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Mutually exclusive selection of one exon in a cluster of exons is a rare form of alternative pre-mRNA splicing, yet
suggests strict regulation. However, the repertoires of regulation mechanisms for the mutually exclusive (ME) splicing
in vivo are still unknown. Here, we experimentally explore putative ME exons in C. elegans to demonstrate that 29 ME
exon clusters in 27 genes are actually selected in a mutually exclusive manner. Twenty-two of the clusters consist of
homologous ME exons. Five clusters have too short intervening introns to be excised between the ME exons. Fidelity
of ME splicing relies at least in part on nonsense-mediated mRNA decay for 14 clusters. These results thus characterize

all the repertoires of ME splicing in this organism.

Introduction

Alternative processing of precursor mRNAs (pre-mRNAs)
is a major source of protein diversity and plays crucial roles
in development, differentiation, and diseases in higher
eukaryotes."* One of the most elaborately regulated forms
of alternative pre-mRNA processing is mutually exclusive
(ME) alternative splicing, through which only one exon is
mutually exclusively selected from a cluster of exons at a time
to determine critical aspects of the target genes such as ligand-
binding specificity of receptors and properties of enzymes and
channels.’” The ME exons occur only as pairs in vertebrates,
but the number of ME exons in a cluster in invertebrates can
be more than two in some genes. The extreme example is the
Dscam gene of a fruit fly Drosophila melanogaster, which has
four ME exon clusters containing 12, 48, 33, and two variants.®

Several mechanisms have been proposed for the mutually
exclusive nature of the ME exon selection.”'* Steric interference
between two splice sites of an intervening intron between two
ME exons has been proposed to make the ME exons physically
incapable of being spliced to each other in some mammalian
genes.”'! This is due to a shorter distance between the 5' splice
site and the branch point on the intron than minimal spacing
required for a spliceosome to be productively assembled. Another
mechanism proposed to prohibit double inclusion and double
skipping of the ME exons is spliceosome incompatibility.”!?
This is proposed for a tandem exon pair flanked by U2- and
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Ul2-type introns on either side of the exons." Disposal of
aberrantly spliced mRNAs by a surveillance system termed
nonsense-mediated mRNA decay (NMD) is considered to play
substantial roles for some genes.”"7 Antagonism of repression
by base-paring interaction of a docker with one of the selector
sequences is proposed for the Dscam exon 6 cluster.'®"

In C. elegans, it is estimated by a recent genome-wide analysis
that up to 25% of the protein-coding genes undergo alternative
pre-mRNA processing and 55 events were assigned to ME
alternative splicing.? In previous studies, we have elucidated
tissue-specific and/or developmental selection patterns and
regulation mechanisms for some of the ME exon clusters
in C. elegans by generating fluorescence alternative splicing
reporters and isolating splicing factor mutants. In the case of
exons 5B/5A of the egl-15 gene, encoding fibroblast growth
factor receptors (FGFRs),?* the RBFOX family and SUP-
12 cooperatively bind to the upstream flanking intron of the
upstream exon to repress the upstream exon in muscles. In the
case of exons 9/10 of the /let-2 gene, encoding a2 subunit of
collagen type IV,** ASD-2 binds to the downstream flanking
intron of the downstream exon to promote inclusion of the
downstream exon in muscle-specific and developmentally
226 In the case of exons 7a/7b of the unc-
32 gene, encoding subunit 2 of V, domain of vacuolar proton-
translocating ATPase (V-ATPase),” UNC-75 binds to the
intervening intron to repress the downstream exon and the
RBFOX family binds to the downstream intron to promote
inclusion of the upstream exon in the nervous system.?® Thus,

regulated manners.
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the tissue-specificity, trans-acting factors, positions of the
cis-elements, and functions of the factors for the regulation
of ME exon clusters, vary from gene to gene in C. elegans.
These findings raise questions about to what extent the
repertoires and regulation mechanisms for the ME exon
clusters have evolved in this organism.

