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Abstract

Background—Data suggest that the amygdala and hippocampus contribute to cocaine seeking

and use, particularly following exposure to cocaine-related cues and contexts. Furthermore,

indices of pre-treatment cocaine-use severity have been shown to correlate with treatment

outcome in cocaine-dependent patients.

Methods—The aim of this study was to assess the relationships between amygdalar and

hippocampal volumes and cocaine use before and during treatment. High-resolution magnetic-

resonance brain images were obtained from 23 cocaine-dependent patients prior to treatment and

54 healthy comparison individuals. Automated segmentation of the amygdala and hippocampus

images was performed in FreeSurfer. Cocaine-dependent patients subsequently received
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behavioral therapy alone or combined with contingency management as part of a treatment trial,

and cocaine-use indices (self-report, urine toxicology) were collected.

Results—Comparison participants and cocaine-dependent patients did not show significant

difference in amygdalar and hippocampal volumes at pretreatment. Within the patient group,

greater hippocampal volumes were correlated with more days of cocaine use before treatment and

with poorer treatment outcome as indexed by shorter durations of continuous abstinence from

cocaine and lower percentages of cocaine-negative urine samples during treatment. Mediation

analysis indicated that pre-treatment hippocampal volumes mediated the relationships between

pre-treatment cocaine use and treatment outcomes.

Conclusions—The finding of a significant correlation between hippocampal volume and pre-

treatment cocaine-use severity and treatment response suggests that hippocampal volume should

be considered when developing individualized treatments for cocaine dependence.

Keywords

addiction; neuroimaging; treatment outcome; brain volume; hippocampus; cocaine; substance use
disorder

1. INTRODUCTION

An important goal of clinical research involves identifying predictors of treatment response

and their underlying clinical and neural mechanisms, in order to improve treatment

outcomes (Donovan et al., 2013; McKay et al., 2001; Potenza et al., 2011; Reiber et al.,

2002). In the context of cocaine addiction, severity of pretreatment cocaine use has been one

of the measures most consistently related to cocaine use both during and after treatment

(Ahmadi et al., 2006, 2009; Carroll et al., 1993; Ciraulo et al., 2003; Poling et al., 2007;

Reiber et al., 2002) and to treatment attrition (Alterman et al., 1996; Kampman et al., 2001).

However, the mechanism for these relationships are yet unknown, and to our knowledge, the

neural mechanisms that underlie them have not been explored.

Models of addiction recognize the amygdala and hippocampus as having key roles in the

development and maintenance of addiction (Volkow et al., 2004, 2011). Humans and

animals form strong long-term memories of context-response-drug associations after

repeated administration of cocaine or other addictive drugs (Buffalari and See, 2010;

Crombag et al., 2008). The amygdala and hippocampus each play critical roles in the

formation, retrieval, and reconsolidation of such long-term memories. Thus, these regions

may contribute to drug-seeking and drug-using behaviors after exposure to stress, cocaine

priming, or cocaine-related cues in cocaine-addicted humans and rats (Crombag et al., 2008;

Fuchs et al., 2007, 2005; See, 2005; Shaham et al., 2003). For example, exposure to cocaine-

related cues increases neural activity and expression of c-fos, a neuronal activity marker, in

the amygdala and hippocampus in rats previously treated with cocaine (Brown et al., 1992;

Carelli, 2002; Mead et al., 1999; Miller and Marshall, 2004). In addition, lesioning or

pharmacological inactivation of either the amygdala or hippocampus attenuates relapse to

cocaine-seeking behavior triggered by stress, cocaine priming, or cocaine-related cues

(Belujon and Grace, 2011; Fuchs et al., 2007; Gardner, 2011; Grimm and See, 2000;

McLaughlin and See, 2003). Findings that amygdalar or hippocampal inactivation or
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disconnection attenuates relapses to drug-seeking behavior following exposure to cocaine-

related cues suggest impaired activation or reconsolidation of long-term memories of

context-response-drug associations (Fuchs et al., 2009; Ramirez et al., 2009; Wells et al.,

2011).

