues near the C-terminus of rat EAAT1. The EAAT2 antibody
(http://www.millipore.com/catalogue/item/ab1783) was a polyclonal guinea pig antibody
purchased from Millipore, which is directed at a synthetic peptide from the C-terminus of rat
GLT1. None of the antibodies were affinity purified.
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Tissue processing

Coronal blocks 1 cm thick of the dorsolateral prefrontal cortex were immersed in 4%
paraformaldehyde and 1% glutaraldehyde in 0.1 M phosphate buffer (PB), pH 7.4). Tissue
from cases 1-8 was cut in 10-12 series at a thickness of 40 pm with a vibratome. Adjacent
series of sections were stained for EAAT1, Kluver-Barrera, or EAAT2. Tissue used for
Western Blot analysis was dissected with a scalpel from frozen tissue that had been freshly
frozen on dry ice and stored at —80°C.

Western Blot Analysis

Western blot analysis was performed according to our previously published techniques
(Bauer et al., 2008). Briefly, homogenized human and mouse brain (fresh frozen) from
frontal cortex was prepared for western blot analyses with double distilled filter purified
water (dH,0) and sample buffer (4.5% sodium dodecyl sulfate (SDS), 15%
Bmercaptoethanol, 0.018% bromophenol blue, and 36% glycerol in 170mM Tris-HCI, pH
6.8) and heated at 70C for 10 minutes. Samples were run on 4-12% gradient gels and
transferred to polyvinylidene difluoride (PVDF) membranes using a semi-dry transblotter
(Bio-Rad, Hercules, CA, USA). The membranes were blocked with LiCor blocking buffer
(LiCor, Lincoln, NE, USA) for 1 hour at room temperature, and then probed with the
primary antibodies. After three 8 minute washes in phosphate buffered saline (PBS), the
membranes were then incubated with the appropriate second antibody with infared-Dye 670
or 800cw labeled in LiCor blocking buffer or 5% bovine serum albumin in PBS for 1 hour at
room temperature. Washes were repeated after the secondary antibody incubation.
Membranes were scanned using a LiCor Odyssey scanner, and the intensity value for each
protein band was measured using the Odyssey 2.1 software.

Kluver-Barrera

Sections were prepared by rinsing in 0.1M phosphate buffer, pH7.4 (PB) (4 x 30 min), and
then placed on charged slides and allowed to dry overnight. Slides were then incubated in
dH,0 for 5 minutes, followed by dehydration in 50% ethanol (EtOH) and 70% EtOH for 5
minutes each. Slides were then placed in 0.1% luxol fast blue solution (purchased from
Electron Microscopy Science, item number 26681-01) and placed in a 65 C° water bath with
slight agitation for 24 hours. Once removed, the tissue was rehydrated in 95% EtOH, 70%
EtOH, 50% EtOH, and dH,0O for 5 minutes each. Tissue was placed in 0.05% lithium
carbonate solution, aqueous, for 12 minutes with constant agitation, followed by 70% EtOH
(2 min, constant agitation), 70% EtOH (1 min, constant agitation), and 50% EtOH (1 min).
Tissue was checked for differentiation under the light microscope, and then placed in dH,O
(2 x 5 min). The sections were counterstained in 0.1% cresyl violet acetate solution,
aqueous, for 10 minutes, followed by dehydration in 50% EtOH (2 min), 70% EtOH (2
min), 95% EtOH (2 x 2 min), 100% EtOH (2 x 2 min). The tissue was placed in xylene (2 x
2 min) and was coverslipped using Eukitt.

Immunohistochemistry

Sections were incubated in 1% sodium borohydride, 0.1 M PB solution for 15 minutes, and
then placed in a pre-incubation buffer (10% normal goat serum in 0.01 M PB) for 30
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minutes. Sections were then incubated for 72 hours in the EAAT1 antibody (1:2,000) or the
EAAT2 antibody (1:3,000) in 3% normal goat serum in 0.01 M PB. Sections were
subsequently incubated for 60 minutes in biotinylated goat anti-rabbit 1gG (EAATL1) or
biotinylated goat anti-guinea pig 19G (EAAT2) (1:200 dilution in 1.5% normal goat serum
in 0.01M PB), and then in the avidin-biotin peroxidase complex (ABC standard kit) for 45
min (1:100 dilution in 0.01 M PBS for each solution). To visualize the reaction product,
sections were then incubated in diaminobenzidine (110 mg tablet dissolved in 15 ml PBS, 12
ul 30% hydrogen peroxide), with development time varying between 2-7 min. Eliminating
the primary antibody and otherwise processing the tissue in a similar fashion abolished all
staining.

