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Abstract

cytokine production were measured.

with more anti-inflammatory properties.

Background: Malaria, caused by Plasmodium sp. parasites, is a leading cause of global morbidity and mortality.
Cerebral malaria, characterized by neurological symptoms, is a life-threatening complication of malaria affecting over
500,000 young children in Africa every year. Because of the prevalence and severity of cerebral malaria, a better
understanding of the underlying molecular mechanisms of its pathology is desirable and could inform future
development of therapeutics. This study sought to clarify the role of Toll-like receptors (TLRs) in promoting
immunopathology associated with cerebral malaria, with a particular focus on the understudied TLR7.

Methods: Using the Plasmodium berghei ANKA mouse model of experimental cerebral malaria, C57BL/6 mice
deficient in various TLRs were infected, and their resistance to cerebral malaria and immune activation through

Results: Loss of TLR7 conferred partial protection against fatal experimental cerebral malaria. Additionally, loss
of TLR signalling dysregulated the cytokine profile, resulting in a shift in the cytokine balance towards those

Conclusion: This work identifies signalling through TLR7 as a source of pathology in experimental cerebral malaria.
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Background

Malaria, caused by protozoan parasites of the genus
Plasmodium, is a major source of global morbidity and
mortality, resulting in an estimated 154—289 million in-
fections and 660,000 deaths in 2010 [1]. Approximately
12% of fatal infections in African children are caused by
cerebral malaria, a severe neurological complication of
Plasmodium falciparum infection characterized by coma
(inability to localize a painful stimulus), presence of
P. falciparum parasites in the blood, and exclusion of
other causes of encephalopathy [2]. Without treatment,
cerebral malaria is nearly universally lethal; with interven-
tion, mortality is 15-20%. Furthermore, of children who
survive cerebral malaria, approximately 15% exhibit neuro-
logical sequelae, from which a proportion of children
experience permanent neurological impairment [3,4].
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Although this severe form of malaria represents only a
modest proportion of cases, the overall high incidence
of malaria results in an estimated 575,000 cases of
cerebral malaria occurring annually in Africa [5]. The
large number of cases, compounded by the severity of
cerebral malaria, makes a better understanding of the
underlying molecular mechanisms, and therapeutics
based thereon, desirable.

The nature of the pathogenesis of cerebral malaria is
controversial [6-12], but is thought to involve the exces-
sive production of pro-inflammatory cytokines [13], the
accumulation of leukocytes in the brain [14], and/or the
sequestration of infected erythrocytes in the microvascu-
lature of the brain [15,16]. In the most widely used
mouse model of cerebral malaria (infection of C57BL/6
mice with Plasmodium berghei strain ANKA, reviewed
in [17]), it is clear that the activation of pro-inflammatory
mechanisms results in cerebral immunopathology and
symptoms. In particular, the balance of inflammatory Type
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I cytokines, such as interferon gamma (IFNG) and tumour
necrosis factor (TNF), with Type II cytokines, e.g., inter-
leukin 4 (IL4) and IL10, is thought to determine the le-
thality of cerebral malaria [18,19]. In both humans and
mouse models, high levels of TNF are correlated with
cerebral malaria [20,21]. Conversely, IL10 is thought to
limit cerebral pathology in mice [22,23], and IL10 poly-
morphisms are associated with cerebral malaria [24].
However, translation of these findings into anti-TNF trials
in humans was unsuccessful [4,25], highlighting the need
to better understand the molecular drivers of cerebral
pathology.

Toll-like receptors (TLRs) are a family of innate im-
mune sensors that are prime candidates for initiating
immune responses that promote cerebral malaria. Evi-
dence for a TLR-dependent contribution to cerebral malaria
pathology stems from the observation that mice lacking
myeloid differentiation factor 88 (MYD88), a downstream
adapter shared by most TLRs, are partially protected from
developing cerebral malaria pathology during infection with
P. berghei [26-29] (see [30] for dissenting evidence). There is
a growing body of evidence supporting TLR recognition of a
broad range of Plasmodium molecules [31-41]; however,
controversy exists about individual receptor contributions to
cerebral malaria pathology. For example, TLR2 is thought to
recognize Plasmodium glycophosphatidylinositol [33,39];
however, whereas studies have found that 7027 mice [26]
and TIr2” Tir4”" mice [29] escaped from initial cerebral
malaria at a higher rate than wild-type mice, others have re-
ported no differences between wild-type mice and mice
lacking these sensors [28,30,42]. TLRY, an endosomal DNA
sensor, is a more well-established sensor of both mouse and
human malaria parasites [31,32,37,40,41]; however, similar
to the controversy over the role of TLR2 in experimental
cerebral malaria, some studies have found that TLR9 defi-
ciency results in protection from disease [26,28], whereas
other studies have found no differences as compared with
wild-type mice [30,42]. In the studies that have reported a
protective effect of TLR9 disruption, cerebral malaria was
still more severe than that observed in MYD88-deficient
mice, suggestive of signalling contributions from other
MYD88-dependent pathways [28]. It is likely that, as with
other parasitic infections, multiple TLRs contribute to the
immune response [43-45], making it clear that quantitative
measures of immune activation are needed to better under-
stand the relative contributions of TLRs to immune activa-
tion during malaria infection.