Consistent with these findings from animal studies, human neuroimaging studies report that

stress- or drug cue-induced craving for cocaine use is associated with increased activation in

the amygdala, hippocampus, and other brain regions in cocaine-dependent patients

(Childress et al., 2008, 1999; Kilts, 2001; Kilts et al., 2004; Kober et al., 2008; Potenza et

al., 2012; Prisciandaro et al., 2011; Wilcox et al., 2011; Yalachkov et al., 2012). Therefore,

amygdalar and hippocampal function in cocaine-dependent patients may contribute

importantly to long-term memories of context-response-drug associations and to cravings

for cocaine use after exposure to stress or cocaine-related cues.

Further, both human and animal studies indicate that chronic cocaine use alters the structure

and function of multiple brain regions. For example, chronic cocaine administration reduces

neurogenesis in the hippocampus of adult rats (Dominguez-Escriba et al., 2006; Garcia-

Fuster et al., 2011; Noonan et al., 2008; Sudai et al., 2011; Yamaguchi et al., 2005). Several

human neuroimaging studies have found reduced gray-matter volumes in the prefrontal

cortex of cocaine-dependent patients relative to healthy comparison participants (Alia-Klein

et al., 2011; Ersche et al., 2011; Mackey and Paulus, 2013). However, findings regarding the

volumes of the amygdala and hippocampus in cocaine-dependent patients are less

consistent. One study reported increased volume in the amygdala (Ersche et al., 2012),

several studies reported reduced volume in at least one of the two structures (Alia-Klein et

al., 2011; Makris et al., 2004; Moreno-Lopez et al., 2012; Rando et al., 2013), and several

studies did not find volumetric differences (Jacobsen et al., 2001; Narayana et al., 2010; Sim

et al., 2007); reviewed in (Mackey and Paulus, 2013)).

To investigate further whether the volumes of the amygdala and hippocampus are reduced in

cocaine-dependent patients, and the potential role of the two brain structures in cocaine

dependence, we used an automated approach to segment the amygdala and hippocampus in

cocaine-dependent patients who were imaged just prior to initiating treatment. MRI data

were also collected from healthy comparison subjects. Based on extant findings, we

hypothesized that: 1) pre-treatment cocaine use would be associated with treatment

outcome; and 2) amygdalar and hippocampal volumes would be smaller in patients relative

to comparison subjects. We additionally hypothesized (hypothesis 3) that amygdalar and

hippocampal volumes would correlate with cocaine use before and during treatment,

although both positive and negative correlations were considered as reasonable hypotheses.

Specifically, the smaller volumes predicted for cocaine-dependent might suggest that

volumes would correlate inversely with drug use. Alternatively, given animal data that

lesions to the amygdala or hippocampus may attenuate relapse, a positive correlation might

be predicted.
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2. METHODS

2.1 Subjects

All patients met DSM-IV criteria for current cocaine dependence and received treatment as

outpatients in a randomized clinical trial. Potential subjects were excluded if: (1) they did

not speak English, (2) had not used cocaine within the past 28 days, (3) had an untreated

psychotic or bipolar disorder which precluded outpatient treatment, or (4) were unlikely to

be able to complete 12 weeks of outpatient treatment (e.g., had ongoing legal problems).

Psychiatric diagnoses were obtained through structured clinical interview (SCID; First et al.,

1997, 1996). Participants from the clinical trial were further screened prior to enrollment in

the MRI study subcomponent. Subjects who were pregnant, breast feeding, color-blind, left-

handed, or had metal in their body were excluded from participating in the MRI study

component. A total of 99 patients participated in the clinical trial. Thirty-eight of them

provided MRI T1 brain images. Since the clinical trial included a medication condition, the

final sample included in these analyses was restricted to the 23 patients (6 females) who

received cognitive behavioral therapies without receiving pharmacotherapy (i.e., disulfiram).