Electron Microscopy

RESULTS

Sections were processed for electron microscopic analysis using standard techniques and flat
embedded. Samples were cut from representative regions, mounted on beam capsules and
thin sectioned. Electron micrographs of neuropil were taken at 5,000-25,000X from serial
sections.

Western Blots

We have previously tested the specificity of EAAT1-2 with Western blot assays using
varying protein concentrations of human brain homogenate and determined that our assays
are in the linear range of the concentrations correlated for each protein to be assayed (Bauer,
et. al., 2008, 2010). For EAAT1-2, digital images were obtained using a LiCor Odyssey
scanner (LiCor, Lincoln, Nebraska, USA) as previously described (Vlachos, et al., 2009;
Zhao, et al., 2009; Figure 1). EAAT1 protein appeared as a monomer at about 65kD.
EAAT?2 protein appeared as a monomer (65 kD) and multimer (110kD). Preadsorption with
the EAAT2 immunogen peptide completely abolished staining. The same EAATL antibody
that was used for the Western blots and immunohistochemistry did not produce any staining
in Western blots using cortex from GLAST knockout mice (Figure 1). Cortex from
heterozygote mice showed diminished staining compared to wild type mice (Figure 1).

Light microscopy

Kluver-Barrera preparations were used to assess structural normalcy and to identify cortical
layers (Fig 2A). EAAT1 labeling was found in both grey and white matter, with the former
being more heavily and diffusely labeled (Fig. 2B). The intensity of immunoreactivity was
similar among cortical layers 1-V1. Cellular labeling was in small cells which were
morphologically similar to glia. Labeled processes were observed throughout the neuropil
and around capillaries. In addition, labeled neurons were also scattered throughout, some of
which were pyramidal in shape. Labeled neurons were more abundant in the deeper layers,
than in middle or superficial layers. In the white matter, EAAT1 was present in small glial
cells, their processes and punctate structures. Labeling was also present around capillaries.

EAAT?2 labeling was present throughout the grey and white matter in small cells which are
most likely glial cells and their processes (Fig. 2C). The overall intensity of EAAT2 labeling
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was greater than that of EAAT1. EAAT?2 labeling was similar in intensity throughout the
cortical layers. EAAT2 labeling was homogeneously and diffusely distributed in the grey
matter. Unlabeled neurons were surrounded by labeled neuropil. In the white matter, labeled
glial cell bodies morphologically similar to astrocytes were abundant. Labeled thick glial
processes and punctate structures were abundant.

Electron Microscopy

EAAT1 immunoreactivity is found in astrocytes, endothelial cells and neurons. EAAT1
immunoreactivity is located in endothelial cells and astrocytic processes surrounding
capillaries (Fig. 5A,B). Both the nucleus and the cytoplasm of endothelial cells and
astrocytes are immunoreactive (Fig. 5A, C). This localization was present in both grey and
white matter. In grey matter, small astrocytic processes contain immunoreactivity close to
asymmetric synapses (Fig. 5D). Mitochondria in glial processes sometimes display
immunoreactivity.

EAAT1 labeling is also present in neuronal profiles. Immunoreactivity is present in neuronal
soma in both the nucleus and cytoplasm (Fig. 6A). Ribosomes and rough endoplasmic
reticulum (rER) are labeled within the cytoplasm (Fig. 6A). Within axons, labeling is
present in the axon initial segment, predominantly on the fasciculations of microtubules, one
of their defining characteristics (Fig. 6B). EAAT1 immunoreactivity is present in some
myelinated axons (Fig. 5C, 6C). In axon terminals, immunoreactivity is light and patchy
(Fig. 6D). Dendrites and spines also displayed immunoreactivity (Figs. 6E,F). EAAT1
immunoreactivity is deposited at the postsynaptic density and at times elsewhere in the
spine. Labeling is also found in discrete deposits in the neuropil in structures too small to be
identified (Fig. 6B). Although EAAT1 labeling is present in glial cells and neurons, the
mitochondria within these cells are usually not immunoreactive.

