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Abstract

Tonic inhibition mediated by extrasynaptic GABA, receptors (GABAARS) is an important regulator of neuronal excitability. Phos-
phorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; how-
ever, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor
phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and
physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate
gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activa-
tion caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic
GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombi-
nant 04325 GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath appli-
cation of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of
receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a
loss of cell surface GABAARs. The inhibitory effects of PKC activation on a4p25 GABAAR activity appeared to be mediated by
direct phosphorylation at a previously identified site on the B2 subunit, serine 410. These results indicate that PKC-mediated

phosphorylation can be an important physiological regulator of tonic GABAsR-mediated inhibition.

Introduction

GABA, receptors (GABAARs) mediate two forms of inhibition
within the brain, phasic and tonic (Farrant & Nusser, 2005). Phasic
inhibition is mostly mediated by Y2 subunit-containing GABARs
located at inhibitory synapses that are activated by exocytotic
GABA release, resulting in brief inhibitory postsynaptic currents
(IPSCs). By contrast, tonic inhibition requires extrasynaptic o4/68 or
a5 subunit-containing GABA,Rs that are activated by ambient
GABA concentrations, providing a persistent tonic membrane
conductance. Tonic conductances are found in various brain regions,
and are important for the control of neuronal excitability both in
vitro (Brickley et al., 1996; Mitchell & Silver, 2003; Bright ez al.,
2007; Pavlov et al., 2009) and in vivo (Chadderton et al., 2004;
Duguid et al., 2012). Indeed, dysfunctional tonic GABAR-medi-
ated inhibition is associated with various pathological conditions
(Brickley & Mody, 2012), including, epilepsy (Zhan & Nadler,
2009), schizophrenia (Damgaard et al., 2011), depression (Merali
et al., 2004), and fragile X syndrome (Olmos-Serrano et al., 2010).
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Whereas various mechanisms that regulate the efficacy of synaptic
inhibition have been identified (Olmos-Serrano et al., 2010;
Cherubini, 2012), our knowledge regarding the modulation of tonic
inhibition is far less complete. A key mode of regulation for synaptic
GABARs is via phosphorylation of substrate sites on $1-3 and y2 su-
bunits by both serine/threonine and tyrosine kinases (Moss et al.,
1995; Vithlani er al., 2011). This covalent modification can directly
change the functional properties of GABARs, such as open probabil-
ity (Moss et al., 1995) and desensitization kinetics (Jones & West-
brook, 1997), as well as altering their trafficking at inhibitory synapses
(Vithlani ez al., 2011). Indeed, kinases and phosphatases represent crit-
ical downstream effectors for various pathways that converge to mod-
ify inhibitory synaptic transmission (Luscher ef al., 2011).

Recent studies have shown that specific extrasynaptic GABAsRs
responsible for tonic inhibition are also substrates for phosphoryla-
tion by serine/threonine kinases. Protein kinase C (PKC) phosphory-
lates a novel site, Ser443, on o4 subunits to enhance the surface
stability of a4p3 GABAARs expressed in human embryonic kidney
293 (HEK293) cells and prevent GABA-activated current run-down
(Abramian et al., 2010). In addition, Ca2+/calm0dulin—dependent
protein kinase II has been implicated in the regulation of extrasynap-
tic GABARs (Houston er al., 2007; Saliba et al., 2012). Activation
of L-type voltage-gated Ca** channels in cultured hippocampal neu-
rons enhances Ca**/calmodulin-dependent protein kinase Il-mediated
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phosphorylation at a previously identified site on the (3 subunit,
Ser383 (Houston ez al., 2007), resulting in increased surface expres-
sion of a5B3y2 GABAARs and increased tonic current.

Here, we examined tonic inhibitory plasticity and its regulation
by phosphorylation in dentate gyrus granule cells (DGGCs), which
provide a gateway to the hippocampal neural network, and in tha-
lamic relay neurons within the dorsal lateral geniculate nucleus
(dLGN), which form a key component of the visual system. Both
populations of neurons express tonic inhibitory currents that are lar-
gely mediated by a4B5 GABAARs (Pirker et al., 2000; Cope et al.,
2005; Bright er al., 2007; Glykys & Mody, 2007; Herd et al.,
2008).

Materials and methods
Heterologous expression

HEK293 cells were cultured according to standard protocols, and
were transfected 6 h after plating. A modified calcium phosphate
method was used to introduce cDNAs encoding murine GABAR
o4, B2 and S subunits. We used a super-ecliptic phluorin (SEP)-
tagged O subunit, which was created as previously described (Bright
et al., 2011). Expression of the § subunit was then assessed by sur-
face fluorescence, altered Zn>* sensitivity and GABA ECs, values
relative to of3 expression alone (Bright et al., 2011). HEK293 cells
were used for recording after a further 1648 h.

Acute slice preparations

Experiments were performed in compliance with the guidelines for
the welfare of experimental animals issued by the European Com-
munities Council Directive of 24 November 1986 (86/609/EEC).
Brain slices were obtained from mature (> 1 month postnatal) male
C57BL/6J mice, in accordance with the UK Animals (Scientific Pro-
cedures) Act 1986. All procedures have passed review by the UCL
Ethical Review Committee. After terminal isoflurane anaesthesia,
the brain was rapidly removed and then immersed in ice-cold slicing
solution composed of 85 mm NaCl, 2.5 mm KCI, 1 mm CaCl,,
4 mm MgCl,, 1.25 mm NaH,PO,, 26 mm NaHCO;, 75 mm sucrose,
and 25 mMm glucose (pH 7.4 when bubbled with 95% O, and 5%
CO,). Horizontal slices containing the ventral hippocampus or coro-
nal slices containing the dLGN (both 250 pum in thickness) were cut
with a Leica VT1200S vibroslicer. Slices were incubated at 37 °C
for 60 min, over which time the high-sucrose slicing solution was
gradually replaced with normal recording solution containing
125 mm NaCl, 2.5 mm KCI, 2 mm CaCl,, 1 mm MgCl,, 1.25 mm
NaH,PO,4, 26 mm NaHCOs;, and 25 mm glucose (pH 7.4 when bub-
bled with 95% O, and 5% CO,).

Electrophysiology — recombinant receptors

Cells were perfused with a recording solution, containing 140 mm
NaCl, 2.5 mm CaCl,, 1.2 mm MgCl,, 4.7 mm KCl, 5 mm HEPES,
and 11 mMm glucose; the pH was adjusted to 7.4 with 1 m NaOH.
Recordings were made either at room temperature (21-23 °C) or
near-physiological temperature (34-36 °C). The solution tempera-
ture was monitored with a miniature thermocouple in the recording
chamber. The pipette solution contained 140 mm CsCl, 2 mm NaCl,
0.5 mm CaCl,, 2 mm MgCl,, 10 mm HEPES, 5 mm EGTA, 2 mm
Na-ATP, 0.5 mm Na-GTP, and 2 mm QX-314; the pH was
adjusted to 7.3 with CsOH. Pipettes for whole-cell patch recording
were pulled from thin-walled borosilicate glass (outer diameter,
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1.5 mm; inner diameter, 1.17 mm; GC-150TF-10; Harvard Appara-
tus, Kent, UK), and had a resistance of 3-5 M(). Currents were
recorded from green fluorescent protein-fluorescent cells with a
Multiclamp 700B amplifier (Molecular Devices, California, USA).
To reproduce the physiological activation of & subunit GABA,Rs
by ambient GABA concentrations within the brain, we applied low
concentrations of GABA by bath perfusion. GABA-activated cur-
rents were allowed to reach steady state before application of other
drugs. The following drugs were bath-applied: GABA (Sigma, Dor-
set, UK), phorbol 12-myristate 13-acetate (PMA) (Calbiochem,
Middlesex, UK), and bisindolylmaleimide I (BIS-I) (Calbiochem).