Their demographic information and clinical characteristics are presented in Tables 1 and 2.

Healthy control subjects were recruited for comparison purposes. Urine samples were

assessed for recent use of cocaine, opioids, stimulants, marijuana and benzodiazepines.

Control subjects were excluded if urine samples were positive for any substance. Cigarette

smokers were included amongst comparison subjects. Other exclusionary criteria for control

subjects included pregnancy, left-handedness, current psychiatric diagnoses, or unstable

medical conditions. Demographics of comparison subjects are presented in Table 1. All

participants provided written informed consent as approved by the Yale School of Medicine

Human Investigation Committee.

2.2 Treatments

All cocaine-dependent participants received weekly individual cognitive-behavioral therapy

(CBT). The goal of CBT is abstinence from cocaine and other substances via functional

analysis of high-risk situations, development of effective coping strategies for these

situations and for the regulation of craving, and altering maladaptive cognitions associated

with the maintenance of cocaine use. All participants also met thrice weekly with an

independent clinical evaluator who collected urine and breath samples, and monitored

clinical symptoms.

In addition to CBT, 12 (52.2%) cocaine-dependent patients also received contingency

management (CM). During CM, chances to draw prizes from a bowl were contingent on

treatment adherence (e.g., CBT homework completion) or verified abstinence (submission

of cocaine-negative urine specimens), and draws were earned in an escalating schedule

using procedures described previously (Ledgerwood and Petry, 2006; Petry, 2000; Petry et

al., 2000).

2.3 Clinical assessments and treatment outcome indices

Participants were assessed before treatment, weekly during treatment, and at the 12-week

treatment-termination point using the Substance Abuse Calendar which uses the Timeline-
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Follow-Back method (Fals-Stewart et al., 2000; Hersh et al., 1999) to collect detailed day-

by-day self-reports of drug and alcohol use, as described previously (Carroll et al., 2008).

Substance-related problems were assessed at pretreatment and post-treatment using the

Addiction Severity Index (ASI; McLellan et al., 1992). Urine samples were collected three

times each week and tested for cocaine, opioids, stimulants, marijuana and benzodiazepines.

Data from all samples were used in the analyses presented. The percent of negative urine

samples was over all submitted urine samples, and missing samples were not included in

calculation. Primary treatment outcome measures included self-reported longest duration of

continuous cocaine abstinence (urine-confirmed) during the 84-day active-treatment period

and percentage of cocaine-negative urine samples during treatment, as in prior studies

(Brewer et al., 2008; Xu et al., 2010).

2.4 Image acquisition and processing

All MRI images were acquired within one week before treatment. High-resolution T1-

weighted anatomical images were acquired using a 3-T scanner (Siemens Trio) with the

following parameters: TR=1,500 ms, TE=2.83 ms, flip angle=7°, FOV=256×256 mm2,

matrix=256×256, 1 mm3 isotropic voxels, 176 slices. The hippocampus and amygdala were

automatically segmented using FreeSurfer version 5.1.0 (http:www.//

surfer.nmr.mgh.harvard.edu; Dale et al., 1999; Fischl and Dale, 2000; Fischl et al., 2001).

Automated FreeSurfer segmentation is valid and reliable (Doring et al., 2011; Morey et al.,

2009). Segmentation of subcortical structures is based on a probabilistic atlas provided by

FreeSurfer. The atlas is created by the Center for Morphometric Analysis from 20 unrelated,

randomly selected healthy people. The detailed procedure has been described previously

(Fischl et al., 2002). In brief, FreeSurfer scripts autorecon1, 2 and 3 were run in sequence on

all imaging data. Processing consisted of removal of non-brain tissue, Talairach

transformation, segmentation of subcortical volumetric structures including hippocampus

and amygdala, intensity normalization, tessellation of the gray-matter/white-matter

boundary, and labeling of each voxel based on previous probabilistic information.

Intracranial volume (ICV) was generated during this processing.