Previous work from this lab showed that a deficiency
in TLR7, which recognizes ribonucleic acid (RNA), leads
to widespread immune dysfunction during Plasmodium
chabaudi infection, although there was no impact on the
clearance of parasites [41]. Similar results have been re-
ported for TLR9 and the shared adapter molecule, MYD88;
whereas loss of MYD88 or TLR9 diminished cytokine
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production during P. chabaudi infection, no changes in
control of parasitaemia were seen [46]. Similarly, during
P. berghei strain ANKA (referred to as ‘P. berghei’
hereafter) infection of the C57BL/6 mouse, in which
Type I inflammation promotes a lethal infection with
neurological symptoms consistent with cerebral malaria
[18], a deficiency in either TLR9 or MYD88 partially pro-
tects against lethal disease [26,28]. However, in contrast to
findings with TLR9- and MYD88-deficient mice, in the
only study to examine the role of TLR7-deficiency in cere-
bral malaria, TLR7 was found to be irrelevant for precipi-
tation of fatal disease [26]. This study was performed
using small cohorts of mice in an experimental design
intended to screen several candidate strains, which
allowed for the possibility that a role for TLR7 in cerebral
malaria may have been overlooked. To more thoroughly
interrogate the role of TLR7 signalling in experimental
cerebral malaria in this present study, large sample groups
and quantitative measures of immune activation were
employed. The current findings demonstrate that the ab-
sence of TLR7 during experimental cerebral malaria shifts
the balance of cytokines towards an anti-inflammatory
state and confers protection from cerebral malaria
lethality.

Methods

Ethics statement

All mouse work was conducted with the approval of the
University of California, San Francisco (UCSF) Institu-
tional Animal Care and Use Committee in strict accor-
dance with the guidelines of the Office of Laboratory
Animal Welfare.

Mice

The following mouse strains were used in this study:
C57BL/6 (Jackson Laboratories or the National Cancer Insti-
tute); Tlr7 '~ (Jackson Laboratories); Tlr9~'~ (R Medzhitov,
Yale University; with permission from S Akira, Osaka Uni-
versity, and T Taniguchi, University of Tokyo); Myd88~'~
(J Cox, UCSF; with permission from S Akira). Tlr7”"~
Tir9” double knockout mice were bred in house. All
strains were confirmed to have a C57BL/6 background
of greater than 95% by microsatellite genotyping.

Parasites

All experiments were performed using P. berghei strain
ANKA (MRA-311) parasites, which were obtained from
the MR4 stock centre and maintained in C57BL/6 mice.
Blood was harvested by cardiac puncture from an in-
fected mouse on day 5 of infection, and 10° infected
erythrocytes were introduced into a new mouse by intra-
peritoneal injection in 100 pl of Alsever’s solution. All
infections were initiated at 14.00 hours. For cytokine
analysis, blood was harvested by submandibular blood
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collection or cardiac puncture into K;EDTA for plasma
isolation.

Infections

Infections were initiated as described above. Survival
and signs of cerebral malaria were monitored daily, and
twice daily during the peak of lethality (days 6 through
12). Animals that showed neurological symptoms, such
as convulsions, ataxia or paralysis, or that died on or be-
fore day 12 post-infection, were considered to have cere-
bral malaria as previously described [26]. Parasitaemia
(percentage of parasite-infected erythrocytes) was
monitored daily by Giemsa-stained thin film blood
smears. The significance of parasitaemia courses was
assessed by the Mann—Whitney U test (a =0.05). The
significance of survival courses was assessed by compar-
ing Kaplan-Meier curves using the log rank (Mantel-Cox)
test (a0 = 0.05).

Cytokine detection

All plasma cytokines were measured by multiplexed cyto-
metric bead immunoassay (Millipore) as per manufacturer
instructions and detected on a MAGPIX (Luminex).
Cytokine level significance was assessed using a Mann—
Whitney U test (a = 0.05).