Electrophysiology — acute slice preparations

Hippocampal DGGCs and thalamic relay neurons in the dLGN
were visually identified with a Nikon Eclipse F600N microscope
equipped with differential interference contrast infrared optics. Tha-
lamic relay neurons could be identified by their soma size and
input resistance; other small cells with high input resistance were
identified as local interneurons (Bright ef al., 2007; Bright &
Brickley, 2008). Slices were perfused with recording solution at a
flow rate of 3—4 mL/min, and this, combined with the small vol-
ume of the recording chamber (approximately 800 pL), allowed
for relatively fast solution exchange around the slice. Whole-cell
recordings were acquired under voltage clamp with a Multiclamp
700B amplifier (Molecular Devices). Recording pipettes were fabri-
cated as described for HEK293 cell recordings, and filled with the
same internal solution. In some recordings, Lucifer yellow (2 mg/
mL) or biocytin (4 mg/mL) was included in the internal solution
to allow for later confocal imaging. Slices were fixed after record-
ing in 4% paraformaldehyde, and in the case of biocytin-filled
cells, processed on the following day with streptavidin—Alexa
Fluor 555 (Invitrogen, Paisley, UK). Fluorescent neurons could
then be visualized with a confocal microscope (Zeiss LSM 510).
During whole-cell recording, GABAsR-mediated responses were
pharmacologically isolated by inclusion of the ionotropic glutamate
receptor blocker kynurenic acid (2 mm; Sigma) in the recording
solution. The following drugs were bath-applied: bicuculline (BIC)
(Sigma), tetrahydro-deoxycorticosterone (THDOC) (Sigma), zolpi-
dem (Sigma), PMA, and BIS-L

Data analysis

Data acquisition was performed with pcLampP9 (Molecular Devices).
Current records were filtered at 2 kHz and digitized at 20 kHz with
a Digidata 1440A (Molecular Devices). For all recordings, the series
resistance, input resistance and capacitance were calculated from
current responses to 10-mV hyperpolarizing voltage steps. In all
cases, cells were recorded under control conditions for 5-10 min to
allow stabilization of holding current and series resistance before
application of drugs. For experiments involving pharmacological
manipulation of kinase activity, effects on phasic and tonic
inhibition were measured 15-20 min after drug application. For
experiments involving neurosteroid (THDOC) or benzodiazepine
(zolpidem) application, the drug onsets were much faster, and
measurements were therefore made 4-5 min after drug application.
Synaptic events were analysed with WINEDR/WINwWCP software (John
Dempster, University of Strathclyde, Glasgow, UK). Event detection
was performed with amplitude-threshold crossing. Events were
aligned on their initial rising phases, and averaged synaptic wave-
forms were constructed from IPSCs that showed monotonic rises
and an uncontaminated decay phase (50-100 events). Average
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baseline current levels were calculated during a 10-ms epoch imme-
diately prior to each detected event, and the peak amplitude was
determined relative to this value. The 10-90% rise time was calcu-
lated between the start and the peak location, with interpolation
between samples. The decay constant of individual IPSCs was cal-
culated as the charge transfer during the baseline-corrected IPSC
divided by the IPSC peak amplitude. This allowed a fit-independent
estimate of the decay that could be determined for individual or
averaged spontaneous IPSCs (sIPSCs). Phasic current was defined
as the amount of charge carried by IPSCs per second, and was cal-
culated by multiplying the average charge transfer during an IPSC
by the average frequency.

The tonic GABAR-mediated conductance was analysed in two
ways. The tonic GABA R-mediated current was calculated from
the difference between the baseline current amplitude recorded
before and that recorded after GABAAR blockade with 20 pum BIC.
We also assessed the activity of tonically active GABAARs by mea-
suring baseline root mean square (RMS) noise. This analysis was
performed with wiNeDR software. Recordings were divided into
epochs containing 2048 samples (length, 1024 ms), and epochs con-
taining synaptic currents were rejected either manually or by utiliz-
ing a running-threshold comparison in Excel. In this method, a
running average (usually the median) of the RMS noise was calcu-
lated at 5-s intervals, and epochs were rejected according to a
threshold set from this running average. This method was found to
provide an efficient and reliable way of removing synaptic contami-
nation. Subsequent analysis involved calculation of the mean (syn-
aptic current-free) RMS noise over minute-long intervals and
normalization to the interval immediately prior to drug application
for each recording.

Live cell imaging of recombinant 6—SEP GABAARs

HEK293 cells were transfected with cDNAs encoding murine
GABAAR 04, B2 and 3-SEP subunits, as described above, and
were then used for imaging after a further 1648 h. Transfected
cells were perfused with standard recording solution (as for the
electrophysiology experiments) at 30-32 °C, and imaged with a
Zeiss Axioskop LSM510 confocal microscope equipped with an
Achroplan x40 water immersion differential interference contrast
objective (numerical aperture, 0.8). Solutions containing GABA
(300 nm) and GABA + PMA (200 nm) were bath applied during
imaging. Fluorescence from the 6—SEP subunit was revealed follow-
ing excitation with a 488-nm argon laser, and detected through a
505-530-nm bandpass filter. Images were acquired as the mean of
four scans in eight bits, with the confocal settings (detector gain,
amplifier offset, and laser intensity) optimized at # =0 and then
remaining unaltered for subsequent time points. During imaging
experiments, transmitted light images were also captured to ensure
that there were no significant changes in cell morphology. To assess
surface fluorescence of the 6—SEP subunit, we applied our standard
recording solution, adjusted to pH 4.5 with HCI, to quench the fluo-
rescence of the SEP moiety (Ashby et al., 2004). Confocal images
were analysed with MAGES (version 1.45s) (National Institutes of
Health, Bethesda, MD, USA). The mean fluorescence was deter-
mined for a region of interest (ROI) centred at the cell surface.
Background fluorescence was set by imaging a region of the cover-
slip devoid of cells. This was subtracted from the fluorescence for
the cell surface ROI, yielding a mean background-corrected fluores-
cence. For drug application experiments, fluorescence was normal-
ized to the point at which PMA was applied (5 min after GABA
application).

Statistical analysis

Statistical tests were performed with prism (GraphPad Software,
California, USA). Differences between groups were examined with
the appropriate paired or unpaired Student’s r-test, except where
indicated, and were considered significant at P < 0.05. For compari-
sons of RMS noise during prolonged recordings, we used pooled
raw data and compared them with the time point immediately prior
to drug application, using paired z-tests.

Results
Tonic inhibition of DGGCs and dLGN relay neurons

Whole-cell recordings were made from visually identified hippocam-
pal granule cells within the dentate gyrus (DG) and thalamic relay
neurons within the dLGN. Both of these nuclei were easily identi-
fied within the slice preparation (Fig. 1A). Some cells were filled
with either a fluorescent dye (Lucifer yellow) or biocytin (see Mate-
rials and methods) to allow for later confocal imaging to check neu-
ronal location and morphological properties. Representative images
of a DGGC and a dLGN relay neuron are shown in Fig. 1B. In each
cell type, application of the GABAR antagonist BIC (20 um) abol-
ished sIPSCs (Fig. 1C) and reduced the holding current and baseline
noise, in accord with the presence of a tonic GABAR-mediated
conductance.