2.5 Data analyses

SPSS Version 19 was used in analyses of volumetric and clinical data. General Linear

Model Univariate was used to assess between-group differences in amygdalar and

hippocampal volumes with diagnostic group (cocaine-dependent, healthy comparison)

included as a between-subject factor and age, gender, and ICV (which did not differ between

groups) included as covariates. Within the cocaine-dependent group, partial correlations

were used to assess the relationships between pre-treatment and within-treatment cocaine-

use indicators and amygdalar and hippocampal volumes separately for each pair, controlling

for effects of ICV, age, gender, and different treatments (i.e., CBT only versus CBT + CM).

2.6 Mediation analysis

Given correlations between 1) pre-treatment cocaine use and treatment outcome, 2) pre-

treatment cocaine use and hippocampal volume, and 3) hippocampal volume and treatment

outcome, a mediation analysis was used to examine the extent to which hippocampal

volume mediated the relationship between pre-treatment cocaine use and treatment outcome.
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Mediation analyses test whether the relationship between any two variables (e.g.,

pretreatment drug use and treatment outcome) can be explained by the values from a third

variable (e.g., hippocampal volume). If hippocampal volume is a full mediator of the pre-

treatment versus within-treatment cocaine use relationship, then the direct association

between the two variables will become non-significant when the model controls for

hippocampal volume. The mediation analysis used here applied the standard three-variable

path model (Shrout and Bolger, 2002) and a bootstrapping test for the statistical significance

of the model (Shrout and Bolger, 2002), following our prior work (Kober et al., 2008, 2010).

This approach to mediation analysis presumes associations between all three variables under

test. As such, any hypothesized relationships (e.g., mediation of pre- and within-treatment

cocaine use by amygdalar volume) that did not show the necessary significant correlations

were not included in formal mediation analyses. Hippocampal volume, days of cocaine use

in a month prior to treatment, and treatment outcome (percent cocaine-negative urine

samples during treatment) were correlated, and therefore, were subjected to mediation

analyses. Given that both sides of the hippocampus were correlated with the other variables,

and were highly inter-correlated, we collapsed across hemispheres to create an “average”

volume.

3. RESULTS

Relative to the group receiving CBT only, the patient subgroup receiving CBT plus CM had

a significantly longer duration of abstinence (t=2.3, df=21, p=.036) and greater percentage

of cocaine-negative urine samples (t=3.3, df=21, p=.003). However, the two patient

subgroups showed similar correlations between their pre-treatment and within-treatment

indices of cocaine use, and between these indices and volumes of the amygdala and

hippocampus (Figures 1 and 2). Therefore, subsequent analyses combine all cocaine-

dependent patients into one group, including different treatments as a covariate. In

investigating the relationship between clinical variables (hypothesis 1), we found that more

days of pre-treatment cocaine use were negatively associated with abstinence within

treatment (i.e., lower percentage of cocaine-negative urine samples (r=−.54, p=.02) and

fewer maximum days of continuous abstinence from cocaine (r=−.46, p=.05; Fig. 1A, B)),

after controlling for age, gender, and different treatments (with or without CM). These

relationships were still significant after correcting for multiple (n=2) analyses using a false-

discovery-rate (FDR) algorithm.

Table 3 shows the volumes of the amygdala and hippocampus. Healthy participants and

cocaine-dependent patients did not show significant differences in volumes of the amygdala

and hippocampus, after controlling for age, gender, and ICV, and this finding did not

support our hypothesis of reduced volumes in patients.

Within the cocaine-dependent patients, we found significant positive correlations between

hippocampal volumes and cocaine-use measures, consistent with hypothesis 3. Specifically,

more days of self-reported cocaine use within the 28 days before enrollment into the clinical

trial were associated with greater hippocampal volumes after controlling for ICV, age, and

gender (Figure 1C, 1D). In turn, greater hippocampal volumes were associated with poorer

treatment outcomes, measured by lower percentages of cocaine-negative urine samples and
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shorter durations of maximum consecutive days of cocaine-abstinence during treatment

(negative correlation; Figure 2, Table 4) after controlling for ICV, age, gender, and different

treatments (i.e., CBT vs. CBT + CM). These relationships remained significant after FDR

correction for multiple analyses (n=12).