EAAT?2 is prominently deposited in glial profiles. Astrocytic soma are labeled on
polyribosomes and rER (Fig. 7A). Labeled astrocytic processes are abundant throughout the
neuropil and are in close contact with asymmetric synapses (Figs. 7 B-E). The amount of
immunoreactivity varies from light (Fig. 7B,D,E,F) to heavy (Fig. 7C). Labeling occurs
throughout the astrocyte, on its cytoplasmic membrane, on the outer mitochondrial
membrane, and on rER and polyribosomes. EAAT? labeling is deposited on the astrocytic
membrane that is immediately adjacent to asymmetric synapses.

EAAT?2 labeling is occasionally observed in neuronal profiles (Fig 7F, 8A,B). The somata of
neurons are lightly labeled on ribosomes and rER (Fig. 8A). Dendritic spines contain
immunoreactivity on the postsynaptic density (Figs. 7E, 8B) and at times elsewhere in the
spine (Fig. 7F). The most predominant neuronal labeling is on the PSD of asymmetric
synapses. Labeled astrocytic processes are the predominant and most robustly labeled
elements throughout the neuropil.

DISCUSSION

The results of the present study describe EAAT1 and EAAT?2 labeling in prefrontal cortex in
human postmortem control brains at the light and electron microscopic level. To our
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knowledge these results are the first to describe the electron microscopic localization of
EAAT1 and EAAT2 in normal postmortem human brain, though there is one report of
EAAT?2 localization in surgical specimens of cortex adjacent to tumors (Melone et al., 2011)
and one report from hippocampal resections (Bjornsen et al., 2007). EAAT1 labeling was
located in astrocytes, neurons, and endothelial cells. EAAT1 labeling was located on the
plasma membrane of astrocytes, in the soma and nucleus. In neurons, labeling was present in
the soma, all parts of the axon, dendritic spines and the post synaptic density (PSD). EAAT2
labeled astrocytic processes were the predominant and most robustly labeled elements
throughout the neuropil. Within astrocytes, the plasma membrane and mitochondria were the
most heavily labeled. EAAT2 immunoreactivity was also present in neuronal profiles, the
most predominant location being the postsynaptic density of asymmetric synapses.

While most of the work on EAAT1 and EAAT? localization in the CNS has been done in
human and rodent, EAATSs have been localized in a variety of other species such as sheep
(Northington et al., 1999), rabbits, cats, pigs, monkeys (Reye et al., 2002a; Williams et al.,
2005) and even caterpillars (Gardiner et al., 2002)(Summarized in Tables 11-1V). There have
been quite a few disagreements as to where the EAATS are localized, with the literature
continually evolving. For example, EAAT1 and EAAT2 were originally thought to be
confined to astrocytes (Chaudhry et al., 1995; Lehre et al., 1995; Milton et al., 1997), but
later studies began to identify them in neuronal processes as well (Brooks-Kayal et al., 1998;
Chen et al., 2002, 2004; Meloni et al., 2009, 2011). Interestingly, the cellular localization of
EAAT1 and EAAT?2, as well as some of the other EAATS, varies across developmental
stages (Bar-Peled, et al., 1997; Northington et al., 1999; DeSilva et al., 2007, 2012), with
disease processes (Rothstein et al., 1995; Proper et al., 2002; Maragakis et al., 2004) and
experimental manipulation (Xu et al., 2003, Sullivan et al., 2007). Thus, inconsistencies in
localization may be due in part to the examination of different splice variants (Holmsmeth et
al., 2009), different species, normal vs. diseased tissue, varying brain regions, different
stages of development and/or variations in methodologies (such as using antibodies directed
to different amino acid sequences of the transporters). The results of the present study for
EAAT1 show neuronal localization, which is a departure from most of the current literature,
while our results on EAAT2 are consistent with most studies. Therefore, we will discuss
various technical issues as well as how our data are supported by the literature.