Characterizing tonic and phasic inhibition in DGGCs at room
and physiological temperature

We recorded from mature (mean, 54 days; range, 30-100 days)
DGGCs at both room temperature (21-23 °C, 343 cells) and near-
physiological temperature (34.8 £ 0.1 °C, 191 cells). At each tem-
perature, BIC (20 um) reduced the holding current (Fig. 2A, B, E,
and F: room temperature, 8.6 £+ 2.1 pA, n = 22; physiological tem-
perature, 15.6 £ 1.6 pA, n = 27). When normalized to cell capaci-
tance, this corresponds to tonic GABA sR-mediated conductances of
2.8 £ 0.7 pS/pF (room temperature) and 4.3 + 0.5 pS/pF (physio-
logical temperature). Concurrent with the change in holding current,
BIC also reduced the RMS baseline noise (Fig. 2C-F: room temper-
ature, 0.41 4+ 0.05 pA, n = 22; physiological temperature, 0.63 +
0.09 pA, n = 27). Notably, the change in holding current was clo-
sely correlated with the change in RMS noise at both temperatures
(Fig. 2E and F, Pearson’s correlation coefficients: room temperature,
R = 0.54, P = 0.01; physiological temperature, R = 0.48, P = 0.01).

sIPSCs were confirmed as being mediated by GABAsRs follow-
ing blockade by BIC (Fig. 2A and B). Their properties were exam-
ined by constructing mean IPSC waveforms (see Materials and
methods; Fig. 2G and H). At physiological temperature, sIPSCs
were larger, showing faster rise and decay time kinetics, and
occurred more frequently than at room temperature (Fig. 2G and H;
Table 1).

Using RMS noise to measure tonic GABA,R-mediated
inhibition

Our recordings in DGGCs showed that the amplitude of the tonic
GABAR-mediated current was relatively small, particularly at
room temperature (Fig. 2E and F). This is in accord with previous
studies demonstrating small tonic currents, unless the amount of
GABA in the slice is increased by either blocking GABA uptake or
by adding GABA to the recording solution (Nusser & Mody, 2002;
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DG BIC

F1G. 1. Properties of DGGCs and dLGN relay neurons. (A) Schematic diagram of a coronal mouse brain section, indicating the locations of hippocampal CA1,
CA3 and DG regions, as well as the thalamic dLGN. (B) Confocal images (Z-projections of image stacks) of typical DGGCs (top panel) and dLGN relay neu-
rons (bottom panel). Scale bars: 50 pm. (C) Representative membrane currents from DGGCs (top) and dLGN relay neurons (bottom). BIC (20 pum) reveals the
presence of a tonic GABA R-mediated conductance, as well as blocking sIPSCs. Insets: all-points histograms in controls (grey) and after BIC application

(black).

Naylor et al., 2005; Mtchedlishvili & Kapur, 2006; Zhan & Nadler,
2009). Such tonic currents will be subject to measurement error, but
changes in RMS current noise may offer greater reliability for moni-
toring the activity of tonically active GABAARs (Mtchedlishvili &
Kapur, 2006; Glykys & Mody, 2007). To test the feasibility of using
RMS noise as a more reliable monitor for tonic GABAAR activity
in DGGCs, we used low concentrations of two modulators: the
neurosteroid THDOC, and the benzodiazepine zolpidem.

Application of 50 nm THDOC caused a small, but significant,
increase in RMS noise without a discernible effect on the holding
current (Fig. 3A: change in RMS noise, 0.22 + 0.03 pA, n =09,
P=44 x 107 change in holding current, —2.5 & 1.6 pA,
P =0.16). At this concentration, THDOC had no effect on
GABA,Rs underlying synaptic inhibition, as shown by the lack of
any change in sIPSC frequency, amplitude, or kinetics (Fig. 3C;
Table 2). In contrast, zolpidem (50 nm) significantly increased
sIPSC peak amplitude and prolonged the decay time (with no effects
on rise time or frequency; Fig. 3D; Table 2). However, consistent
with a lack of effect on extrasynaptic GABAARs underpinning the
tonic conductance (Nusser & Mody, 2002; Mtchedlishvili & Kapur,
2006), zolpidem altered neither RMS noise (Fig. 3B: zolpidem,
3.20 £ 0.32 pA; control, 3.13 £ 0.28 pA; n = 6, P = 0.21) nor the
holding current (zolpidem, —86.0 £ 5.3 pA; control,
—88.6 £ 5.1 pA; P = 0.64).

By quantifying the actions of these drugs on tonic inhibition,
from calculating the effect on the GABAR-mediated component
of the RMS noise (i.e. by normalization to the BIC-sensitive com-
ponent), we found that 50 nm THDOC caused a significant increase
in tonic inhibition but had no effect on phasic inhibition (Fig. 3E:
change in tonic inhibition, 73.8 4+ 16.9%, P = 0.0012; change in
phasic inhibition, 0.6 £ 9.3%, P = 0.45). In contrast, zolpidem sig-
nificantly increased phasic inhibition (quantified as the phasic cur-
rent; see Materials and methods), with no change in tonic

inhibition (Fig. 3E: change in phasic inhibition, 84.5 £ 13.8%,
P =0.04; change in tonic inhibition, 11.8 £+ 10.4%, P = 0.31).
Therefore, baseline RMS noise is a sensitive and selective indicator
of changes in the small tonic inhibitory conductances in these
cells.

Activation of PKC decreases tonic GABAAR activity in DGGCs

Previous studies have shown that GABAR subunits are substrates
for phosphorylation by PKC, and that currents mediated by these
receptors are differentially regulated by this kinase (Krishek ez al.,
1994; Lin et al., 1994; Poisbeau et al., 1999; Brandon et al., 2000;
Abramian et al., 2010). We used the specific PKC activator PMA to
investigate whether PKC regulates tonic GABA, inhibition in
DGGCs. PMA (200 nm) was bath applied to hippocampal slices at
both room and physiological temperatures. To avoid prolonged
application having deleterious effects on slice health, we applied
PMA for either 10 min (room temperature) or 5 min (physiological
temperature) before returning slices to control solution. With this
protocol, PMA initiated a progressive reduction in baseline RMS
noise at both temperatures (Fig. 4A-D). The onset was relatively
fast, with the noise declining 5-10 min after PMA application at
room temperature and after only a few minutes at physiological tem-
perature. Although small, the reductions were significant (Table 3:
room temperature, control, 2.60 £ 0.14 pA, at 20 min after PMA
application, 2.26 + 0.16 pA, equivalent to a 13.6 &+ 3.3% reduc-
tion, n = 6, P = 0.014; physiological temperature, control, 3.42 +
0.37 pA, at 10 min after PMA application, 2.77 £ 0.28 pA, equiva-
lent to a 13.7 £ 4.3% reduction, n = 9, P = 0.006). Application of
BIC (20 pm) at the end of the recording caused a further decrease in
RMS noise, indicating that there was still a component of the cur-
rent noise mediated by GABAAR activity after the PMA-evoked
reduction (Fig. 4A and C).
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F1G. 2. Properties of tonic and phasic inhibition in DGGCs at room and physiological temperature. (A and B) Membrane currents recorded from DGGCs at
room (A) and physiological (B) temperatures (thermometer symbol). Bicuculline (BIC; bar) blocks the sIPSCs and a steady-state inward current with a reduction
in the baseline noise, revealing the presence of a tonic GABA, receptor-mediated conductance. (C and D) Plots of holding current (black circles) and RMS
noise (grey) for the same experiments depicted in (A) and (B), over the same timescale. (E and F) Scatter plots of changes to holding currents (AI) and RMS
noise (ARMS) by bicuculline for recordings at room (E) and physiological (F) temperatures. Open symbols and error bars are mean values == SEMs. Linear
regression analyses (dashed lines) illustrate positive correlations between changes in holding current and RMS noise. (G and H) Properties of sIPSCs at room
(G) and physiological (H) temperatures. Average IPSC waveforms were constructed for 10 cells at each temperature (thin lines) along with superimposed global
average IPSC waveforms (bold lines). Scatter plots show the mean values of peak amplitude, decay time and 10-90% rise time for these 10 cells with open