These correlations could suggest one of two possible relationships between pre-treatment

cocaine use, hippocampal volumes, and treatment outcomes. The first possibility is that pre-

treatment cocaine use and hippocampal volume are independently related to (and possibly

contribute to) treatment outcome. The second possibility is that the relationship between pre-

treatment cocaine use and treatment outcome is mediated by pre-treatment hippocampal

volume. To test these possibilities, we preformed a formal mediation analysis that explicitly

tested whether the relationship between pretreatment drug use and percentage of cocaine-

negative urine samples during treatment was explained by participants’ pre-treatment

hippocampal volume. We found that hippocampal volume fully mediated this relationship

(Figure 3), meaning that including hippocampal volume in the mediation model made the

relationship between pre-treatment cocaine use and percent of cocaine-negative urine

samples during treatment no longer statistically significant.

4. DISCUSSION

The main findings were that: 1) pre-treatment cocaine use negatively correlated with cocaine

abstinence during treatment; and 2) pretreatment hippocampal volume positively correlated

with cocaine use before and during treatment, and mediated the positive correlation between

the two measures. However, cocaine-dependent and comparison subjects did not show

significant differences in amygdalar and hippocampal volumes.

4.1 Hippocampal volume and cocaine use before and during treatment

As discussed in the introduction, several models of addictions implicate the amygdala and

hippocampus in the maintenance of drug-taking behavior. Preclinical research indicates that

the structure and function of the amygdala and hippocampus are important to cue-induced

drug-seeking and drug-using behavior. It is possible that individuals with larger

hippocampus may have greater hippocampal functional activities, form stronger long-term

memories of context-response-drug associations after repeated administration of cocaine,

experience more frequent and/or stronger craving for cocaine use in the environment with

cocaine cues, and finally use cocaine more frequently. The current findings of significant

correlations between hippocampal volume at treatment onset and both pre-treatment and

within-treatment cocaine use are consistent with this prediction.

Another possible explanation for the positive correlation between hippocampal volume and

cocaine use is gliosis in the hippocampus. Cocaine use may lead to gliosis in the

hippocampus and increase its volume (Fattore et al., 2002; Narayana et al., 2010). Therefore,

it is possible that more pre-treatment cocaine use may induce greater gliosis and generate

larger hippocampal volumes, which may then predispose to poorer treatment outcome.

Additionally, as previously proposed (Di Sclafani et al., 2002; Narayana et al., 2010),

cocaine’s propensities to induce hippocampal gliosis may obscure effects of hippocampal

neuronal loss. The results of the current study cannot identify which factor (e.g., greater
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hippocampal functional activity, greater gliosis in the hippocampus after cocaine use, or

other factors) relates to more cocaine use as observed in the current study. This issue should

be addressed in the future studies, because different neuropathophysiological mechanisms

underlying the positive correlations between hippocampal volume and severity of cocaine

use may require different treatment strategies.

The current finding that, within our mediation model, hippocampal volume statistically fully

mediated the relationship between pre-treatment and within-treatment cocaine use indicates

that the correlation between pre-treatment and within-treatment cocaine use becomes non-

significant after accounting for individual variation in hippocampal volume. However, it

does not demonstrate causality and does not preclude the possibility of additional factors

(that were not included in our model) also mediating this relationship, nor does it

demonstrate a change during treatment. Further investigation should directly test whether

hippocampal volume changes during treatment in accordance with changes in drug use.

