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Abstract

How do we apply learning from one situation to a similar, but not identical, situation? The

principles governing the extent to which animals and humans generalize what they have learned

about certain stimuli to novel compounds containing those stimuli vary depending on a number of

factors. Perhaps the best studied among these factors is the type of stimuli used to generate

compounds. One prominent hypothesis is that different generalization principles apply depending

on whether the stimuli in a compound are similar or dissimilar to each other. However, the results

of many experiments cannot be explained by this hypothesis. Here we propose a rational Bayesian

theory of compound generalization that uses the notion of consequential regions, first developed in

the context of rational theories of multidimensional generalization, to explain the effects of

stimulus factors on compound generalization. The model explains a large number of results from

the compound generalization literature, including the influence of stimulus modality and spatial

contiguity on the summation effect, the lack of influence of stimulus factors on summation with a

recovered inhibitor, the effect of spatial position of stimuli on the blocking effect, the

asymmetrical generalization decrement in overshadowing and external inhibition, and the

conditions leading to a reliable external inhibition effect. By integrating rational theories of

compound and dimensional generalization, our model provides the first comprehensive

computational account of the effects of stimulus factors on compound generalization, including

spatial and temporal contiguity between components, which have posed longstanding problems for

rational theories of associative and causal learning.

Imagine choosing the destination of your next vacation. You love large cities, but also enjoy

beaches. Would you predict even more pleasure from going to a large city near a beach? In

contrast, suppose that you want to invest in the stock market, and you read in two different

financial newspapers that a certain stock is predicted to rise 10-15% over the next year. In

the past, the predictions from each newspaper have been accurate and you trust both of

them. Would you predict a higher profit given the two sources of information, as compared
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to one source? And would this change if you knew that the two newspapers base their

predictions on different market variables?

When confronted with combinations of stimuli that are predictive of an outcome, why do we

summate predictions for outcomes in some cases (e.g., predictions for enjoyment from the

city and from the beach), but average predictions in other cases (e.g., the stock market)?

What factors affect how we combine the effects of multiple stimuli, and how does the

similarity between different stimuli (two financial newspapers that use the same vs. different

variables for their analyses) affect our tendency to summate predictions?

These questions are important not only to vacation planners and stock market investors, as

they represent instantiations of a general problem in daily life: although our environment is

complex and multidimensional, we naturally try to isolate what elements in a certain

situation were predictive of consequences such as pleasure or pain. We then have to

combine these learned predictions anew each time we are faced with a different combination

of the elements. In essence, this is a problem of generalization: how do we apply learning

from one situation to another that is not identical?

For psychologists studying learning, this question is fundamental: we may understand how

animals and humans learn to associate simple stimuli such as lights and tones with rewards,

but without understanding the principles that determine generalization across compound

stimuli in associative and causal learning tasks, we will not be able to explain anything but

the simplest laboratory experiment. Not surprisingly, this problem of compound

generalization has been the focus of one of the most active areas of research in the

psychology of learning for the past 20 years.

Two types of explanations, mechanistic and rational, have been proposed for compound

generalization phenomena. Mechanistic explanations explicitly propose representations and

processes that would underlie the way in which an agent learns and behaves. Rational

explanations (also called normative or computational; Anderson, 1990; Marr, 1982)

formalize the task and goals of the agent, and derive the optimal rules of behavior under

such circumstances. Although sometimes viewed as mutually exclusive, these two types of

explanations can provide complementary accounts of behavior (Marr. 1982).

Most recent research on compound generalization has been motivated by a controversy

between two types of mechanistic theory: configural and elemental models. These models

agree in that they represent knowledge about the environment in the form of associations

(e.g., an association between beaches and enjoyment and between large cities and

enjoyment), but they disagree on how the stimuli are represented when they are presented in

a compound (e.g., the large-city-on-the-water compound), and thus on how the compound

can be associated with a predicted outcome.

Elemental theories, such as the Rescorla-Wagner model (Rescorla & Wagner, 1972),

propose that associations with an outcome are acquired and expressed separately by each of

the elements in a compound. In the Rescorla-Wagner model, the associative strength of a

compound is equal to the algebraic sum of the associative strength of its components. For

example, the model would predict that since beaches and cities were each independently

Soto et al. Page 2

Psychol Rev. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



associated with enjoyable vacations in the past, compounding the two should be expected to

double the pleasure; that is, the model predicts a “summation” effect.