symbols indicating global averages.

TABLE 1. Properties of IPSCs in DGGCs at room and physiological temperatures

Recording conditions Peak amplitude (pA) 10-90% rise time (ms) Decay time (ms) Frequency (Hz) n
sIPSCs Room temperature (21-23 °C) —17.6 £ 1.6 0.69 + 0.08 19.0 + 1.0 1.0 £ 0.2 10

Physiological temperature (34-37 °C) —442 £ 24 0.28 £ 0.02 58 +£02 3.8 £0.8 10
mIPSCs Room temperature (21-23 °C) —15.6 £ 1.8 0.34 + 0.04 11.2 £ 0.9 0.8 +£0.2 8

To ensure the accuracy of these measurements, we used several
controls. First, to check that this reduction in RMS noise was medi-
ated via an action on GABAARs, PMA was applied in the presence

of BIC (20 um)

to block all GABA R activity. Under these condi-

tions, there was no reduction in RMS noise (Table 3: room tempera-

ture,

2.0 £+ 3.4%

reduction in RMS noise, n =15, P =0.59).
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Fi1G. 3. Effects of THDOC and zolpidem on RMS noise and sIPSCs in DGGCs. (A and B) RMS noise-time plots showing the effects of 50 nm THDOC
and 50 nm zolpidem. (C and D) Analysis of sIPSCs in the absence and presence of THDOC (C) or zolpidem (D). Average IPSC waveforms from repre-
sentative cells were constructed for controls and in the presence of drug. Bar charts compare mean sIPSC properties (peak amplitude, 10-90% rise time,
decay time and frequency) for control, THDOC and zolpidem for all cells recorded (n = 6 for both experiments, *P < 0.05). (E) Summary plot showing
changes in phasic (A phasic) and tonic (A tonic) inhibition caused by THDOC and zolpidem. The changes in phasic and tonic inhibition are quantified as
the change in current carried by sIPSCs and the change in the GABA, receptor-dependent component of the RMS noise, respectively. Symbols are means

+ SEM. ZOLP, zolpidem.

Second, we checked the stability of RMS noise over a prolonged
period in the absence of drugs. Indeed, there were no significant
changes in RMS noise at room temperature (normalized noise,
99.8 £ 0.8%, n =15, P=0.29) or physiological temperature (nor-
malized noise, 103.5 + 4.4%, n =15, P = 0.48) over a period of
25-30 min. Third, we checked whether changes in series resistance
(Rs) could have caused a spurious change in RMS noise during the
recordings with PMA. Reassuringly, R remained stable during these
recordings (room temperature, control, 14.7 + 1.8 M, after PMA
application, 15.1 4+ 1.5 MQ); physiological temperature, control,
12.9 £+ 0.9 M), after PMA application, 13.5 + 0.9 MQ2). There-
fore, the reduction in baseline noise after PMA application repre-
sents a genuine decrease in tonic GABAAR activity.

We then constructed average sIPSC waveforms before and after
PMA application to determine whether there was any effect of PKC
activation on phasic inhibition under our conditions. However, the
amplitude, kinetics and frequency of sIPSCs remained unchanged
following PMA application at both recording temperatures (Fig. 4E
and F; Table 2). However, PKC can affect miniature IPSC (mIPSC)
amplitudes in DGGCs (Poisbeau et al., 1999). Therefore, recordings
were also made in the presence of 500 nm tetrodotoxin to evaluate
the impact of PKC on mIPSCs. Average mIPSC waveforms con-
structed under control conditions at room temperature revealed that
mIPSCs showed a similar peak amplitude and frequency to sIPSCs,
but with faster kinetics (Table 1). After application of PMA
(200 nm), mIPSC frequency and Kkinetics remained unchanged
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TABLE 2. Effects of drugs on IPSC properties in DGGCs

Recording temperature Peak amplitude (pA) 10-90% rise time (ms) Decay time (ms) Frequency (Hz) n
sIPSCs
Control —17.4 £ 2.6 0.50 £+ 0.09 173 £ 1.2 0.7 £ 0.3
THDOC 50 nm Room —17.1 £ 2.2 0.58 + 0.11 169 + 1.7 0.8 £ 04 6
Control —41.6 £ 5.6 0.57 + 0.08 174 £ 1.0 1.8 £ 04
Zolpidem 50 nm Room —57.7 £ 8.2% 0.57 + 0.07 23.1 + 1.3* 1.2 +£02 6
Control —19.1 £ 2.5 0.73 £+ 0.10 20.8 + 1.5 1.0 £ 04
PMA 200 nm Room —20.6 + 34 0.63 + 0.12 21.2 +£ 0.9 0.8 £0.3 6
Control —44.3 £+ 3.6 0.27 + 0.02 6.3 £0.2 2.6 £ 0.6
PMA 200 nm Physiological —46.6 £ 7.2 0.35 + 0.07 64 +£03 29 £ 0.6 9
Control —355 + 4.0 0.67 + 0.11 18.2 + 1.1 14 £03
BIS-I 500 nm Room —40.9 + 4.8 0.60 £+ 0.11 19.8 + 0.6 0.9 £ 0.1 7
Control —38.7 £ 4.0 0.36 + 0.05 7.0 +£ 0.6 7.0 £ 1.2
BIS-I 500 nm Physiological —40.9 + 4.8 0.30 £ 0.02 7.1 £04 6.8 £ 14 7
mIPSCs
Control —15.6 £ 1.8 0.34 + 0.04 11.2 +£ 0.9 0.8 £0.2
PMA 200 nm Room —18.7 + 1.9* 0.32 £ 0.03 12.0 £ 0.5 09 + 0.1 8

Room temperature is 21-23 °C and physiological temperature is 34—37 °C. The only significant differences from control conditions are for the peak amplitude
and decay time of sIPSCs in 50 nm zolpidem and for the peak amplitude of mIPSCs in 200 nm PMA. *P < 0.05, paired #-test.

(Table 2), but, consistent with the earlier study, mIPSC peak ampli-
tude was increased (PMA, —18.7 £ 1.9 pA; control,
—15.6 £ 1.8 pA; n =8, P = 0.04).