Technical issues

Diaminobenzidine (DAB) has been criticized as capable of diffusing to areas where the
antigen is not actually located and thus creating nonspecific labeling at the ultrastructural
level (Danbolt, 2001). However, eliminating the primary antibody as a control abolished any
DAB staining. There is an immense literature using DAB at the ultrastructural level to
visualize various antibodies, showing unique staining patterns for each antibody; this would
not be possible if DAB labeling was nonspecific. Importantly, our EAAT2 data are highly
consistent with other reports using immunogold labeling in human cortical biopsies (Meloni
etal., 2011).

Postmortem Interval: The effect of postmortem interval (PMI) on the localization of EAATS
in mice has shown that the localization diffuses after 12 hours raising concern over the effect
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of PMI in human studies (Li et al., 2012). Our postmortem tissue used for electron
microscopy was fixed in eight hours or under, so there should be minimal diffusion due to
PMI. Also, the effect of PMI on a small mouse brain is likely to be much more dramatic
than in the much larger human brain, meaning that the PMI could probably be much longer
in humans without deleterious effects. Several studies using postmortem human tissue with
PMIs equivalent to or greater than ours show no correlation between PMI and EAAT protein
levels and/or show a similar distribution to that of the present study, suggesting that EAAT
protein is not degraded in tissues with PMIs < 20. (Ikematsu et al., 2001; Bauer et al, 2008;
Shan et al., 2013, 2014). There were no qualitative differences in staining pattern between
the brains used in the present study, where the PMIs ranged from four to eight hours.
Finally, the ultrastructural data in human hippocampal resections (Bjornsen et al., 2007) and
cortical biopsies (Meloni et al., (2011), which have no postmortem interval, are largely in
agreement with our data in postmortem tissue.

Antibodies—The antibodies we used are well characterized and have been used by us
previously (Bauer et al. 2008; Shan et al., 2013, 2014). In the present study EAAT1 showed
no reactivity in the GLAST knockout brain tissue and EAAT?2 labeling was abolished with a
blocking peptide. These antibodies were directed against the C-terminus, typical of most
antibodies to EAAT1 and EAAT?2 (see Tables Il and I11). Antibody cross reactivity with
other EAATS is not likely to be a confound for two reasons. First, the antibodies we used are
at the C-terminus end and there is no sequence homology between EAATS in that region in
rodent or human (Arriza et al., 1994). Secondly, preadsorption of individual EAAT
antibodies with peptides at the C-terminal domains of other EAATS does not abolish any
immunoreactivity (Rothstein et al., 1994).

Thus, any localization differences we report herein, from that observed previously, are
probably not due to artifacts of DAB, diffusion or degradation during the PMI, antibody
specificity or cross reactivity with other EAATS, such as those found predominantly in
neurons. However, hypoxia associated with the process of dying, as well as during the
postmortem interval, may impact transporter expression in neurons. In a porcine model of
hypoxia, pigs were exposed to lower oxygen levels for 45 minutes and allowed to recover
for 72 hours (Sullivan et.al. 2007). In this study, protein for a splice variant of EAAT1,
lacking exon 9, was expressed in neurons in brain tissues from hypoxic animals. This
EAAT1 variant was detected with C-terminal antibodies, but not N-terminal antibodies.
Although brains from subjects with prolonged agonal status were excluded from our study,
expression of EAAT1 in neurons in postmortem brain could be due to mild to moderate
hypoxia associated with dying and the human brain collection process. Taken together, our
data and the hypoxia findings suggest that EAAT1 may be expressed in neurons.

Interestingly, one study found EAAT1 expression in neurons using C-terminal antibodies
(Rothstein et al, 1994). Subsequent confirmation studies using N-terminal antibodies did not
detect EAAT1 (Lehre et al., 1995), and it was concluded that the studies with the C-terminal
antibodies must have been an artifact (Ginsburg et al., 1995). We used a C-terminal antibody
and the isoform of EAAT1 expressed in neurons was only detectable with a C-terminal
antibody, providing a parsimonious explanation for the all of the previous divergent findings
for this protein.
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At the light microscopic level, EAAT1 was distributed throughout the neuropil in small
processes and punctate structures, in glial cells and in selected neurons. We found EAAT2
localized most heavily in astrocytic processes and their cell bodies, in both grey and white
matter in agreement with previous studies (Danbolt et al., 1992; Torp et al., 1994; Lehre et
al., 1995). Previous results of EAAT?2 labeling in cortex have described two patterns, regular
and irregular. We found the EAAT? labeling to be homogeneously distributed in the form of
small punctate structures throughout the neuropil and in the soma and proximal processes of
cells with astrocytic morphologies. Thus, our results are consistent with what has been
described as the regular pattern (Melone et al., 2011) and observed by several investigators
(Rothstein et al., 1995; Bar-Peled et al., 1997; Ikematsu et al., 2001; Bjornsen et al., 2007).
Notably, long PMIs (>20 hours)have been associated with the irregular pattern of staining
(Milton et al., 1997; Proper et al., 2002), and our postmortem intervals were very short (<10
hours).