In contrast, configural theories, such as Pearce's (1987; 1994; 2002) model, propose that

associations with an outcome are acquired and expressed by entire stimulus configurations.

In Pearce's model, generalization from one configuration to another depends on the

components shared by the configurations. In particular, generalization strength is computed

according to the proportion of elements from the trained configuration that are present in the

new configuration multiplied by the proportion that these shared elements comprise of in the

new configuration. According to this theory, if cities and beaches are each independently

associated with enjoyment, then a vacation in a city by the beach should be expected to yield

50% of the enjoyment expected from a big city (as 100% of the components of the trained

‘big city’ stimulus are present in the compound, but they comprise only 50% of the

compound), plus 50% of the enjoyment expected when vacationing at a beach; that is, the

model predicts an “averaging” effect instead of summation.

The most important difference between elemental and configural theories is not so much the

type of representation that they propose (both theories require some form of configural and

elemental representation to work), but the principles of generalization that they implement.

Configural theories predict less generalization across compounds sharing a given number of

elements than do elemental theories.

What generalization principles do animals and humans use in compound generalization

tasks? As suggested by the examples above, the answer is that it depends. Both humans and

animals seem to use different generalization principles depending on a number of factors,

including the type of stimuli used to form compounds and the structure of tasks which they

have previously experienced (reviewed in Melchers, Shanks, & Lachnit, 2008; Wagner,

2003, 2007).

Among all the factors known to affect compound generalization, one has attracted the most

attention in the field: the type of stimuli used to create compounds. For example, animal

associative learning studies have found that a summation effect is easily observed with

components that belong to different sensory modalities, but not with those belonging to the

same modality (Kehoe, A. J. Horne, P. S. Horne, & Macrae, 1994). Similar effects have

been observed using other generalization tests and discrimination designs (Wagner, 2003,

2007), and it is now generally accepted that many contradictory results in the literature can

be explained as a function of the type of stimuli used in each study.

More generally, many authors (Harris, 2006; Kehoe et al., 1994; Myers, Vogel, Shin, &

Wagner, 2001; Wagner, 2003, 2007) hypothesize that elemental processing, like that

proposed by the Rescorla-Wagner model, should occur more easily with stimuli that are

very dissimilar, such as stimuli coming from different modalities. On the other hand,

configural processing, like that proposed by Pearce's configural theory, should occur with

similar stimuli, such as those coming from the same modality. A number of flexible models,

which can act as configural or elemental theories depending on changes in their free

parameters (Harris, 2006; Kinder & Lachnit, 2003; McLaren & Mackintosh, 2002; Wagner,
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2003, 2007), can implement this similarity hypothesis by changing parameter values as a

function of stimulus similarity.

The similarity hypothesis makes intuitive sense, because a group of similar stimuli would be

more easily processed as parts of a configuration which predicts one shared outcome (two

newspapers predicting a single outcome of stock market value), whereas a group of

disparate stimuli (beach, city) would be more easily processed as independent entities that

each predict its own outcome.

Although there is evidence in line with the similarity hypothesis (reviewed by Melchers et

al., 2008; Wagner, 2003, 2007), there are also examples of compound generalization effects

that are not modulated by type of stimuli (e.g., Pearce & Wilson, 1991) and compound

generalization effects that show more “configural” processing with more dissimilar stimuli

(e.g., Gonzalez, Quinn, & Fanselow, 2003). Also, other stimulus factors besides similarity

affect elemental/configural processing in similar ways. For example, both spatial and

temporal contiguity seem to foster configural encoding of stimuli, while spatial and temporal

separation fosters elemental encoding (Glautier, 2002; Livesey & Boakes, 2004; Martin &

Levey, 1991; Rescorla & Coldwell, 1995).

Thus, similarity between elements is not truly a unifying principle that explains the effect of

stimulus factors in compound generalization. One approach to discovering a unifying

principle is to formalize a model of the computational task that a learner is faced with in

compound generalization situations. Such a theory would generate predictions about how a

rational agent should act. Knowledge about why some specific circumstances foster the use

of a particular strategy might enlighten the search for mechanisms to explain how this

happens.

