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Maintenance of cell fates is essen-
tial for the development and 

homeostasis of multicellular organisms 
and involves the preservation of the 
expression status of selector genes that 
control many target genes. Epigenetic 
marks have pivotal roles in the main-
tenance of gene expression status, as 
occurs with methylation on lysine 27 of 
histone H3 (H3K27me) for Hox gene 
regulation. In contrast, because the lev-
els of histone acetylation decrease during 
the mitotic phase, acetylated histone has 
not been believed to contribute to the 
maintenance of cell fates. Because mem-
bers of the bromodomain and extra ter-
minal (BET) family bind to acetylated 
histones localized on mitotic chromo-
somes, it is possible that they may regu-
late the transcriptional status of genes 
throughout the cell cycle. In this com-
mentary, we discuss the recent analyses 
of C. elegans BET family protein BET-1, 
which contributes to the maintenance 
of cell fates through the histone H2A 
variant HTZ-1/H2A.z. This mechanism 
represses transcription of selector genes 
in the genomic region where lysine 27 of 
histone H3 (H3K27) is demethylated by 
histone demethylase UTX-1. We discuss 
the possibility that BET-1 and HTZ-1 
maintain the poised state of RNA poly-
merase II in the cell such that it is ready 
to respond to differentiation signals.

The Maintenance of Cell Fates 
Through Histone Acetylation

Cell fate is determined by a combination 
of selector genes that encode transcription 

factors, which in turn, regulate many tar-
get genes.1 Preserving the expression pat-
terns of these selector genes is needed to 
maintain cell fates. Methylation on lysine 
27 of histone H3 and Polycomb proteins 
maintain the repression of Hox genes.2 
In contrast to histone methylation, it is 
believed that histone acetylation does not 
function as an epigenetic mark that trans-
mits cellular memory throughout the cell 
cycle, because the level of histone acetyla-
tion decreases during the mitotic phase.3 
Most of the acetylated histone-binding 
proteins do not associate with the mitotic 
chromosomes.3 Exceptionally, BET fam-
ily proteins that have two bromodomains 
do associate with mitotic chromosomes,4-8 
and therefore, they are expected to play a 
role in maintaining cell fates. BET family 
proteins are evolutionarily conserved from 
yeast to human.6 Characteristic features 
of BET family proteins are two bromodo-
mains that bind to acetylated histone and 
an extra terminal (ET) domain.6 BET 
family proteins are divided into two sub-
families, the short subfamily and the long 
subfamily; members of the latter subfam-
ily are found only in multicellular organ-
isms (Table 1). We have previously shown 
that BET-1, a C. elegans BET family pro-
tein that binds to acetylated histone H4,8 
is involved in the maintenance of cell fate 
in multiple lineages, including ectoder-
mal and mesodermal lineages.8

There has been recent and substan-
tial progress in the study of BET family 
proteins with respect to medical research, 
especially in the fields related to cancer 
and viruses. For example, a fusion gene 
that consists of the mammalian BET 
family protein Brd4 and NUT (nuclear 
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protein in testis) cause NUT midline 
carcinomas.9 Constitutive expression of 
Brd2, another mammalian BET pro-
tein, also causes leukemia.10 An inhibi-
tor of BET proteins that interferes with 

binding of the bromodomain to acety-
lated histone has been studied as a drug 
for cancer therapy.11,12 It has also been 
reported that some viruses utilize BET 
family proteins for their own transcrip-
tional regulation.13,14

BET family proteins also have impor-
tant roles during normal development. 
The loss of mouse Brd4 causes post-
implantation lethality.15 Mutations in 
Drosophila fs(l)h that encodes BET 
family proteins cause homeotic trans-
formation.16-18 Interestingly, homeo-
tic transformation is also observed in 
mutants of Polycomb genes that are 

required for the maintenance of cell 
fates.2 Therefore, the phenotype of fs(l)h 
mutants can be explained by the defect in 
the maintenance of cell fates. In addition, 
the role of BET family proteins as onco-
genes suggests their role in the mainte-
nance of cell fates.

In C. elegans bet-1 mutants, abnormal 
cell fate transformation occurs in multiple 
cell lineages8 (Fig. 1A–C). For example, 
transformation from the neural cell fate 
to the hypodermal cell fate was observed 
in the T cell lineage (Fig.  1A). Because 
bet-1 RNAi causes embryonic lethality 
at the morphogenesis stage, BET-1 may 
function as a component of the funda-
mental mechanism that is required for the 
maintenance of cell fates. Interestingly, 
in bet-1 mutants, cell fate transforma-
tion occurs even without cell division.8 
Therefore, BET-1 appears to be required 
for the maintenance of transcriptional 
status even after the final cell division. In 
addition, cells in bet-1 mutants transform 
to become closely related cells in terms 
of cell lineage. Transformation to the 
fate of sister or cousin cells is frequently 
observed.8 Thus, BET-1 maintains the 
difference between closely related cells, 
including sister cells.