EAAT1 and EAAT? labeled astrocytes were most often observed around asymmetric
synapses, characteristic of glutamatergic synapses. However, EAAT labeled astrocytic
processes were not exclusively around excitatory synapses. EAAT1 and EAAT? labeled
astrocytic processes were adjacent to many types of neuropil profiles, including symmetric
synapses, which are characteristic of inhibitory transmission. Our data are consistent with
other results showing EAAT2 or GLT1 labeling located both adjacent to and far from
synapses (Chaudhry et al., 1995; Bjornsen et al., 2007; Minelli et al., 2001). The EAATs
function to remove glutamate from the synaptic cleft, begging the question of why are
EAATS localized in regions where there are no synapses, such as the white matter, and
throughout the grey matter neuropil far from excitatory synapses? Glutamate may enter the
extracellular space in several ways: 1) spillover following release at the synapse; 2) non
vesicular release, sometimes called leaking; 3) exocytosis from astrocytes; and 4) release by
the cystine / glutamate antiporter (Montana et al., 2004; Hayden and Carmigoto, 2006;
Baker et al., 2008; Parpura et al., 2011; Bridges et al., 2012). Glutamate has been measured
in the white matter in humans by in vivo imaging (Ota et al., 2012; for review see Marsman
et al., 2013) and plays an important role therein (for review see Matute and Ransom, 2012).
Although the EAATS certainly regulate glutamate at excitatory synapses, their role in
glutamate regulation may not be restricted to the synapse.

One possible explanation for the expression of EAATS far from synapses is that they
regulate and partition glutamate levels in distinct extracellular pools or microdomains.
Evidence for extracellular (and extrasynaptic) glutamate microdomains includes a large
body of work that has described localization of functional glutamate receptors outside of
synapses, as well as the observation that glial cells may form electrically-independent
morphological structures of unknown function that ensheath neuronal structures (Grosche et
al., 1999, 2002; Szabadkai and Rizzuto, 2007; Spat et al., 2009; Genda et al., 2011). It may
be that glutamate microdomains are formed by specialized protein clusters on the
membranes of astrocytic processes opposed to extrasynaptic glutamate receptors expressed
on specialized regions of neuronal membranes (Grosche et al., 1999; Genda et al., 2011;
Shan et. al., 2012). Diffusion of glutamate between domains or domains and synapses could
be limited by the dense expression of glutamate transporters between these specialized
structures (Danbolt et al., 1998; Shan et al., 2012).

Neuroscience. Author manuscript; available in PMC 2015 September 26.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Roberts et al.

Page 10

Many previous studies of EAAT1 have reported localization only in astrocytes, including
processes in perivascular locations (Chaudhry et al., 1995; Lehre et al., 1995; Haugeto et al.,
1996; Williams et al., 2005; Bjornsen et al., 2007). However, some studies localized EAAT1
to endothelial cells as well (O'Kane et al., 1999; Hawkins et al., 2006; Helms et al., 2012), as
we show in the present study at the ultrastructural level. Our results, that EAATL1 is localized
in astrocytic endfeet and endothelial cells, supports a role for EAAT1 in maintaining
glutamate concentrations across the blood brain barrier, as previously posited (O'Kane et al.,
1999; Hawkins et al., 2006; Helms et al., 2012). The observation that EAAT1 is present in
two cell types associated with the blood brain barrier, whereas EAAT2 is only present in
astrocytic end feet, might suggest a more prominent role for EAAT1 than EAAT2 in
maintaining glutamate concentrations at this site.