The motivation for the present work is to develop such rational theory of compound

generalization. In the following sections, we first briefly review the literature on rational

theories of compound generalization and on rational theories of dimensional generalization.

We then propose a new model that combines concepts from both types of theory, and can

explain compound generalization phenomena through rational principles of dimensional

generalization. We show that this proposed model can explain both data for which

mechanistic explanations already exist (e.g., the similarity hypothesis) and data that cannot

be explained by current mechanistic models. Importantly, as a rational model, our model

suggests a new conceptualization of the principles underlying compound generalization in

causal learning.

Rational theories of compound generalization

Two types of rational models have been proposed that are applicable to compound

generalization in causal and associative learning tasks. A large class of models, most of

them proposed in the field of human causal and contingency learning (e.g., Cheng, 1997;

Dayan, Kakade, & Montague, 2000; Griffiths & Tenenbaum, 2005, 2007; Kakade & Dayan,

2002; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008; Novick & Cheng, 2004), assume that

observable stimuli can directly cause an outcome. According to these models, the task of the

learner is to infer the strength of the causal relations between stimuli and outcomes, which
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determine the probability distribution of the outcome conditional on the presence or absence

of the stimuli. Work using these models has focused largely on the problem of how people

learn estimates of causal strength, but has ignored the issue of compound generalization. As

a result, we know little about the ability of these models to explain most generalization

phenomena.

In contrast, generative models are a class of models that define a causal structure that is

presumed to generate the observable events in the world. These models propose that all

observable events, that is, both the stimuli and the outcomes are generated by latent

(unobserved) causes. Intuitively, the distinction between observable events (stimuli and

outcomes) and latent causes is similar to the distinction between the symptoms of a disease

and the virus causing the disease. Imagine that you wake up one morning with a sore throat.

Later in the day, you also start coughing and get a fever. Instead of inferring that your sore

throat caused your coughing and fever, you immediately realize that there is an unobserved

cause for all these symptoms: you caught a cold. In this example, you have learned about a

latent cause (the cold virus) by making inferences from observable events (your symptoms).

Thus, the task of the learner according to the generative modeling perspective is to infer the

latent causes responsible for generating observable variables. One model in this tradition,

due to Courville and colleagues (Courville, 2006; Courville, Daw, & Touretzky, 2002) is

able to explain a number of compound generalization phenomena in Pavlovian conditioning

(Pavlov, 1927).

Figure 1a shows a schematic representation of the latent cause model of Courville and

colleagues. Each circle represents a different variable, either a latent cause (represented by

the letter Z), an observable stimulus (represented by letters A-D), or an observable outcome

(represented by the letter R for reward). Arrows represents causal links between latent

causes and observable events. There is a weight associated with each of these links, and the

probability that a stimulus or outcome is observed when the latent cause is active is a

function of those weights. For simplicity, assume that all links in Figure 1a are positive and

strong, so that if a latent cause is present, it generates a linked observable variable with very

high probability. In this particular example, whenever the latent cause Z1 is active it

generates two stimuli, A and B, but no outcome due to the absence of a link from Z1 to R.

Whenever latent cause Z2 is active, it generates two stimuli, C and D, and also an outcome.

In order to predict the observable events (and specifically, the outcomes), the learner must

infer both which latent causes are active in each trial, and the links between each latent

cause and observable stimuli, from the (observable) training data alone. When a new

stimulus compound is presented during a generalization test, the previously inferred

knowledge allows the animal to estimate the probability of an outcome given the observed

stimulus compound. This is done by inferring what latent causes are more likely to be active,

given the observed stimulus configuration, and what is the probability of an outcome given

these latent causes.

This latent cause model is able to explain a number of basic phenomena of compound

generalization (Courville et al., 2002). Consider a summation effect, in which A and B are
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separately paired with an outcome, and presentation of AB leads to a larger response than

presentation of A or B. The model can explain some forms of summation by assuming

learning of the following structure: one latent cause, Z1, produces A with high likelihood and

the outcome with medium likelihood, and a second latent cause, Z2, produces B with high

likelihood and the outcome with medium likelihood. When the learner is presented with AB,

she infers that both Z1 and Z2 must be active and thus the likelihood of the outcome being

produced is higher than when only one of them is active.