Inhibition of PKC increases tonic GABA4R activity in DGGCs

We further evaluated the effect of PKC on tonic GABAR activity
by using a cell-permeable PKC inhibitor, BIS-I. This is widely rec-
ognized and used as a highly effective inhibitor of conventional and
novel PKC isoenzymes, but it can also target other kinases (Wu-
Zhang & Newton, 2013). Bath application of 500 nm BIS-I gradu-
ally increased RMS noise at both room and physiological tempera-
ture (Fig. SA-D). At room temperature, this effect was apparent
within a few minutes of drug application, in contrast to a slower
onset over a period of 5-10 min at physiological temperature. The
increase in RMS noise became significant after 15-20 min (Table 3:
room temperature, control, 3.22 £ 0.31 pA, at 15 min after BIS-I
application, 3.49 + 0.35 pA, n =7, P = 0.015; physiological tem-
perature, control, 3.28 4+ 0.23 pA, at 15 min after BIS-I application,
3.83 £ 0.40 pA, n =7, P =0.01).

Application of BIC at the end of the recording blocked the BIS-I-
evoked increase in noise, and further lowered RMS noise to below
control levels (Fig. SA and C). Furthermore, pre-application of BIC
blocked the effect of BIS-I (Table 3: room temperature, 0.4 + 3.9%
increase in RMS noise, n =9, P = 0.93). As before, series resis-
tance did not account for these changes, remaining stable throughout
(room temperature, control, 15.4 4+ 2.0 M(2, after BIS-I application,
15.7 £ 2.1 MQ; physiological temperature, control,
12.9 + 1.0 MQ, after BIS-I application, 13.0 £ 1.0 M(2). We also
checked whether BIS-I had any effects on phasic inhibition by con-
structing average sIPSC waveforms. As with the PMA data, there
were no effects on sIPSC parameters at either recording temperature
(Fig. S5E and F; Table 2). Taken overall, these data indicate that the
noise increase evoked by BIS-I is mediated by GABARs.

PKC regulates tonic GABA4R activity in thalamic dLGN relay
neurons

Thalamic relay neurons within the dLGN express a tonic GABAAR-
mediated conductance that, similar to that of hippocampal DGGCs,
is likely to be mediated by 04Bd GABAsRs (Cope et al., 2005;

Bright et al., 2007). Given our results with tonic GABA currents in
DGGCs, we next examined whether tonic inhibition in dLGN relay
neurons can be modulated by a similar PKC-dependent mechanism.

Recording from visually identified relay neurons within the dLGN
at room temperature showed that PMA (200 nm for 10 min) gradu-
ally reduced RMS noise (Fig. 6A and B, Table 3: control,
5.76 £+ 0.74 pA; at 20 min after PMA application, 5.13 £ 0.60 pA;
n =38, P=0.04). Application of BIC at the end of the recording
revealed that there was still a component of GABAR-mediated
noise remaining (Fig. 6A). In contrast, inhibition of PKC with BIS-I
caused a slow increase in RMS noise (Fig. 6C and D, Table 3: con-
trol, 5.04 &£ 0.59 pA; at 15 min after BIS-I application,
5.73 £ 0.73 pA; n =8, P = 0.02). As with the DGGC recordings,
BIC subsequently reduced RMS noise to below control levels, indi-
cating that the BIS-I effect is mediated purely by tonic GABAAR
activity (Fig. 6C). Indeed, pre-application of BIC abolished the
changes in noise caused by PMA (0.2 £ 4.4% decrease in RMS
noise, n = 6, P =0.75) and BIS-I (3.6 + 1.9% decrease in RMS
noise, n = 5, P = 0.14). Examination of sIPSCs showed that neither
PMA nor BIS-I had any impact on phasic inhibition within these
cells (Fig. 6E and F). As for the DGGCs, control recordings indi-
cated that baseline RMS noise remained stable over a period of
25 min (normalized noise, 103.2 + 8.4%, n =5, P = 0.80). Thus,
endogenous PKC activity within dLGN relay neurons is capable of
regulating tonic inhibition in a bidirectional manner, with increased
and decreased PKC function leading to diminished and enhanced
tonic GABAAR activity, respectively.

Modulation of recombinant 6 subunit-ontaining GABA4Rs by
protein kinases

Given that tonic GABAsR-mediated inhibition in hippocampal
DGGCs and in thalamic dLGN relay neurons can be modulated in a
similar manner by PKC, it is of interest that tonic inhibition in these
two cell types is likely to be mediated predominantly by the same
extrasynaptic GABAR subtype, i.e., 0423 (Pirker er al., 2000;
Cope et al., 2005; Glykys & Mody, 2007; Herd et al., 2008).

To corroborate our findings from brain slice recordings, we inves-
tigated the modulation by protein kinases of recombinant o425
GABARs heterologously expressed in HEK293 cells. GABA was
bath applied to reproduce the physiological mode of activation of
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F1G. 4. Effects of PKC activation on GABA4 receptor-mediated inhibition in DGGCs. (A and C) RMS noise-time plots for typical recordings during the appli-
cation of PMA (200 nm) and bicuculline (20 pm) at room (A) and physiological (C) temperatures. PMA gradually reduced RMS noise, with bicuculline block-
ing a residual GABA 4 receptor-dependent component of the noise. (B and D) Pooled data showing the effects of PMA on RMS noise at room (B, n = 6) and
physiological (D, n = 9) temperature. RMS noise was averaged over 60 s epochs and then normalized to the epoch just prior to PMA application (see Materials
and Methods). (E and F) Average IPSC waveforms constructed for control and after PMA at room (E) and physiological (F) temperature. Bar charts show the
lack of effect of PMA on sIPSC parameters (peak amplitude, 10-90% rise time, decay time and frequency).

these extrasynaptic receptors by relatively slowly changing, low con-
centrations of neurotransmitter, and recordings were made at room
temperature  (21-23 °C) and near-physiological temperature
(34.5 £ 0.1 °C, n = 85). GABA concentrations were chosen to pro-
vide prolonged, sustained increases in channel activity, similar to
tonic currents in neurons, enabling the co-application of kinase-mod-
ulating drugs. At room temperature, 100 nm GABA caused a signifi-
cant increase in RMS noise that quickly attained a steady state and
remained stable for 20-30 min (Fig. 7A: normalized response,
2339 4+ 48.5% at 5 min after GABA application, 232.4 £ 98.4%
at 25 min after GABA application, n = 6). At physiological temper-
ature, a slightly higher concentration of GABA (300 nm) was
needed to achieve a similar level of sustained activation (Fig. 7B:

normalized response, 282.7 £ 37.7% at 5 min after GABA applica-
tion, 271.3 £ 33.0% at 20 min after GABA application, n = 6).