Our finding of EAAT1 protein expression in neurons was somewhat unexpected because
EAAT1 has been considered by many to be only a glial transporter (see Table 11). That said,
several studies have supported a neuronal localization of EAAT1 (Rothstein et al., 1994;
Bar-Peled et al., 1997; Sullivan et.al., 2007; Ritter et al., 2011) and EAAT2 (Melone et al.,
2009, 2011). In fact, it has been suggested (Conti et al., 1998) that the division of EAATS
into neuronal and glial transporters is no longer warranted. In the present study, EAAT1 was
frequently observed in axons and axon terminals, and EAAT2 was observed occasionally in
axon terminals. Excitatory amino acids are taken up into presynaptic terminals (Divac et al.,
1977; Storm-Mathisen and Iversen, 1979; Storm-Mathisen and Wold, 1981; Taxt and Storm-
Mathisen, 1984; Gundersen et al., 1993, 1996). It has been suggested (Danbolt, 2001) that
the molecular basis of this uptake cannot be accounted for solely by the expression of the
neuronal glutamate transporter EAAT3/EAACL. The location of EAAT1 in axon terminals,
the postsynaptic density and in perisynaptic astrocytes suggests that it may have important
and possibly multiple roles for regulating synaptic glutamate. Taken together, EAAT1 and
EAAT2 might to have a role in presynaptic glutamate regulation.

Our data show EAAT1 and EAAT?2 on the postsynaptic density, and elsewhere in the spine.
Using immunoprecipitation studies, Ritter et al. (2011) found that the C-terminus portion of
GLAST (EAATL) robustly co-immunoprecipitated with the post synaptic density domains
of two scaffolding proteins (Na+/H+ exchanger regulatory factors 1 and 2, NHERF-1 and
NHERF-2). The interaction of EAAT1 with proteins in the postsynaptic density supports our
data localizing EAAT1 in the post synaptic density. EAAT2 has not always been found in
dendritic spines (Table I11), but Chen et al, (2004) have localized GLT1a labeling on the
postsynaptic density in spines receiving asymmetric synapses. In other studies, GLT1b was
found to interact with proteins located in the postsynaptic density, PSD-95 (Gonzalez-
Gonzalez et al., 2008) and the NMDA receptor NR1 (Bassan et al., 2008), placing GLT1b at
the postsynaptic density. These data suggest that postsynaptic glutamate reuptake may not
be limited to EAAT3, whose postsynaptic localization is well-characterized (Levenson et al.,
2002).

Our observations of EAAT? labeled mitochondria, especially in astrocytes, is supported by
Genda et al., (2011) whose data suggests that GLT-1 exists in a multiprotein complex in
close association with mitochondria. These authors demonstrated co-localization of
mitochondria and GLT-1 in astrocytic processes of organotypic hippocampal slices and in
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vivo. It is unclear why electron microscopic studies have not discussed GLT1/EAAT2
labeling on mitochondria (Chaudry et al., 1995; Lehre et al., 1995; Haugeto et al., 1996;
Chen et al., 2004). However, labeled mitochondria are illustrated, but not discussed in both
rodent (Lehre et al., 1995; see Fig. 12a), and human (Melone et al., 2011; see fig. 5¢). The
functional significance of EAAT2 labeled mitochondria is unclear. Distinct subtypes of
glutamate transporters (non-EAAT) are expressed on mitochondria (Fiermonte et al., 2002;
Berkich et al., 2007; Palmieri, 2004). The calcium-binding mitochondrial carrier protein
Avralarl, and the mitochondrial glutamate carriers 1 and 2 (GC1 and GC2) move glutamate
across the mitochondrial membrane from the cytosol. Our data suggest that some
mitochondria in astrocytic processes also have EAAT2 in the mitochondrial outer
membrane. Another possibility is that one or more of these other transporters may have an
epitope detectable by our EAAT?2 antibody. However, there is no overlap of the sequences
of these proteins (based on Protein BLAST, unpublished observation) for the EAAT2
epitope used to generate the EAAT2 antibody. Finally, it may be that EAAT?2 is trafficked to
the mitochondria where mitochondrial proteins interact and join a so-called glutamate
transport protein complex before insertion in the plasma membrane (Genda et al., 2011,
Shan et al., 2014). Regardless of the functional role or the orientation in the mitochondrial
membrane, further study of the selective localization of EAAT?2 to mitochondria is
warranted.