This model, however, cannot explain why different stimuli can lead to different predictions

(summation versus averaging) in this same experimental design. Furthermore, because in

Courville et al.'s (2002) model the outcome is a binary variable, the only thing that can be

estimated during compound generalization is probability of the outcome's occurrence. As

such, the model cannot explain summation for two 100% reliable stimuli, that is, the

observation that sometimes animals respond more to a compound of two stimuli that each

reliably predict an outcome than to each stimulus alone (e.g., Kehoe, A. J. Horne, P. S.

Horne, & Macrae, 1994; Collins & Shanks, 2006; Rescorla, 1997; Rescorla & Coldwell,

1995; Soto, Vogel, Castillo & Wagner, 2009; Whitlow & Wagner, 1972). As Courville et al.

(2002) admit, it seems likely that the summation effect is concerned with the estimation of

expected outcome magnitude and not just its probability.

More recently, Gershman, Blei and Niv (2010) used a generative model to explain results

from extinction procedures. In extinction, a stimulus that was previously paired with an

outcome is repeatedly presented without the outcome, until the learner eventually stops

responding as if the stimulus predicts the outcome. Interestingly, this ‘extinction learning’ is

fragile, with various manipulations showing that the prediction of the outcome is but

dormant, and can be revived. To explain this, Gershman et al. (2010) suggested that the

learner attributes training trials and extinction trials to separate latent causes. Thus

manipulations that promote inference of the existence of the latent cause that was active at

training, will lead to renewed outcome predictions.

An important advance introduced by this model was the inclusion of an infinite-capacity

distribution from which latent causes are sampled on each trial. Such a distribution allows

the learner to add new latent causes as needed, meaning that the number of possible latent

causes need not be determined in advance. However, the distribution over latent causes in

this model allows for only one latent cause to be active on each trial, and thus cannot

account for compound generalization effects, as Courville et al.'s model does.

How could the class of rational theories be extended to account for the effect of stimulus

factors on compound generalization? One way, which we explore here, is by integrating

Courville et al.'s latent causes theory of compound generalization with the rational theory of

dimensional generalization (Navarro, 2006; Navarro, Lee, Dry, & Schultz, 2008; Shepard,

1987; Tenenbaum & Griffiths, 2001a, 2001b) which we detail in the next section.

The rational theory of dimensional generalization

Dimensional generalization refers to the finding that if a stimulus controlling a response is

changed in an orderly fashion along an arbitrarily chosen physical dimension (e.g., color,
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size), then the probability of the response decreases in an orderly monotonic fashion as the

difference between the training stimulus and the testing stimulus increases (Guttman &

Kalish, 1956).

Despite the robustness of this finding, the exact shape of the function relating response

probability and changes in the relevant physical dimension tends to vary, depending on the

choice of sensory continuum, species, training conditions, and even the particular

dimensional value that originally controls the response (Shepard, 1965, 1987). Roger

Shepard (1965) provided a solution to this problem based on the idea that there is a non-

arbitrary transformation of the dimensional scale that makes generalization gradients that

were obtained for the same physical dimension (each time using a different value as the

rewarded stimulus) assume the same shape.

If such a transformation is found, then the re-scaled dimensional values represent the

distance between stimuli, not measured on a physical scale, but in “psychological space.”

Work with such a scaling procedure, and later work with multidimensional scaling, has

shown that stimulus generalization follows an exponential-decay function of psychological

distance for a variety of stimulus dimensions, training conditions, and species (Shepard,

1987).

To explain the shape of the generalization function, Shepard (1987) proposed that when an

animal encounters a stimulus S1 followed by some significant consequence, S1 is

represented as a point in a psychological space. The animal assumes that any such stimulus

is a member of a natural class associated with the consequence. This class occupies a region

in the animal's psychological space, called a consequential region. The only information that

the animal has about this consequential region is that it overlaps with S1 in psychological

space. If the animal encounters a new stimulus, S2, the inferential problem that it faces is to

determine the probability that S2 belongs to the same natural kind as S1—the same

consequential region—thus leading to the same consequence.