In addition to BET-1, the MYST fam-
ily histone acetyltransferases MYS-1 and 
MYS-2 are required for the maintenance 
of cell fates.8 BET-1 appears to bind to 
regions that are acetylated by MYS-1 
and MYS-2. Their involvement indicates 
the importance of histone acetylation in 
the maintenance of cell fates. The posi-
tive charge of lysine in the histone tail 
is important for the interaction between 
histone and DNA in the nucleosome.19 
Histone acetylation on lysine loosens the 
interaction between histones and DNA. 
Therefore, it has been believed that his-
tone acetylation correlates with tran-
scriptional activation. However, in bet-1 
mutants, ectopic expression of selector 
genes suggests that histone acetylation 
represses transcription through the acti-
vation of a BET-1-containing complex 
(see below).20 Interestingly, genome-wide 
analyses in yeast suggest that each acety-
lation site appears to have a distinct role 
in transcriptional regulation, including 
transcriptional repression.21 The mamma-
lian BET family protein Brd4 is involved 

Table 1. BET family proteins

Species
Short 

subfamily
Long 

subfamily

C. elegans BET-1 BET-2

S. cerevisiae BDF1, BDF2

H. sapiens BRD2 BRD4

D. melanogaster FSH-S FSH-L

Figure  1. Phenotypes of bet-1 mutants in C. elegans. (A) The T cell lineage in wild-type (WT) 
and bet-1 mutants. The posterior granddaughter cells show abnormal transformation of cell fate 
from neuroblasts to hypodermal cells. (B) Schematic drawing of bet-1 phenotype in the poste-
rior lateral ganglia. In the wild-type V5.pa lineage, the PDE and PVD neurons express osm-6::gfp 
and dop-3::rfp, respectively. In bet-1 mutants, abnormal transformation from the PDE fate to the 
PVD fate was observed. (C) In the Z1/Z4 lineage, which produces the somatic gonad, wild-type 
animals produce two distal tip cells (DTCs) at the late L1 stage. In bet-1 mutants, abnormal trans-
formation to the DTC fate occurs in the late larval stages, leading to the production of extra DTCs.
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in repression of HPV (human papillo-
mavirus) chromatin transcription.14 Our 
results also suggests that BET-1 represses 
the transcription of ceh-22.20 In addition, 
suppression of bet-1 phenotypes by RNAi 
of utx-1 that encodes H3K27 demethyl-
ase suggests that BET-1 and H3K27me 
has a similar effect in the maintenance 
of cell fates.20 In addition, expression of 
egl-15 and sur-7 is upregulated in bet-1 
mutants.22 Thus, growing evidence indi-
cates that histone acetylation also acts in 
transcriptional repression.

Transcriptional Repression by 
Histone Acetylation Through the 
Histone H2A Variant H2A.z in the 

Maintenance of Cell Fates

Because BET-1 itself does not have a 
catalytic domain, BET-1 is likely to func-
tion as a complex. In yeast, the BET fam-
ily protein BDF1 is a part of the SWR1 
complex, which is required for the depo-
sition of the histone H2A variant HTZ1/
H2A.z.23 In C. elegans, htz-1/H2A.z func-
tions in the same genetic pathway with 
bet-1 in the maintenance of cell fates.20 
The disruption of the SWR1 homolog 
SSL-1 causes the same phenotype that 
occurs in bet-1 mutants. Disruption of 

HTZ-1 in the mys-1 background also 
causes a defect in the maintenance of 
cell fates.20 In addition, BET-1 regulates 
the subnuclear localization of HTZ-1.20 
Thus, in the maintenance of cell fates, 
BET-1 appears to function through the 
deposition of HTZ-1. HTZ-1 local-
izes on the transcription start site of the 
selector gene ceh-22, which is negatively 
regulated by HTZ-1 in the somatic 
gonad lineage, suggesting that BET-1-
dependent HTZ-1 deposition directly 
regulates the transcription of selector 
genes. Thus, HTZ-1 appears to repress 
the transcription of selector genes in the 
maintenance of cell fates.