EAAT1 localization has not been previously studied in human cortex at the electron
microscopic level. We found that EAAT1 was distributed in more varied cell populations
and intracellular locations than EAAT2, suggesting more diverse functions. Our finding of
EAAT1 protein expression in neurons could be secondary to the brain collection process,
and needs to be confirmed with follow up studies. The predominant localization of EAAT?2
on the astrocytic plasma membranes adjacent to excitatory synapses is consistent with the
function of facilitating glutamate reuptake and limiting glutamate spillover. Neuronal and
extrasynaptic localization suggests additional functions, especially for EAAT1, which has a
more diverse distribution than EAAT2. Finally, establishing that EAAT1 and EAAT2 may
be studied at the ultrastructural level in postmortem brain extends the tools available to
study neuropsychiatric diseases which do not have animals models that fully recapitulate the
illness.
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Figure 1.
Western blots of human cortical homogenate (lanes 2-6, 10 ug of total protein/lane from

case #9). A,B) Lane 1 shows the molecular weight standards. Blots A and B were generated
from the same gel and transblot. Blot A was probed with EAAT2 antibody preincubated
overnight with a blocking peptide (Lane 2, 90:1 molar equivalents peptide: antibody)
identical to the peptide used to make the antibody. Blot B was probed with EAAT?2 antibody
(1:1000) that was not incubated with blocking peptide. Both blots were imaged together
with a Licor scanner under identical conditions. EAAT2 monomer (65 kD) and multimer are
present in lane 3, but not lane 2, which was blocked with the peptide. C) Blot C was probed
with EAAT1 antibody (1:500). EAAT1 monomer (65 kD) is indicated by arrow; sample run
in duplicate. D) Western blot analysis of EAAT1 expression in the rodent frontal cortex in
GLAST knockout mice (KO, lanes 1 and 2), GLAST heterozygous mice (H, lanes 3 and 4),
and wild type mice (WT, lanes 5 and 6). EAAT1 migrates as a monomer (about 60 kDa) and
multimer (about 120 and 180 kDa). The two lanes for each mouse are duplicates.

B) EAAT2 no peptide

EAAT1 multimer

EAAT1 monomer
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Figure 2.
A) Kluver-Barrera stain used to identify cortical layers and asses cytoarchitectural integrity.

The lines indicate separate cortical layers. B) EAAT1 localization. C) EAAT2 localization.
The black line in all three images delineates the boundary between white matter and grey
matter. All images are from case #5. Scale bars= 250 pm (A), 500 um (B,C).
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Figure 3.
Light micrographs of EAAT1. A) Labeling in white matter. EAAT1 is present in glial cell

bodies (arrows), processes (arrowheads) and punctate structures (encircled). Note the
staining around a capillary (upper left). B) EAATL is present throughout the neuropil and in
scattered neurons (dashed arrows) and glial cells (black arrows) in layer I11. Apical dendrites
are labeled, at least in proximal portions (solid arrows with balls). C) In layer V fewer
labeled neuronal somata (dashed arrows) are present, and unlabeled large dendrites (dashed
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arrows with balls) are seen coursing through the labeled neuropil. Glial profiles (arrows and
arrowhead). All images are from case #4. Scale bars =100 pum.
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Figure 4.
Light micrographs of EAAT2. A) Labeling in white matter is very heavy. EAAT?2 is present

in glial cell bodies (black arrows), processes (arrowheads) and punctate structures
(encircled). Note the staining around the capillary (right edge). Case #5. B) In layer 11,
EAAT2 is present throughout the neuropil, where it avoids neurons (black dashed arrows).
Case #7. C) Layer V is similar in appearance to layer I11. Case #5. Scale bars =100 pum.
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Figure 5.
Electron micrographs of EAAT1 in glial profiles. A) A capillary in the grey matter is shown