Assuming that the consequential region is connected and centrally symmetric, it is possible

to compute the probability that a consequential region overlapping S1 would also overlap S2,

given a particular size of the consequential region. Because this size is unknown, Shepard

proposed putting a prior over this parameter and integrating over all possible sizes to obtain

the probability that S2 falls in the consequential region, given that S1 does. Importantly,

Shepard showed that, regardless of the choice of the prior over size, this probability falls

approximately exponentially with distance between S1 and S2 in psychological space.

In Shepard's theory, observed stimuli and consequential regions are sampled independently.

Tenenbaum and Griffiths (2001a) replaced this with the assumption that observed stimuli

are directly sampled from all possible values of the consequential region, incorporating

consequential regions into the generative model that produces observable data in a task.

Under this assumption, consequential regions act as latent causes that produce observed

stimuli. This is schematically represented in Figure 1b, where latent cause Z is linked not to

discrete stimuli, as in Figure 1a, but to a whole region in stimulus space. The latent cause is

also linked to some significant consequence, represented by the variable R. In this model,
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the learner knows that stimulus A belongs to a consequential region linked to R, but it

doesn't know the size or location of the region. The inferential task is to determine the

probability that a new stimulus was also caused by Z, depending on its position in stimulus

space.

An important consequence of sampling stimuli from the consequential regions is that the

likelihood of any particular stimulus is higher for smaller, more precise consequential

regions, what Tenenbaum and Griffiths named the size principle. As a result, as more stimuli

with similar values in a dimension are observed to lead to a particular consequence, the

learner will tend to infer smaller sizes for the consequential region, and generalization to

values outside the observed range will decrease. Tenenbaum & Griffiths (2001a, 2001b)

review evidence from the literature on concept and word learning in human adults and

children that agrees with this prediction (see also Navarro, Dry, & Lee, 2012; Navarro &

Perfors, 2010; Xu & Tenenbaum, 2007).

Some evidence suggests that the extent to which people use the size principle during

generalization is variable and might depend on factors such as the specific task to which

they are exposed and their previous knowledge about the task (Navarro, Dry, & Lee, 2012;

Navarro, Lee, Dry, & Schultz, 2008; Tenenbaum & Griffiths, 2001b; Xu & Tenenbaum,

2007). However, it is likely that the assumption that stimuli are sampled directly from

consequential regions is a good approximation to the processes generating observations in a

number of environmental settings, which has led to the proposal that the size principle could

be considered a “cognitive universal” (Tenenbaum & Griffiths, 2001a), holding across a

number of cognitive tasks and domains.

More recently, Navarro (2006) has extended the rational theory of dimensional

generalization to explain some stimulus categorization phenomena. In Navarro's model, each

category is composed of a number of subtypes, each associated with a particular

consequential region. This structure is proposed to implement the fact that complex natural

categories are likely composed of objects with disparate sensory features, thus consisting of

more than one consequential region. Navarro has shown how this rational model can explain

typicality and selective attention effects in categorization.

In the following section, we present a latent cause model of compound generalization that

incorporates central ideas from the rational theory of dimensional generalization developed

by Shepard and others. We will see that the concept of consequential regions addresses the

shortcomings of earlier latent cause models, enabling it to explain the effect of stimulus

factors on compound generalization.

The Model

Generative Model

We assume that the task of the animal during an associative learning situation, and the task

of humans in a causal learning or contingency learning experiment, is to infer the latent

causes that have produced observable stimuli and an outcome.
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More specifically, we assume a generative model of the observed stimuli in which each

latent cause is linked to a consequential region (see Figure 1c), from which stimuli are

sampled. Each latent cause also generates an outcome with a specific magnitude (which

could be zero) and valence (positive or negative). Thus, in our model stimulus values are

generated as in the rational theory of dimensional generalization (Figure 1b). However,

several latent causes can be active in any given trial and each of them can generate any

number of observable stimuli, as in the latent causes theory of Courville and colleagues

(Figure 1a).