PMA (200 nm) applied 5 min after GABA did not affect the
GABA-activated noise increase at room temperature (Fig. 7C: nor-
malized response, 245.3 £ 31.1% at 5 min after PMA application,
243.9 4+ 34.9% at 20 min after PMA application, n = 9, P = 0.13).
In contrast, at physiological temperature, PMA progressively
reduced the noise evoked by 300 nm GABA (Fig. 7D: normalized
response, 184.5 + 19.6% at 5 min after PMA application,
141.2 £ 25.0% at 20 min after PMA application, n = 6, equivalent
to a 59.8 £ 13.2% reduction; P = 0.01; Fig. 8F). Hence, activation
of PKC by PMA reduced the activity of 0426 GABAARs, but only
at physiological temperature.
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TABLE 3. RMS noise for DGGCs and dLGN relay neurons

Cell type Treatment Recording temperature Control (pA) Drug (pA) BIC (pA) n
DGGC PMA Room 2.60 + 0.14 2.26 + 0.16%* 1.77 + 0.16%* 6
Physiological 3.42 + 0.37 2.77 £+ 0.28* 2.08 £+ 0.12* 9

BIS-I Room 3.22 £ 0.31 349 £+ 0.35% 243 + 0.28* 7

Physiological 3.28 £ 0.23 3.83 + 0.40% 2.87 + 0.27* 7

PMA in BIC Room 245 £+ 0.23 233 +£ 09 - 5

BIS-I in BIC Room 2.25 + 0.10 2.26 + 0.11 - 9

dLGN PMA Room 5.76 + 0.74 5.13 + 0.60* 2.90 + 0.23* 8
BIS-I Room 5.04 + 0.59 5.73 + 0.73% 3.38 £ 0.31% 8

PMA in BIC Room 3.36 £ 0.27 3.40 £+ 0.37 - 6

BIS-I in BIC Room 3.17 £ 0.25 3.06 + 0.24 - 5

Control measurements were made just prior to drug application, drug measurements were made 15-20 min after drug application, and BIC measurements were
made 4-5 min after BIC application. For the BIC pre-application experiments, the control value was measured in BIC just prior to drug application.

#P < 0.05 (paired #-test), significant differences as compared with control values.

The effect of inhibiting PKC on & subunit-containing GABAAR
activity was examined at room and physiological temperatures with
BIS-I (500 nm). However, no effects were observed on GABA-
evoked noise at either temperature (Fig. 8A and B: room tempera-
ture, normalized response, 340.3 £ 20.9% at 5 min after BIS-I
application, 320.9 + 16.7% at 20 min after BIS-I application,
n =06, P=0.16; physiological temperature, normalized response,
380.3 & 25.4% at 5 min after BIS-I application, 338.5 £ 25.2% at
20 min after BIS-I application, n = 6, P = 0.13).

To establish that the large reduction in noise seen with PMA was
caused by a direct effect on PKC and not by a non-specific effect
on the 0426 GABA4R, we co-applied PMA with BIS-I at physio-
logical temperature (Fig. 8C). Under these conditions, the PMA
effect was blocked (normalized response, 400.6 £+ 53.1% at 5 min
after PMA and BIS-I co-application, 360.7 £ 39.1% at 20 min after
drug application, n = 7, P = 0.21), suggesting that the PMA effect
is mediated by activation of endogenous PKC in HEK cells.

The function and trafficking of GABAsRs can be modulated by
phosphorylation of key residues, mainly within the intracellular loops
of B1-3 and y2 subunits (Moss & Smart, 1996; Kittler & Moss,
2003). A conserved serine in receptor 3 subunits (Ser409 in 1 and
B3; Ser410 in PB2) is particularly important for modulation by PKC
(Kittler & Moss, 2003). To assess whether Ser410 is involved in the
PMA effect seen here, we expressed a6 GABA4Rs containing a
mutated B2 subunit where Ser410 is replaced with a non-phosphory-
lated alanine, BZS‘“OA. Importantly, activation of ot4B2S410A6
GABA,Rs by 300 nm GABA at physiological temperature evoked
similar changes in holding current and RMS noise to those seen with
wild-type 04p28 GABAARs (GABA-activated current, o4p25+1945,
—137.5 £ 239 pA, n=7, 04B25, -1242 £ 204 pA, n=6,
P=0.68; GABA-activated ~ RMS  noise,  04p25*1945,
9.50 £ 1.15 pA, n =17, 0425, 8.30 £ 0.67 pA, n =6, P =0.39;
unpaired r-tests with Welch correction), suggesting that functional
receptor expression is not altered by the serine mutation. Applying
PMA to a4p2541945 GABA,Rs failed to affect the current noise
evoked by 300 nm GABA (Fig. 8D: normalized response,
2944 + 29.0% at 5 min after PMA application, 300.7 &+ 8.5% at
15 min after PMA application, n = 7, P = 0.4). This strongly indi-
cates that the PMA-dependent decrease in noise is caused by upregu-
lation of PKC activity that leads to increased phosphorylation at
Ser410 on B2 subunits.

A novel site on the o4 subunit, Ser443, has also been identified
as an important substrate for PKC modulation of recombinant 043
GABAARs (Abramian et al., 2010). We tested the involvement
of this residue by expressing GABA,Rs containing a mutated o4

subunit where Ser443 is replaced by an alanine, 045432 Introduc-
tion of this mutation had no apparent effect on receptor function
and expression, as 300 nm GABA-evoked current and noise at
physiological temperature was comparable to that observed with
wild-type 04326 GABARs (GABA-activated current, 0145443AB26,
—157.4 £ 194 pA, n=7, o04p25, -1242 + 204 pA, n=06,
P=027; GABA-activated ~ RMS  noise,  045*3*p23,
6.56 + 0.68 pA, n =7, a4P25, 830 + 0.67 pA, n=06, P =0.1;
unpaired #-tests with Welch correction) . Application of 200 nm
PMA to 045**B23 GABA4Rs resulted in a progressive decline in
GABA-evoked noise, similar to that seen with wild-type GABAARs
(Fig. 8E: normalized response, 196.1 £ 11.9% at 5 min after PMA
application, 165.0 & 12.5% at 20 min after PMA application,
n="7, P=0.01). Normalization to the GABA-evoked response
showed that PMA caused a 41 £ 12.3% reduction, which was simi-
lar to that seen with wild-type GABAARs (Mann—Whitney,
P = 0.25; Fig. 8F). This indicates that, for the 04p28 GABAAR
used here, PKC-mediated phosphorylation of 043*3* is unlikely to
play a role in the PMA-dependent decrease in GABA-evoked noise.

Activation of PKC reduces surface expression of recombinant
0 subunit-containing GABAARs

The PMA-evoked reduction in & subunit GABAAR activity could be
caused by inhibition of channel function and/or a decrease in surface
receptor expression. To address this issue, we used live imaging of
HEK293 cells expressing a4326—-SEP GABARs. The SEP moiety
is a variant of green fluorescent protein that shows pH-sensitive flu-
orescence, showing very little emission at pH < 6.0 (Ashby et al.,
2004). Hence, SEP-tagged proteins show bright fluorescence at the
cell surface, but limited fluorescence in intracellular compartments,
where the pH is lower. HEK293 cells expressing o4p25-SEP
GABAARs were imaged at 30-32 °C, during bath application of
GABA (300 nm), followed by co-application of PMA (200 nm).
Application of PMA caused a progressive reduction in cell surface
fluorescence that appeared to plateau after 15-20 min (Fig. 9A and
B: normalized fluorescence at ¢ = 20 min, 86.1 &+ 3.3%, n = 10,
P = 0.004). In contrast, during control experiments in which GABA
was applied alone, surface fluorescence remained stable (Fig. 9B:
normalized fluorescence at 7= 20 min, 102.3 £+ 2.8%, n = 10,
P = 0.31). Surface fluorescence could be quenched by bath applica-
tion of a pH 4.5 solution (Fig. 9C). Therefore, PMA-evoked activa-
tion of PKC causes a decrease in cell surface expression of 04324
GABAARSs that correlates well with the reduction in channel activity
observed during current recordings.
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F1G. 5. Effects of PKC inhibition on GABA4 receptor-mediated inhibition in DGGCs. (A and C) RMS noise-time plots showing the effects of bisindolylmalei-

mide I (BIS-I; 500 nm) and bicuculline (20 pum) during typical recordings at

room (A) and physiological (C) temperatures. BIS-I increases RMS noise, whilst

co-application of bicuculline at the end of the recording blocks this elevation and causes a reduction to below control levels. (B and D) Time courses for nor-
malized data pooled from all recordings at room (B, n = 7) and physiological (D, n = 7) temperatures. (E and F) Application of BIS-I had little effect on
sIPSCs. Average IPSC waveforms were constructed in control and after BIS-I; representative examples are shown for recordings at room (E) and physiological
(F) temperature. Insets: bar charts for sIPSC parameters (peak amplitude, 10-90% rise time, decay time and frequency).