with two red blood cells in the lumen. Labeling occurs in the endothelial cell (dotted
arrows), and the surrounding astrocytic endfeet (arrows). Basal lamina is indicated by
arrowheads. B) A capillary in the white matter is shown with one red blood cell (RBC), a
labeled endothelial cell (dotted arrows) and labeled astrocytic endfeet (arrows). Both the
nucleus (nuc) and the cytoplasm of the endothelial cell are immunoreactive (dotted arrows).
C) A protoplasmic astrocyte in white matter is labeled (arrows) in both the nucleus (nuc) and
the cytoplasm. The cell is surrounded by myelinated axons, some of which are labeled
(black and white arrows). D) A labeled (arrows) astrocytic process (astro) close to an
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asymmetric synapse (black and white arrow) on a spine (s). Scale bars = 2um (A,C) and 0.5
umin D.
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Figure 6.
Electron micrographs of EAAT1 in neuronal profiles. A) EAATL1 labeling in a neuronal

soma. This neuron was identified by morphological criteria and only a portion of it is shown
due to space limitations. Labeling is present in the nucleus (arrowhead) and in the cytoplasm
on rER and free ribosomes (arrows). Unlabeled mitochondria (m) are present. B) An axon
initial segment (AIS) has immunoreactivity deposited on the fasciculated microtubules
(arrows). An adjacent astrocytic process (astro) is labeled (dotted arrow). EAAT1
immunoreactivity is also found in discrete deposits (arrowheads) in the neuropil in structures
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too small to be identified. C) Three myelinated axons (MA) are shown, one of which is
labeled (arrow). Case #7. D) Labeling is found in axon terminals (AT) where it is light and
patchy (arrows). Both terminals (AT) are forming synapses with spines (s) (black and white
arrows). Immunoreactivity is also found on astrocytic membranes (dotted arrows). E) An
axon terminal (AT) forms an asymmetric synapse (black and white arrow) with a labeled
(arrows) spine (s). EAAT1 immunoreactivity is deposited at the postsynaptic density and
elsewhere in the spine. F) Two spines (s) emerge (thick arrows) from a labeled dendrite
(den). Labeling (thin arrows) is found in the dendrite, the bifurcated spines at the
postsynaptic density (black and white arrows) and elsewhere in the spine. Scale bars=0.5um.
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Figure 7.
Electron micrographs of EAAT?2 in glial profiles. A) EAAT2 labeling in an astrocyte in the

white matter. Polyribosomes and rER are labeled (arrows). Case #3. B-F) Examples of
labeled astrocytic processes (astro) in close contact with asymmetric synapses (black and
white arrows). B) An axon terminal (AT) forms an asymmetric synapse with a spine (s). A
labeled (arrows) astrocytic process is adjacent to the terminal and EAAT immunoreactivity
is located right at the synapse. C) An example of a heavily labeled astrocytic process
adjacent to a synapse. Immunoreactivity (arrows) is abundant on the cytoplasmic membrane,
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within the cytoplasm, and on the mitochondria. D) An image of a lightly labeled astrocytic
(astro) process adjacent to two synapses formed on spines (s). Immunoreactivity (arrows) is
present on the astrocytic cytoplasmic membrane, within the cytoplasm, and on part of the
mitochondrion. The spine (s) in the upper left contains some immunoreactivity (arrowhead).
Both postsynaptic densities are also labeled. E) An example of a thin labeled astrocytic
process adjacent to the asymmetric synapse on a dendrite (den). There is no
immunoreactivity on the PSD (black and white arrow). F) An example of a synapse (black
and white arrow) on a dendrite (den) where the PSD is labeled. Labeled astrocytic (astro)
processes are nearby and adjacent to the synapse. A labeled spine (s) is nearby, with a
labeled PSD (black and white arrow) as well as labeleing (arrow) elsewhere in the spine.
Mitochondria (m) are identified throughout the figures. Scale bars = 2um (A), 0.5 um (B-E).

Neuroscience. Author manuscript; available in PMC 2015 September 26.



Roberts et al. Page 31

B S
‘ .““ PRt ta

a2 'mL';‘L

o

Figure 8.
Electron micrographs of EAAT2 in neuronal profiles. A) The soma of a neuron showing

immunoreactivity on polyribosomes (arrows). A perineuronal glial process (astro) contains
immunoreactivity as well (arrows). (Case #8) B) An axon terminal (AT) forms an
asymmetric synapse (black and white arrow) with a spine (s). The PSD is labeled (arrow).
An adjacent astroglial (astro) process is also labeled (arrows). (Case #5) Scale bars= 2 um
(A), 0.5 um (B).
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