If the learner could infer the latent causes that produce each particular configuration of

stimuli and outcome value, this knowledge would allow solving two more specific

inferential tasks. First, given the observation of a number of stimuli, it would be possible to

predict future outcome values. Second, given that inferences about outcomes are based on

the presence or absence of latent causes and not the observable stimuli produced by those

causes, any learning about a specific latent cause would automatically generalize to other

stimuli produced by the same cause.

Figure 2 shows a schematic representation of the generative process implemented in our

model. The information that the learner observes on each trial t is: (1) a number of stimuli

(indexed by i) observed at the beginning of trial t, each described by a vector xti = {xti1, ...,

xtiJ} of J continuous variables or stimulus dimensions, and (2) a scalar rt representing the

magnitude of the outcome occurring at the end of trial t. The generative process that

produces these data is as follows. On each trial, the process starts (Step 1 in Figure 2) by

sampling active latent causes from a distribution (the Indian Buffet Process, explained in

detail below). In Figure 2, latent causes are represented through nodes labeled z1, z2,..., zk,

and shaded nodes represent latent causes active during a trial (in the example, latent causes

z1 and z3 are active during trial t). Each of the active latent causes can generate a number of

observable stimuli, with the number sampled from a geometric distribution (Step 2 in Figure

2). In the example shown in Figure 2, in trial t latent cause z1 generates one stimulus (n1t =

1) and latent cause z3 generates two stimuli (n3t=2). Each of the stimuli has a value on each

of a number of dimensions; such dimensional values are sampled from a consequential

region ck associated with the latent cause (Step 3 in Figure 2). The consequential regions,

represented by shaded rectangles in Step 3 of Figure 2, determine all possible values that a

stimulus can have along dimensions 1, 2, ..., J. In this example, the number of dimensions is

two, the stimulus produced by latent cause z1 has values {3,4} in these dimensions, whereas

the two stimuli produced by latent cause z3 have values {8,7} and {11,6}. Finally, all latent

causes together produce an outcome with magnitude rt (Step 4 in Figure 2). Each latent

cause is associated with a single weight parameter wk. The total outcome magnitude

observed is sampled from a normal distribution with mean equal to the sum of the weights

of all active latent causes. In the example shown in Figure 2, the final sampled value of

outcome magnitude is 1. Our model thus differs from most previous rational models of

associative and causal learning, in that it assumes that the outcome can vary in magnitude

from trial to trial, instead of simply being present or absent. The following sections describe

in more detail each of the steps in this generative process.
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Latent Causes—Latent causes in this model (see Step 1 in Figure 2) are defined as binary

variables with zkt=1 if the kth cause is active on trial t, and zkt=0 if the cause is not active.

One can think of all the latent causes in the experiment as a matrix Z with K columns

representing latent causes and T rows representing experimental trials. The choice of

distribution on Z should implement the assumption that several latent causes can be present

during a single trial and independently produce the observed stimuli. This is the assumption

that allowed Courville et al. (2005) to explain basic phenomena of compound generalization,

such as summation. On the other hand, the number of causes that could possibly be present

(K) is not known in advance, as in the model presented by Gershman et al. (2010).

Following earlier work on models with simultaneously active latent causes of a priori

unknown number (e.g., Austerweil & Griffiths, 2011; Navarro & Griffiths, 2008), we use

the Indian Buffet Process (IBP; see Griffiths & Ghahramani, 2011) as an infinite-capacity

distribution on Z:

(1)

The IBP generates sparse matrices of zeros and ones with an infinite number of latent causes

(columns) and a limited number of experimental trials (rows). Although there are an infinite

number of columns in a matrix produced by the IBP, the matrix becomes sparse as K→∞,

with most columns completely filled with zeroes (that is, most latent causes are never active

and thus can be ignored). For a more complete description of the IBP, see Appendix A. For

a tutorial introduction to Bayesian nonparametric models, including the IBP, see Gershman

& Blei (2012).

The IBP has a single free parameter, α, that governs the number of different latent causes

that will be active in an experiment with a given length. The value of α was fixed to 5 in all

the simulations reported here.