The current hippocampal findings also do not indicate that the hippocampus is the only brain

structure that may link pre-treatment and within-treatment cocaine use. Subcortical

structures such as the amygdala, hippocampus, and their output target nucleus accumbens

are regulated by top-down executive control from the frontoparietal cortex (Banich et al.,

2009; Corbetta et al., 2008; Hollmann et al., 2012). It has been proposed that these

subcortical structures may exert a greater influence on human behavior if the top-down

executive control is reduced due to the impairment of the frontoparietal cortex (Everitt and

Robbins, 2005; Volkow et al., 2011). Chronic cocaine use alters multiple extensive cortical

and subcortical regions including the frontoparietal cortex and striatum. Therefore, reduced

top-down executive control from the frontoparietal cortex and changed subcortical

functional activity might relate importantly to cocaine use. Consistent with this view,

cocaine use correlated with poorer white-matter integrity in extensive regions including

corpus callosum and the frontal lobes (Xu et al., 2010) and with functional activity during a

cognitive-control task (i.e., Stroop task), wherein task-related activity in a subcortical

network involving the hippocampus, amygdala, striatum and thalamus correlated with urine-

toxicology-assessed treatment outcomes (Brewer et al., 2008; Worhunsky et al., 2013). The

relationships between integrity of brain structure other than hippocampus and amygdala and

severity of cocaine use should be assessed in future studies.

4.2 Amygdalar and hippocampal volumes

As mentioned in the introduction, previous findings regarding the volumes of the

hippocampus and amygdala in cocaine-dependent patients are not consistent. The current

finding of no significant difference between patients and healthy participants is consistent

with the findings from the majority of previously published studies. Several factors could

contribute to the inconsistent findings in literature, including small sample sizes, cocaine-use

status (i.e., abstinent vs. non-abstinent) and other clinical characteristics, and methods for

measuring amygdalar and hippocampal volumes. These factors should be evaluated in future

studies.

A notable limitation of this study is the small sample size with two different treatments

(47.8% of the patients received “CBT only” while the remaining patients received “CBT
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plus CM”). However, the correlation between hippocampal volume, pre-treatment cocaine

use, and percentage of cocaine-negative urine samples during treatment remained significant

after controlling for different treatments.

4.3 Implications of the present findings

This is the first study to suggest that the often-found association between pre-treatment and

within-treatment cocaine use is mediated by individual volumetric differences in a brain

structure: the hippocampus. The current findings that larger hippocampal volumes are not

only associated with poorer treatment outcome but also mediate the relationship between

pretreatment and within-treatment cocaine use have multiple implications for 1) a basic

understanding of cocaine dependence, 2) the neural substrates underlying treatment effects,

and 3) improving future treatments. Specifically, the findings suggest a possible neural

mechanism that may underlie the relationship between pre-treatment and within-treatment

cocaine use. If further studies provide additional support for this hypothesis, it would

suggest that possible neuroprotective agents might be considered as an intervention to

mitigate neurotoxic effects of cocaine on the hippocampus. As reviewed in the introduction,

the hippocampus contributes importantly to the formation, retrieval, and reconsolidation of

long-term memories of context-response-drug associations, and thus may contribute to cue-

induced drug craving and drug use in cocaine-dependent patients (Crombag et al., 2008;

Fuchs et al., 2007, 2005; See, 2005; Shaham et al., 2003). Taken together with our current

findings, it is possible that cocaine-dependent patients with larger hippocampal volumes

may experience more frequent and/or stronger drug cravings in response to drug-cue

environments or to drug-cue stimuli, and thus may fare worse in treatment, although this

possibility remains speculative and warrants direct investigation. If this is the case,

treatments like CBT that emphasize how to avoid drug-use cues and contexts and how to

regulate cue-induced craving may benefit from augmentation with psychological or

pharmacological strategies for enhancing cognitive control, although this possibility too

warrants direct examination. Future studies should examine both hippocampal function and

volume in relationship to treatment outcome in cocaine dependence.