Here we explore all the 55 putative ME splicing events
in C. elegans listed in Ramani et al.?” that utilized high-
throughput sequencing and microarray profiling of polyA+
RNAs isolated from four and five different developmental
stages, respectively. We experimentally test whether the
putative ME exons are actually mutually exclusively
selected by reverse transcription-polymerase chain reaction
(RT-PCR). For the verified ME exons, we analyze the
nucleotide and amino acid sequence identities of the ME
exons in each cluster. To also elucidate to what extent the
mutually exclusive nature of the exon selection rely on
NMD, we compare the RT-PCR patterns between a wild-
type strain N2 and an NMD-deficient mutant smg-2.%>%

25 ME Exons | 25

mean: 151 nt | 59
median: 134 nt

Flanking Introns

20 mean: 378 nt

median: 145.5 nt

15

S 0 S S S S o o o o
L O L O WwOowOoMwW|w o
fr AN ®®m T O

Figure 2. Statistics of the ME exons and their flanking introns. (A and B) Size dis-
tributions of the 63 verified ME exons (A) and their 92 flanking introns, includ-
ing the intervening introns (B). The mean and median sizes are also indicated.
(€) Sequence logos of the splice acceptor and donors sites of the 63 ME exons.

Results and Discussion

Table 1 summarizes the results of the comprehensive
RT-PCR analyses at the L1 stage. The 55 events were assigned
to 41 clusters in 37 genes. Eight of the clusters were considered
to be tandem cassette exon pairs rather than ME exons because
we detected in-frame double-inclusion and/or double-skipping
isoforms (> 5% of the sum in molar concentration) in addition
to the single-inclusion isoforms (Table 1; Fig. 1A; and data
not shown). Notably, these cassette exons are multiple of three
(3n) nucleotides (nt) in length except for those carrying natural
termination codons (Table 1). Two exons in two genes were
considered to be single cassette exons and two other exons in
two genes appear to be constitutively included. The other 29
clusters in 27 genes were considered to be mutually exclusive
(Table 1) since the single-inclusion isoforms were detected in
our experiments and/or in the literature and other isoforms
were almost undetectable or degraded by NMD in the wild-
type background (see below). We confirmed that the single-
inclusion isoforms were also almost exclusively expressed at the
young adult stage (data not shown).

Features of the ME exon clusters

The 29 ME exon clusters can be divided into two groups
according to sequence similarity of the ME exons. Homologous
ME exon clusters include 19 pairs, two trios, and one quad of
homologous ME exons, while non-homologous clusters include
six pairs and one trio of non-homologous ME exons (Table
1). The homologous clusters may be originated from exon
duplication.'**® The lengths of the homologous ME exons are
close to or exactly the same as the counterpart(s) except for atn-1
exons 4a/4b, while those of the non-homologous ME exons
are often far different from the counterpart(s). Nevertheless,
reading frames in the downstream common exons are preserved
whichever exon in the clusters is selected in almost all cases.

€28459-5
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The only exception is exons 5/6 of the del-6 gene, encoding
a degenerin-like ion channel protein, where exon 5 consists of
3n+1 nt and carries a natural termination codon while exon 6
consists of 3n nt and has no termination codon (Fig. 1B).

Four of the ME exon clusters consist of more than two ME
exons. Exons 13A/13B/13C/13D of the mrp-1 gene, encoding
an ATP-binding cassette (ABC) transporter,® is the only cluster
with four ME exons. All the four exons are 156 (3n) nt in length
and are homologous to each other (Table 1). Exons 9b/9¢/9a
of the gly-5 gene, encoding a UDP-GalNAc:polypeptide
N-acetylgalactosaminyltransferase,®? is one of the three clusters
with three ME exons. These exons are homologous to each
other with almost the same size of 3n nt. The intervening intron
between exons 9b and 9c is just 34 nt (discussed later). Exons
4a/4b/4c of the unc-32 gene” are the only non-homologous trio
of the ME exons. The unc-32 gene has another cluster of ME
exons 7a/7b (Table 1) and we have recently reported that these
two clusters in the single gene are independently regulated in
tissue-specific manners.?® Exons 5a/5c/5b of the lev-11 gene,
encoding multiple tropomyosin isoforms,* are homologous and
of exactly the same size (3n+1 nt). Pre-mRNA processing of the
lev-11 gene is complex due to the combination of tissue-specific
promoters, clusters of ME exons 4a/4b, 5a/5b/5c¢, and 7a/7b, and
tandem cassette exons 9a/9b (Table 1).* The complex structures
and pre-mRNA processing patterns of the tropomyosin genes are
evolutionarily conserved in metazoans,* suggesting functional
significance of multiple tropomyosin isoforms.