Results

Loss of TLR7 confers partial resistance to cerebral malaria
lethality

Given the reduced levels of inflammatory cytokines ob-
served in Tlr7'" mice in response to several Plasmodium
sp. in a previous work [41], it was hypothesized that
TLR7 might play a role in the pathology of P. berghei
cerebral malaria that was previously undetected. To test
this, the survival of TLR7-deficient mice, as well as
Tlr9”", Tlr7/"Tlr9”", and Myd88” mice, infected with
P. berghei parasites was monitored. As previously re-
ported [26,28], mice deficient in either TLR9 or MYD88
were partially protected from lethal infection with P. ber-
ghei when compared with wild-type mice, with Tr9”
mice less well protected than Myd88”'~ mice (29% escape
and 58% escape, respectively, with escape defined as sur-
vival past day 12 of infection; Figure 1A). These findings
are similar to a previous report [28] in which the propor-
tion of Myd88” mice that escaped from cerebral malaria
was 1.5 times greater than the proportion of T/r9”" mice,
suggesting the existence of additional MYD88-dependent
sensors that promote cerebral malaria [26,27,29]. In sup-
port of the above hypothesis, T/r7'"~ mice were partially
protected from lethality with approximately 24% escaping
from cerebral malaria, as compared to 8% of wild-type
mice, a difference that was detectable using large sample
sizes (n=71 for Tlr7” mice). Because TLR7 and TLR9
share the common signalling adapter MYDS88, the
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possibility of a genetic interaction between these sensors
was tested by generating mice lacking both sensors. As ex-
pected, Tlr7’" Tlr9"" mice demonstrated improved sur-
vival as compared to wild-type mice, with 24% escaping
cerebral malaria. Notably, they were no more protected
than mice with either deficiency alone and were also not
as well protected as Myd88”~ mice. There was no signifi-
cant difference in survival between females and males of
any given genotype (log rank [Mantel-Cox] test; o = 0.05).
Additionally, protected mice did not show symptoms of
cerebral malaria, such as ataxia, hemi- or paraplegia,
seizures or coma. This protection was not due to im-
proved parasite restriction; all animals eventually suc-
cumbed to hyperparasitaemia after the initial escape from
cerebral malaria, as observed in other immunodeficient mice
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Figure 1 Survival of TLR-deficient mice during cerebral malaria.
(A) C57BL/6 (B6), TIr7”", TIr9™", Tir7” TIr9”", and Myd88”" mice were
challenged with 10° P. berghei erythrocytes and monitored daily for
survival (n=63 B6, n=71 TIr7/", n=45 Thr9~~, n=25 TIr7"” TIr9”",

n =38 Myd88 )% p < 0.05 (log rank [Mantel-Cox] test). Data were
pooled from six experiments. (B) Infected C57BI/6, Tlr7'~, TIr9”", and
Myd88~~ mice were monitored for parasitaemia. Right, zoomed-in
plot of region contained within gray box on left. (=25 B6, n=25
Tr7”,n=16 TIr9”"; n=21 Myd88""). Data were pooled from three

independent experiments.
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[26,47] (Figure 1B). The simplest interpretation of these data
is that TLR7 and TLRY synergistically signal to promote
cerebral malaria, with both sensors being required for full
elaboration of lethal pathology (and conversely, loss of both
sensors not conferring more protection than loss of either
sensor alone). In addition, it is likely that other MYD88-
dependent, but TLR7- and TLR9-independent, mechanisms
also promote pathology.

In contrast to the current findings, T/r7”* mice were not
found to be protected from cerebral malaria in the single
study that has previously examined P. berghei infection in
TLR7-deficient mice [26]. In the current study, the experi-
mental hazard ratio between B6 and Tlr7”" mice was de-
termined to be 2.847, with a probability of 0.888 that a
subject of either genotype would succumb to cerebral
malaria by the end of the experiment. Based on these
numbers, the sample size of five in each group used in the
previous study would only provide a statistical power of
0.26 (o = 0.05). In order to detect the difference observed
in this study, a minimum sample size of 33 mice is neces-
sary [48]. Based on these calculations, it is possible that
the contribution of TLR7 to P. berghei pathogenesis was
overlooked in the previous work.