Discussion

DGGCs play a vital role in hippocampal information processing by
filtering out synchronous excitatory activity and preventing the gen-
eration of seizures in downstream hippocampal structures (Heine-
mann et al., 1992). Key to this role is the low excitability of these
cells, part of which is derived from the efficacy and timing of
GABA-mediated inhibition in the DG (Coulter & Carlson, 2007). In
comparison, thalamic relay neurons within the dLGN process visual
inputs from the retina, before passing this information onto the cor-
tex. Inhibitory input to these cells is critically involved in visual
information processing, modulation of receptive field properties,
signal selectivity, information encoding, and spike firing mode

behaviour (Hubel & Wiesel, 1961; Sillito & Kemp, 1983; Holdefer
et al., 1989; Wang et al., 2007, 2011). Both dentate and thalamic
cell types express populations of synaptic and extrasynaptic
GABARs to provide phasic and tonic inhibition (Nusser & Mody,
2002; Cope et al., 2005; Coulter & Carlson, 2007). The tonic com-
ponent is considered to be a key regulator of excitability in both
neuronal populations (Nusser & Mody, 2002; Cope et al., 2005;
Maguire et al., 2005; Bright et al., 2007; Coulter & Carlson, 2007).
Thus, elucidating how tonic inhibition is temporally modulated is
important for understanding information processing in the hippocam-
pus and thalamus.

To explore whether tonic inhibition can be dynamically regulated,
we used slice preparations from older animals in which the molecular
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Fi1G. 6. Modulation of GABA, receptor-mediated inhibition by PKC in thalamic dLGN relay neurons. (A and C) RMS noise recorded from visually-identified
thalamic relay neurons within the dLGN at room temperature in the presence of 200 nm PMA (A) and 500 nm BIS-I (C). PMA reduced the noise whereas inhi-
bition of PKC with BIS-I had the reverse effect. Bicuculline reveals the extent of tonic GABA, receptor activity. (B and D) Time courses for normalized data
pooled from all recordings for PMA (B, n = 8) and BIS-I (D, n = 8). (E and F) Average sIPSC waveforms for control, and after either PMA or BIS-I. Insets:
bar charts showing the lack of effect on sIPSC parameters (peak amplitude, 10-90% rise time, decay time and frequency).

components underpinning GABAergic transmission, including those
controlling GABA release, postsynaptic receptor expression, and
GABA uptake, have matured. Recording temperature affects both
GABA release and GABA uptake, and is therefore vital for setting
the extent of tonic inhibition (Glykys & Mody, 2007); hence, record-
ings were performed at both room temperature (21-23 °C) and phys-
iological temperature (35-37 °C). The concentration of GABA
within the slice is another key determinant of tonic GABA current,
and some investigators add extra GABA or GABA uptake blockers
to boost the tonic current amplitude. However, we did not do this,
because: increased GABA levels may recruit additional populations
of receptors (Scimemi et al., 2005); GABA uptake as such is vital
for regulating tonic GABA currents within these cells (Nusser &
Mody, 2002; Cope et al., 2009); and extrasynaptic GABA,Rs are

strongly desensitized when exposed to increasing ambient GABA
levels (Mortensen et al., 2010; Bright et al., 2011). Thus, although
we have adopted a ‘physiological’ approach, it confers a disadvan-
tage in that tonic current amplitudes are relatively small, particularly
in the DG at room temperature (8.6 = 2.1 pA, n = 22). To obviate
this, we used changes to RMS baseline noise to reliably monitor
tonic inhibition. This approach was validated with zolpidem and
THDOC to selectively potentiate the function of synaptic y2 and
extrasynaptic & subunit-containing GABA,Rs, respectively (Nusser
& Mody, 2002; Stell et al., 2003). Consistent with their selectivity,
zolpidem increased the peak amplitude and decay time of sIPSCs
without affecting RMS noise, whereas THDOC only increased the
RMS noise. Thus, drugs that potentiated (THDOC) and inhibited
(BIC) extrasynaptic GABA4Rs increased and reduced RMS noise,
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FIG. 7. Temperature-dependent modulation of recombinant 0428 GABAsRs by PKC. (A) Whole-cell recordings from HEK293 cells expressing o423
GABARs. Bath application of a low concentration of GABA (100 nm) was used to reproduce the physiological mode of activation of native GABAARs. RMS
noise was averaged over 60-s epochs, and then normalized to the epoch just prior to GABA application. Pooled data from all cells recorded at room temperature
(n = 6) show a sustained increase in RMS noise produced by 100 nm GABA. (B) At physiological temperature, 300 nm GABA was used to activate o423
GABARs. Pooled data (n = 6), normalized as above, show that this concentration of GABA led to a similar level of sustained activation as 100 nm GABA at
room temperature. (C) PMA was applied 5 min after GABA application. Pooled normalized data (n = 9) show that PMA (200 nm) had no effect on the RMS
noise evoked by GABA activation of 04256 GABARs at room temperature. (D) In contrast to the room temperature experiments, at physiological temperature,
application of PMA triggered a rapid decrease in GABA-activated noise (pooled data, n = 6).

respectively, with a sensitivity that could not be matched by measur-
ing holding currents alone. Therefore, we can be confident that, in
our system, changes in RMS noise are positively correlated with
changes in extrasynaptic GABAAR activity.

With the use of RMS noise, the selective activation of PKC was
shown to decrease tonic GABAR activity in DGGCs at both room
and physiological temperature. In contrast, increased tonic receptor
activity was apparent after inhibition of PKC with BIS-I. In both
cases, no effects were observed on phasic inhibition in the form of
sIPSCs. However, consistent with a previous study using intracellu-
lar application of PKC in DGGCs, we saw an increase in the peak
amplitude of mIPSCs after PMA application (Poisbeau et al., 1999).
It is unclear why we observed an effect of PKC activation on the
amplitude of mIPSCs, but not sIPSCs, although the earlier study
would suggest a postsynaptic effect, probably via enhanced receptor
function. The differential modulation of the two forms of inhibition
(tonic and phasic) could be attributable to the expression of different
B subunit isoforms in the underlying receptor populations. Herd
et al. (2008) reported that synaptic receptors are likely to contain 3
(and possibly B1) subunits, whereas the benzodiazepine-insensitive
extrasynaptic O subunit-containing GABA,Rs mediating the major-
ity of tonic inhibition probably contain the B2 subunit. As it has
been shown that the identity of the B subunit is critical for phospho-

dependent regulation (McDonald et al., 1998; Nusser et al., 1999;
Brandon et al., 2003; Houston et al., 2007), differential B subunit
expression may be responsible for the disparate regulation of tonic
and phasic inhibition that we observed here.