Steric interference to prohibit double inclusion of ME exons

Size distribution of the overall introns suggests that the
minimal size of the introns is ~40 nt in C. elegans.> Among
the ME exon clusters we have already reported, the intervening
introns for exons 5B/5A of the eg/-15 gene**® and exons 9/10
of the let-2 gene**? are 14 nt and 30 nt, respectively, and we
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Figure 1. RT-PCR analyses of the putative ME exons in the wild-type (N2) and the smg-2 (yb979) mutant. (A) c/p-1 exons 3/4. (B) del-6 exons 5/6. del-6
exon 5 is unique in that it carries a natural termination codon. (C) bet-2 exons 3a/3b. Note that the intervening intron is retained instead of double
ME exon inclusion for this cluster. (D) unc-32 exons 7a/7b.?® (E) akt-1 exons 6a/6b. A non-productive exon 6a isoform utilizing an aberrant acceptor
site is detected in the smg-2 mutant. (F) fbl-1 exons 5D/5C.>° (G) F30F8.9 exons 4a/4b. (H) cog-2 exons 6a/6b. (I) gck-1 exons 4a/4b. (J and K) lev-11
exons 5a/5c/5b.%” (L) let-805 exons 19a/19b. Splicing patterns are schematically indicated. Coding regions are in orange. Arrows indicate predicted
positions of undetected isoforms indicated on the right. Asterisks indicate non-specific bands.

have never observed mRNA isoforms where these short introns
are excised. These observations are consistent with the idea
that the short introns of less than 40 nt cannot be excised
because of the steric interference like in mammals, although no
strong consensus are found for the branch point in C. elegans.
According to this criterion, three more clusters are considered
to be physically incapable of double exon inclusion: exons 3a/3b
of bet-2 encoding a BET (two bromodomains) family protein
(Fig. 1C), gly-5 exons 9b/9¢, and exons 8a/8b of gly-6, a paralog
of gly-5 (Table 1).3? Notably, the lengths of all the ME exons in

these five clusters are 3n nt.
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As Ul1 or U12 snRNA or an AT/AC splice-junction are not
found in C. elegans,*® we need not consider the spliceosome
incompatibility in the regulation of the ME exons here.

NMD-dependence of the mutually exclusive selection

If the lengths of the ME exons are 3n nt, inclusion or
skipping of the ME exons does not cause a frame-shift or a
premature termination codon (PTC) in the mRNA isoforms.
Consistent with this idea, there was no apparent difference in
the amounts of multiple-inclusion and all-skipping isoforms
between the wild-type and the smg-2 mutant for such clusters
(Table 1; Fig. 1D-F; and data not shown).
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Table 2. Gene ontology analysis of 25 genes with the ME exons and GO terms

Ontology type GOtermID Fold Count in 25 Genes with Count in all genes with P value (Fisher’s Term
enrichment ME Exons and GO terms GO Terms (12,834) Exact Test)

Biological_process GO:0046928 257 2 4 2.18E-05 regulation of neurotransmitter secretion
G0:0030163 16 4 131 1.11E-04 protein catabolic process
G0:0007166 79 2 13 2.80E-04 cell surface receptor linked signal transduction
G0:0040011 35 9 1327 5.77E-04 locomotion
G0:0034765 49 2 21 7.48E-04 regulation of ion transmembrane transport
G0:0043050 45 2 23 8.99E-04 pharyngeal pumping

Cellular_component GO0:0005865 114 2 9 1.30E-04 striated muscle thin filament
G0:0016021 29 12 2143 2.77E-04 integral to membrane
GO0:0016020 3.1 11 1847 3.37E-04 membrane
G0:0005604 57 2 18 5.47E-04 basement membrane
G0:0005578 47 2 22 8.22E-04 proteinaceous extracellular matrix

Molecular_function GO0:0005201 257 2 4 2.18E-05 extracellular matrix structural constituent
G0:0005244 49 2 21 7.48E-04 voltage-gated ion channel activity

If the lengths of the ME exons are not 3n nt, multiple
inclusion and all-skipping of the ME exons cause frame-shifts
to create aberrant termination codons and such mRNA isoforms
should be eliminated by NMD. We found that multiple-
inclusion and/or all-skipping isoforms are evidently or slightly
more abundant in the smg¢-2 mutant than in the wild-type for 14
out of the 19 clusters where the ME exons are not 3n nt (Table
1; Fig. 1G-I; and data not shown), indicating that these non-
productive mRNA isoforms are actually eliminated by NMD
in the wild-type. For lev-11 exons 7a/7b,% snt-1 exons 6B/6A,*
and unc-62 exons 7a/7b,”’ we confirmed predominant use of
only one of the two ME exons (Table 1) as in the literature and
this can be a reason why aberrantly spliced isoforms are rare and
undetectable for these clusters. For the other two clusters, lev-
11 exons 5a/5c/5b¥ and let-805 exons 19a/19b, the RT-PCR
patterns were indistinguishable between the wild-type and the
smg-2 mutant (Table 1; Fig. 1J-L). All these results indicate
that the fidelity of the splicing regulation varies among the ME
exon clusters and some of them rely on the mRNA surveillance
system.