To better understand the inflammatory response as re-
lated to lethality of P. berghei infection in Tlr7"", Tlr9™",
Tlr7"™ Tlr9"", and Myd88” mice, the levels of cytokines
that have previously been associated with susceptibility
to cerebral malaria [21,49-52] were measured at three
days post-infection, which is at the onset of parasite pa-
tency, and six days post-infection, which is approximately
12 to 24 hours before the onset of neurological symptoms
in wild-type mice. A subset of both pro-inflammatory
cytokines (IFNG, TNEF, macrophage inflammatory protein
1 beta [MIP1B], and IL6) and anti-inflammatory cytokines
(IL10 and IL4) was found to be dysregulated at various
points in the absence of TLR7 and/or TLRY signalling
(Figure 2A and 2B).

Specifically, at both days 3 and 6 post-infection, IFNG,
IL6, TNE, MIP1B and IL10 were all significantly dimi-
nished in MYD88-deficient mice as compared to wild-
type mice. MIP1B was also significantly diminished in
Tlr7”~ TIr9”" mice on both days, as compared to wild-
type mice. All of the other cytokines also followed the
same trend of being reduced in Tlr7”" TIr9”" as com-
pared to wild-type mice, although they did not reach
statistical significance. In contrast, none of these cytokines
were significantly diminished in mice singly deficient in
either TLR7 or TLRY. In fact, many cytokines were pro-
duced at higher levels in Tlr7” mice, including TNE,
IENG, and IL6. TIr9”" mice appeared to follow similar
trends for these cytokines, but did not reach signifi-
cance. These observations are similar to those from
early P. chabaudi infection [41], wherein mice lacking
TLR9 overproduce cytokines; this increase might be a
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Figure 2 TLR-dependence of cytokine production during
Plasmodium berghei infection. (A, B) Levels of IFNG, IL6, IL4, TNF,
MIP1B, and IL10 were measured by cytometric bead array in plasma
collected from mice of the indicated genotypes three days (A) or six
days (B) after infection with 10° P. berghei-infected erythrocytes. Al
units are pg/mL. Means with SE are shown. *, p < 0.05 (Mann-Whitney)
(N=30B6,n=22T7",n="11Th9"",n=3TI7" Th9", n=15 Myd88™"").
Data were pooled from three independent experiments.
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result of decreased competition for endosomal traffick-
ing between TLR7 and TLR9 [53]. Additionally, IL4
was increased in both TIr7”" and TIr9”" mice on day 3,
as well as in TIr7”" mice on day 6. Importantly, unlike
the synergistic interaction between TLR7 and TLR9
suggested by the survival data, these results are con-
sistent with a model in which TLR7 and TLR9 signal
redundantly through MYD88 to promote cytokine
production during experimental cerebral malaria.

To assess the relative contributions of each cytokine to
the pathogenesis of cerebral malaria, the average plasma
levels of each cytokine in each genotype were examined
for correlation with the percentage of that genotype that
escaped from cerebral malaria. Consistent with the
discrepancy between survival and cytokine production,
none of the correlations reached a p value of less than 0.1,
although 7> values for IFNG and MIP1B were above 0.5
(days 3 and 6, respectively; Figure 3A). These modest cor-
relations led to the consideration of alternative explana-
tions for the differential survival. Other studies have found
that the ratio of certain Type I (i.e., pro-inflammatory) to
Type II (anti-inflammatory) cytokines is more strongly
associated with severe malaria disease than any single cyto-
kine [54,55]. Given the established role of pro-inflammatory
cytokines in promoting experimental cerebral malaria and
anti-inflammatory cytokines in suppressing lethal pathology
[18,19,22,47], it was hypothesized that the ratio of such cyto-
kines to one another would be more strongly correlated
with survival than the correlation observed for any indivi-
dual cytokine. Because calculation of ratios results in propa-
gation of error, a less stringent alpha (o =0.1) was used to
test for significant correlations between cytokine ratios and
survival. Strikingly, three cytokine log ratios were signifi-
cantly correlated on day 3 (p <0.1) (Figure 3B), with corre-
lation coefficients (r) of greater than 0.8 (Figure 3C).
Additionally, these three ratios, IL4/IFNG, TNEF/IENG, and
IL10/IFNG, were all significantly increased in Tlr7”", Tlr9”,
Tlr7”Tlr9”", and Myd88”" mice as compared to B6 on day
3 (with the exception of IL4/IENG in Tlr7”Tlr9”", which
did not reach significance; Figure 3D). Of these three ratios,
two represent ratios of anti-inflammatory cytokines (IL4 and
IL10) to the pro-inflammatory cytokine, IFNG, suggesting
that the balance of these cytokines may be a driver of
pathology. The most strongly correlated ratio on day 3,
IL4/TENG, also remained the most strongly correlated on
day 6 (just prior to the onset of symptoms in un-
protected mice). Notably, these findings might be analogous
to those from a study that found the IL4/IFNG ratio to be
associated with cerebral malaria in humans [54].