Our investigation of tonic inhibition in dLGN relay neurons
revealed similar phospho-dependent modulation, with PKC activa-
tion and inhibition causing decreases and increases, respectively, in
extrasynaptic GABAR activity, without affecting phasic inhibition.
Although the available evidence does not unequivocally identify the
GABAR populations within this nucleus, it appears likely that syn-
aptic a1P2y2 and extrasynaptic 04P28 GABAARs are expressed.
This deduction is based on both immunohistochemical data (Sur
et al., 1999; Pirker et al., 2000) and pharmacological characteriza-
tion of GABA R-mediated currents in the dLGN and ventrobasal
thalamus (Belelli e al., 2005; Cope et al., 2005; Peden et al.,
2008). Therefore, the B2 subunit appears to be common among tha-
lamic GABARs, suggesting that the differential regulation of tonic
and phasic inhibition in the dLGN by PKC cannot be attributable to
variant 8 subunits. As the extrasynaptic 04326 GABAAR appears to
be common to both DGGCs and dLGN relay neurons, we used het-
erologous expression of recombinant receptors to investigate the
underlying mechanisms of PKC regulation of tonic inhibition. These
experiments demonstrated that PKC activation reduced o4p25
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F1G. 8. PKC inhibition of 0425 GABA4 receptor activity is mediated by phosphorylation of the B subunit. (A) RMS noise-time plot for BIS-I applied to
recombinant 0428 GABA, receptors expressed in HEK293 cells. Pooled data for room temperature experiments (n = 6) show no effect of BIS-I (500 nm) on
the noise evoked by 100 nm GABA. (B) Similarly, at physiological temperature there was no significant effect of BIS-I on normalized RMS noise levels in the
presence of 300 nm GABA (n = 6). (C) Effect of co-applying PMA (200 nm) with BIS-I (500 nm) at physiological temperature on RMS noise (n = 7) indicat-
ing that the PMA-evoked reduction in noise is due to up-regulation of endogenous PKC activity. (D) Time course for RMS noise during PMA application to
mutated tx4[325410A6 receptors (n = 7). (E) Time course for RMS noise during PMA application to mutated a4S443AB28 receptors (n = 7). (F) Summary plot of
PMA, BIS-I and PMA + BIS-I (P + B) effects on normalized RMS noise for wild-type 04$23 and mutant (0d25HOAT aS43ARDG) receptors. * indicates

P < 0.05 compared with GABA alone.

GABAAR activity at physiological temperature, while having no
effect at room temperature. Live cell imaging of o4[26-SEP
GABA Rs showed that this reduction was correlated with a
decrease in receptor surface expression, indicating that PKC activa-
tion causes a change in the trafficking of extrasynaptic GABARs.
In contrast, inhibition of PKC activity had no effect on 0424
GABA sR-mediated noise at either temperature.

Although very few studies have recorded from HEK293 cells at
physiological temperatures, one report highlights the importance of

temperature for PKC modulation of recombinant GABAsRs (Machu
et al., 2006). In this earlier study, PMA was ineffective in modulat-
ing currents mediated by a1p2y2 GABAARs at room temperature,
but caused a decrease in function at physiological temperature
(35 °C), similar to the effects shown here with 043256 GABARs.
This, combined with our observation that BIS-I is ineffective at both
temperatures, suggests that basal PKC activity is low at both tem-
peratures, but can be enhanced by application of a phorbol ester at
physiological temperature. Although the results obtained with the
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F1G. 9. PKC activation reduces surface expression of 0428 GABA,Rs. (A) Confocal images of live HEK293 cells expressing a4325-SEP GABAsRs, show-
ing the effect of PMA on surface receptor expression. GABA (300 nm) was bath applied for 5 min, before co-application of PMA (200 nm). Images obtained at
the time of application (r = 0) and after 20 min of exposure to PMA are shown. Intensity is represented by a 16-colour spectrum (lower right). The insets below
the main panels show two cell surface ROIs (white boxes) at higher magnification, and illustrate the reduction in fluorescence intensity caused by PMA. (B)
Pooled normalized data (n = 10) show the reduction in mean cell surface fluorescence caused by PMA (blue symbols and lines). In contrast, in experiments
where GABA was applied alone (n = 10), cell surface fluorescence remained stable (black symbols and lines). The times of application for GABA and PMA
are indicated by the bars. (C) Images of HEK293 cells showing quenching of surface 3-SEP fluorescence by application of a pH 4.5 solution. Note that intracel-
lular 3-SEP fluorescence was preserved. Colour spectrum as in (A). Scale bars: 20 pm.

expression system show a contrasting temperature dependence to
that shown by the brain slice data, it is perhaps not surprising that
the phosphorylation state of the receptor, which will depend upon
the concerted action of various kinases and phosphatases, shows dif-
ferential regulation.

Interestingly, PKC can also phosphorylate Ser443 on the o4 sub-
unit, which enhances the surface stability of a4B3 GABAsRs and
prevents the run-down of GABA-activated currents in HEK293
cells (Abramian ef al., 2010). This effect relies on phosphorylation
of Ser408 and/or Ser409 in the B3 subunit (Comenencia-Ortiz
et al., 2010), and suggests that PKC-mediated phosphorylation can
enhance GABA-mediated tonic currents, in contrast to the effects
that we observed. However, this apparent disparity may be
accounted for by the differential regulation of o4 subunit phosphor-
ylation in B2 and (B3 subunit-containing GABAR, and further
raises the intriguing possibility that PKC-evoked plasticity of tonic
inhibition may be bidirectional, depending on the B subunit identity
in the GABAAR. Our recombinant receptor data indicated that
phosphorylation at 2 Ser410 was necessary for the PKC-evoked
decrease in O subunit-containing GABAAR activity, as removing
the primary site for PKC phosphorylation on the (2 subunit
(04p2541945) ablated the PMA-evoked decrease in tonic current. In
contrast, our recordings from o45****B28 GABAARs show that the
decrease in tonic activity triggered by PMA is the same as in
wild-type GABAAR, suggesting that phosphorylation at o4 Ser443
is dispensable for the PKC regulation of 04p28 GABAAR seen
here.

This is the first study to examine the concurrent regulation of
GABA sR-mediated tonic and phasic inhibition within a brain slice
preparation under physiological conditions of temperature and ambi-
ent GABA levels. Our results show that the tonic inhibition mediated
by 04B26 GABA4Rs is modulated in a similar way by PKC-depen-
dent phosphorylation in both the hippocampus and the thalamus,
whereas phasic inhibition appears to be insensitive. Although the
effects of phospho-modulatory drugs on tonic inhibition appear to be
small (10-20% changes in the total RMS noise), this may partly
reflect the recording conditions (no added GABA or uptake block-
ers). Nevertheless, modest changes in an inhibitory conductance that
is continuously active are likely to have an important impact on neu-
ronal excitability (Mitchell & Silver, 2003; Bright et al., 2007; Jia
et al., 2008; Song et al., 2011). Our study further suggests that sig-
nalling pathways that converge on PKC activation could, in princi-
ple, lead to long-term changes in the efficacy of tonic inhibition,
indicating that this important form of regulation of neuronal excit-
ability is indeed subject to dynamic plasticity-based modulation.
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