Statistics of the ME exons and flanking introns

Figure 2 summarizes the statistics of the 63 experimentally
verified ME exons and their flanking and intervening introns.

The median size of the ME exons (134 nt) (Fig. 2A) is similar
to those of the entire unique exons in confirmed genes (144
nt).“* Most of the ME exons (60 of 63) are shorter than 260 nt
and the average size (151 nt) is close to the median (Fig. 2A).
In contrast, the size distribution of the entire unique exons has
a fatter tail,®® making the average of 201 nt.*” The three ME
exons longer than 350 nt belong to distinct non-homologous
ME exon clusters (Table 1). The shortest ME exon (28 nt)
exceptionally carries a natural termination codon (Table 1;
Fig. 1B). Therefore, the size of the 48 homologous ME exons
are in a relatively narrow range (83-248 nt) for C. elegans.

The mean size of the introns flanking the ME exons,
including the five short intervening introns discussed above, is
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378 nt (Fig. 2B), substantially longer than the overall average of
the introns (267 nt).” The median size of the introns flanking
the ME exons is 145.5 nt (Fig. 2B), whereas more than half of
all the C. elegans introns are 100 nt or less and most of them
are near the minimal length,® indicating that the introns
flanking the ME exons tend to be longer than constitutive
introns. This is consistent with a previous finding that many
of cis-elements regulating alternative splicing in C. elegans are
found in introns.*’ Eleven out of the 29 ME exon clusters have
UGCAUG stretch(es) in the flanking introns and/or in the
ME exons (data not shown), suggesting tissue-specific splicing
regulation by the RBFOX family splicing factors ASD-1 and
FOX-1.” Six out of the 29 clusters are affected in the unc-75
mutant,” suggesting neuron-specific splicing regulation.

Figure 2C summarizes the sequences of the splice acceptor
and donor sites for the verified ME exons. These are more
diversified from the consensus sequences of the acceptor site
(TTTTCAG/R)* and the donor site (AG/GTAAGTT)®
in C. elegans, where R stands for A or G. Furthermore, two
(2.2%) of the 92 flanking introns, /ez-2 intron 10 and del-6
intron 6, start with GC, a weaker donor than GT,** although
GC-AG introns are rare (0.373%) in C. elegans like in other
eukaryotes.” Therefore, the splice sites of the ME exons are
considered to be weaker than those of constitutive exons,
consistent with previous findings on alternative splice sites in
higher organisms.*

Table 2 summarizes gene ontology (GO) analysis of 25 genes
with GO terms out of the 27 genes with the verified ME exon
clusters. It indicates enrichment of genes encoding membrane
or extracellular matrix proteins (P < 0.001, Fisher’s exact test).

Conclusion

We demonstrated that the 29 ME exon clusters in the 27
genes are actually regulated in a mutually exclusive manner in
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C. elegans. Twenty-two of the 29 clusters consist of two to four
homologous ME exons. Ten of the 29 clusters consist of ME
exons with the lengths of 3n nt, five of which have too short
intervening introns to be excised. Fourteen of the 19 clusters
with the ME exons other than 3n nt in length rely at least in part
on NMD. Nevertheless, many of the ME exon clusters appear to
be strictly regulated. Further molecular and functional analyses
of such clusters will elucidate novel mechanisms for mutually
exclusive selection of the ME exons in vivo.

of the RT-PCR products were confirmed by direct sequencing
or by cloning and sequencing. Sequences of the primers used in
the RT-PCR assays are available upon request to Kuroyanagi H.
A list of the GO terms was retrieved from the Gene Ontology
website (htep://www.geneontology.org/). Fisher’s exact test
was performed by using Ekuseru-Toukei 2010 (Social Survey
Research Information). Sequence logos were generated by using
WebLogo3* at http://weblogo.threeplusone.com/create.cgi.

previously.
previously.
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Total RNAs were extracted from synchronized L1 larvae
of N2 and KHI1668: smg-2 (y6979) I strains as described
RT-PCR was performed essentially as described
RT-PCR products were analyzed by using
BioAnalyzer (Agilent) as described previously.” The sequences
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