To further assess whether these cytokine ratios would
delineate susceptibility to cerebral malaria without re-
gard to genetic makeup, mice of all genotypes were
grouped by survival status. All three cytokine ratios were
significantly elevated in mice that escaped cerebral
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malaria, as compared to those that succumbed
(Figure 3E). These data suggest that TLR signalling in
wild-type mice may promote the development of a
pathological Type I immune response, whereas the cyto-
kine response in mice deficient in TLR and MYD88
signalling is skewed toward a Type II response that pro-
tects against cerebral malaria. Furthermore, regardless
of genotype, relative levels of cytokines, particularly
the ratio of IL4 to IFNG, are more strongly associated
with protection from cerebral malaria than levels of
any single cytokine alone.

Discussion

In this highly powered study, it has been shown that sig-
nalling through TLR7 contributes to lethality from cere-
bral malaria. The loss of both TLR7 and TLR9 signalling
leads to cytokine dysregulation during the course of
P. berghei ANKA infection and protects against symp-
toms of cerebral malaria. Interestingly, the absence of
TLR7 or TLRY results in overproduction of multiple
cytokines, but loss of both TLR7 and TLRY results in
reduced cytokine production (Figure 2). TLR7 and TLR9
have previously been shown to compete via the shared
endosomal trafficking molecule, UNC93b1 [53]. It is
possible that in mice singly deficient for either TLR7
or TLRY, enhanced signalling by the intact sensor leads to
increased cytokine production in response to P. berghei,
whereas loss of both TLR7 and TLR9 leads to decreased
cytokine production. This phenomenon leads to an
apparent discrepancy between cytokine production and
survival data that can be explained through the consider-
ation of ratios of cytokines to one another, rather than
analysis of any single cytokine in isolation.

Additionally, other MYD88-dependent signalling cannot
be explained by TLR7 and TLR9Y (Figure 1), indicating
contributions from other MYD88-dependent sensors.
Based on other studies, TLR2 is likely to account for
the bulk of the additional MYD88-dependent contribu-
tion [26,29,33,39]. Previous studies using the P. berghei
mouse model of cerebral malaria have shown that multiple
pro-inflammatory cytokines, chemokines and leukocyte
populations drive the observed rapid lethality [47,56-58],
whereas anti-inflammatory cytokines confer protection
from lethality [22,58,59]. Consistent with these reports,
mice lacking both TLR7 and TLRY, or lacking MYD88,
exhibit cytokine profiles skewed toward anti-inflammatory
cytokine production and are protected from lethal
cerebral malaria. Furthermore, the strong association of
cytokine ratios with survival in TLR- and MYDS88-
deficient mice suggests that protection against pathology
may be conferred by the ratio of anti-inflammatory to
pro-inflammatory cytokines produced during infection.

Interestingly, one study reported that mice over-
expressing TLR7 were also partially protected from
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cerebral malaria [60]. Although further experiments are
needed to reconcile these findings, it is possible that the
increased baseline levels of IL10 found in these mice may
protect them from subsequent immunopathology. Con-
sistent with this possibility, recombinant IL10 treatment
can suppress P. berghei lethality [22]. Notably, similar to
the protection seen in TLR7-deficient mice, TLR7 over-
expression did not have any effect on parasite load [60],
indicating that this protection is a consequence of increas-
ing host tolerance to cerebral malaria without affecting
host resistance [61].

The mechanistic study of cerebral malaria in humans is
difficult, as this disease may be considerably more hetero-
geneous than is currently appreciated [62,63]. Given the
observation of neurological sequelae following treatment
and convalescence in a subset of patients that no longer
harbour parasites [64], it is reasonable to expect that some
proportion of cases may occur as a result of immuno-
pathology. It is further likely that different sensors con-
tribute to the overall pathology of cerebral malaria
differentially in ethnically and genetically diverse indivi-
duals, making the identification of all potentially pathogenic
molecules desirable. This work identifies TLR7 as yet
another molecule involved in the pathological response to
Plasmodium parasites, and supports the notion that
immune responses to Plasmodium must be finely tuned to
effect parasite clearance while minimizing immunopathology.

Conclusions

Loss of TLR7 signalling confers partial protection against
fatal experimental cerebral malaria, while having no effect
on parasite restriction. TLR7 signalling promotes lethal
pathology in a manner that is synergistic with TLR9
signalling. The protection conferred by the loss of TLR7 is
correlated with a shift towards an anti-inflammatory cyto-
kine profile during P. berghei infection.
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