In summary, the findings of hippocampal volumes correlating with both pre-treatment and

within-treatment cocaine use and mediating the relationships between these measures,

indicate an important role for the hippocampus in the treatment of cocaine dependence and

suggest possible new avenues for treatment development.
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Figure 1.
Correlations between pre-treatment cocaine use and treatment outcomes and volumes of

brain structures. A and B: Correlations between number of days using cocaine within 28

days before enrollment into treatment (Y axis) and percentage of cocaine-negative urine

samples and the maximum duration (days) of contiguous abstinence from cocaine during

treatment, respectively. C and D: Correlations between number of days using cocaine within

28 days before enrollment into treatment (Y axis) and the volume of the left and right

hippocampus (mm3), respectively. The red squares and blue triangles represent patients who

received “Cognitive Behavioral Therapy (CBT) only” and “CBT + Contingency

Management (CM)”, respectively.
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Figure 2.
Correlations between treatment outcomes and volumes of brain structures. A and B:

Correlations between percentage of cocaine-negative urine samples during treatment (Y

axis) and the volume of the left and right hippocampus (mm3), respectively. C and D:

Correlations between the maximum duration (days) of contiguous abstinence from cocaine

during treatment (Y axis) and the volume of the left and right hippocampus (mm3),

respectively. The red squares and blue triangles represent patients who received “Cognitive

Behavioral Therapy (CBT) only” and “CBT + Contingency Management (CM)”,

respectively.

Xu et al. Page 16

Drug Alcohol Depend. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3.
Mediation model for the association between pre-treatment cocaine use (X, in the 28 days

prior to treatment), hippocampus volume at treatment onset (M, measured as the average

volume of the left and right hippocampus), and treatment outcome (Y, calculated as

percentage of cocaine-negative urine samples during treatment – where higher percentage

represents better outcome). Path coefficients are shown next to arrows indicating each link

in the analysis, with standard errors in parentheses. Path a refers to the path from X to M.

Path b refers to the direct link between M and Y. Paths c and c’ refer to the association

between X and Y, with and without the mediator M, respectively.* p<.05, ** p<.01, *** p<.

001.

Xu et al. Page 17

Drug Alcohol Depend. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Xu et al. Page 18

Table 1

Demographic information of healthy control participants and cocaine-dependent patients

Healthy Control N=54 Cocaine Patients N=23 p value

Age, years (SD) 29.6 (10.1) 39.7 (8.1) < .001

Education, years (SD) 14.9 (1.7) 12.0 (1.9) < .001

Female, N (%) 22 (40.7%) 6 (26.1%) .22

Cigarette Smokers, N (%) 5 (9.3%) 19 (82.6%) < .01

Race/Ethnicity, N (%) < .01

 Caucasian 34 (63%) 7 (30.4%)

 African-American 14 (25.9%) 12 (52.2%)

 Hispanic 1 (1.9%) 2 (8.7%)

 Multiracial/Other 5 (9.2%) 2 (8.7%)

Data are presented as mean (standard deviation) or as N (percent), as indicated.
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Table 2

Clinical characteristics of cocaine-dependent patients.

Variable Cocaine-Dependent Patients (n= 23)

Never Married/Living Alone, N (%) 16 (60.5)

Unemployed, N (%) 19 (82.6)

Total number of months incarcerated, lifetime 32.8 (48.8)

Lifetime Psychiatric Diagnoses, N (%)

 Alcohol-use disorder 15 (65.2)

 Major depression 6 (21.1)

 Anxiety disorder 0 (0)

History of Substance Use

 Days cocaine use in 28 days prior to treatment 14.6 (7.2)

 Days of alcohol use in 28 days prior to treatment 7.1 (9.0)

 Years of regular cocaine use, lifetime 8.2 (5.5)

Data are presented as mean (standard deviation) or as N (percent), as indicated.
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Table 3

Volumes of the amygdala and hippocampus in mm3 (Mean (SD))

Amygdala Hippocampus

Left Right Left Right

Healthy Controls
(n=54)

1725.9
(274.2)

1832.6
(257.3)

4048.4
(527.3)

4188.5
(466.9)

Cocaine-Dependent
(n=23)

1627.5
(223.2)

1745.6
(226.9)

3986.6
(402.5)

4087.4
(399.6)
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