In C. elegans, genome-wide analysis 
of HTZ-1 indicates that the pattern of 
HTZ-1 occupancy on promoter regions 
is similar to that of RNA polymerase 
II.24 There is, however, less of a correla-
tion between HTZ-1 occupancy and 
transcriptional activity. Although H2A.z 
is implicated in transcriptional activa-
tion,25-27 there is no simple correlation 
between HTZ-1 localization and tran-
scriptional activation.24 One of the attrac-
tive hypotheses is that HTZ-1 regulates 
the pausing of RNA polymerase II on 
the transcription start site (Fig. 2). This 
hypothesis is consistent with the colocal-
ization of HTZ-1 and RNA polymerase 

II and transcriptional repression by 
HTZ-1. In the poised state, RNA poly-
merase II is stalled near the transcription 
start site.28 Therefore, the poised state is 
transcriptionally inactive but easily acti-
vated. Because the poised state is ready-
to-go for transcriptional activation, in 
cells that are ready to respond to devel-
opmental signals, selector gene(s) may be 
in the poised state for quick response to 
developmental signals. Interestingly, in 
Drosophila, RNA polymerase II local-
izes on promoter regions of many tran-
scriptionally inactive genes including 
developmental genes.29 Because cells 
transform to the fates of closely related 
cells in terms of lineage in C. elegans 
bet-1 mutants, a transition to the poised 
state may also occur in sister or precur-
sor cells of the cells that express selector 
genes. Maintenance of the poised state 
by HTZ-1 and BET-1 in the absence of 
a differentiation signal may prevent the 
over-production of specific cell types.

Histone acetylation recruits H2A.z to 
the selector gene loci through the action 
of BET-1 and SSL-1. However, how 
H2A.z maintains the resulting repression 
remains elusive. Transcriptional elonga-
tion by RNA polymerase II is promoted 
by phosphorylation at Ser2 on C-terminal 
domain (CTD).28 Therefore, HTZ-1 

Figure 2. Working model for HTZ-1-dependent cell fate maintenance. (A) H3K27me silences the selector genes (blue box). Me, black line and yellow 
circle are methylation on H3K27, DNA, and histone, respectively. (B) UTX-1 demethylates H3K27me on selector gene loci. MYST histone acetyltrans-
ferases, including MYS-1 and MYS-2, acetylate the selector gene loci. Then, SSL-1 in the BET-1-containing complex deposits HTZ-1, which represses 
the transcription of selector genes. HTZ-1 may maintain the poised state of RNA polymerase II (Pol II). The transcription of selector gene(s) is ready to 
be activated. (C) When a cell receives a differentiation signal, repression by HTZ-1 is released and the gene is transcribed.
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might control the activity or recruitment 
of the P-TEFb complex that phosphory-
lates Ser2. Mammalian Brd4 associates 
with P-TEFb, suggesting that BET pro-
teins may regulate C-terminal domain 
(CTD) phosphorylation at Ser2.30

The regulation of the silencing mark 
H3K27me is also important for the 
maintenance of cell fate. Genome-wide 
analysis indicates that genomic localiza-
tion of HTZ-1 and genomic localization 
of H3K27me are inversely correlated, 
suggesting that HTZ-1 and H3K27me 
occupy distinct regions of the genome.20 
In C. elegans, methylation on H3K27 
is regulated by the histone methylase 
MES-2 and the histone demethylase 
UTX-1.31 RNAi screening has identified 
utx-1 as a suppressor of the multiple bet-1 
mutant phenotypes, including expres-
sion of the HTZ-1 target gene ceh-22.20 
This suggests that histone acetylation 
and H3K27me have similar effects in 
the maintenance of cell fates. Therefore, 
the relationship between BET-1, MYS-1, 
HTZ-1, and UTX-1 appears to be con-
served for multiple selector genes. We 
also showed that, when utx-1 is disrupted, 
HTZ-1 localization to a target gene is 
decreased. Therefore, H3K27me appears 
to prevent the localization of HTZ-1 
on the genome. In other words, HTZ-1 
and BET-1 are recruited to the genomic 
region where H3K27 is demethylated 
by UTX-1. Thus, the HTZ-1-dependent 
mechanism appears to be an intermedi-
ate status between the H3K27me-related 
silenced state and transcriptional acti-
vation. Because the inverse correlation 
between H3K27me and H2A.z is also 
observed in differentiated mammalian 
cells,32 this mechanism might be evolu-
tionarily conserved.

Conclusion

Histone acetylation-dependent tran-
scriptional repression of selector genes 
through H2A.z is important for the 
maintenance of cell fates. H2A.z may 
maintain the poised state of selector 
genes in the cell that are ready to respond 
to developmental signals. In contrast to 
transcriptional repression by H3K27me, 

the importance of transcriptional repres-
sion by histone acetylation and the 
poised state has been recognized only 
recently. Therefore, studying this mech-
anism should provide new insights into 
the transcriptional regulation that con-
trols cell fates in animal development. C. 
elegans is advantageous for studying the 
maintenance of cell fate because of its 
invariant somatic cell lineage.33 In addi-
tion, because the BET family protein 
Brd4 is known as a cancer-related gene, 
research in this field may also contribute 
to future cancer therapies.
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