Generation of Stimuli—The observation of a compound of stimuli in trial t is represented

by N vectors xti, each describing a single discrete stimulus in a continuous multidimensional

stimulus space. Following previous work (Navarro, 2006; Navarro & Perfors, 2009;

Shepard, 1987; Tenenbaum & Griffiths, 2001a), we assume that each latent cause zk is

associated with a consequential region ck in the stimulus space, which determines the range

of possible observations xi that can be produced by that latent cause. Each region ck is

assumed to be an axis-aligned hyperrectangle parameterized by two vectors of variables

θk={mk,sk}. The position parameter vector mk determines the center of the region in the

stimulus space in each of the dimensions, whereas the size parameter vector sk determines

the extent of the region on each dimension of the space. Step 3 in Figure 2 shows a

schematic representation of a set of latent causes and their associated consequential regions

in a two-dimensional space.

Unlike other models involving consequential regions, in which a single stimulus is sampled

in each trial, our model requires a way to implement the assumption—from Courville et al.'s

latent cause theory—that a single latent cause can generate any number of observable

stimuli within a single trial (see Figure 1a). This assumption was implemented by setting a
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distribution on the number of observable stimuli sampled from each active consequential

region.

The generative process by which stimuli are produced on each trial is the following. First,

for each active latent cause, it is determined whether or not the cause generates stimuli

during this trial, through draws from a Bernoulli distribution. The Bernoulli distribution

parameter λ was fixed to .99 in all our simulations to permit a small, non-zero probability

that an active latent cause does not generate any observable stimuli on a particular trial. This

simplifies inference in the model, as discussed below and in Appendix B. Second, for each

latent cause that generates stimuli, a number of observations, nkt, is sampled from a

geometric distribution with parameter π (fixed to .9 in all our simulations, giving high prior

probability for each latent cause to produce only a small number of stimuli). That is, the

probability of sampling nkt stimuli from region ck on trial t is given by:

(2)

The geometric distribution has the desirable property of allowing any number of stimuli to

be sampled, while favoring a small number. This biases the model to infer a larger number

of active latent causes as the number of observed stimuli grows, rather than infer that a small

number of latent causes each generate many different stimuli.

In the final step of the generative process, nkt stimuli (values of x) are sampled from the

consequential region k. The distribution of observations xti on the consequential region ck is

uniform along each jth dimension:

(3)

Given that the consequential regions are shaped as hyperrectangles with size sj in dimension

j, then the probability density of sampling any particular stimulus xti from region ck is equal

to:

(4)

for all xti that fall within the consequential region, and 0 otherwise, where skj is the length of

region ck on dimension j.

For inference purposes, we will need to evaluate how likely a set of specific stimuli are,

given a specific configuration of active latent causes and their consequential regions. If we

knew exactly what active consequential regions have generated each stimulus, we could use

equations 2 and 4 (and the probability λ of each latent cause generating observations) to

compute the likelihood of the stimuli presented during trial t:
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(5)

However, it is not always possible to know which consequential regions have generated

each stimulus on trial t. For example, if a particular stimulus lands within the area in which

two consequential regions overlap, the likelihood will usually differ depending on whether

the stimulus was generated by one consequential region or the other. In cases such as this,

we have a number Y of possible assignments y of stimuli to consequential regions. Given

that Y is a small number in all the situations that will be of interest here, it is possible to

compute the likelihood of xt: by marginalizing over all possible assignments:

(6)

If we assume that all assignments have equal prior probability, then we have:

(7)

where nkt|y is the value of nkt for assignment y. Finally, assuming that xt: is sampled

independently for different trials, the likelihood term for the whole set of observations X is

the product of the likelihood of the observations in each individual trial:

(8)

Prior on the size and location of consequential regions—Following Navarro

(2006), we assume the existence of a consequence distribution over the possible locations

and sizes of regions, which is shared by all latent causes. The location parameter mkj for ck

along each dimension j is drawn from a Gaussian distribution with zero mean and variance

:

(9)

where  is given a large value relative to the scale of the stimulus space, resulting in a

diffuse prior over locations (  in all simulations presented here). Regarding skj, it is

assumed that the possible sizes of consequential regions have both a lower bound a and an

upper bound b (here, a and b were fixed to 0 and 5, respectively), and all sizes within those

bounds are equally likely:

(10)
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Two important things must be noted about the consequence distribution. First, the values of

the parameters μm, , a, and b can vary for different dimensions j, to represent the different

scale of each stimulus dimension. For our simulations, a simpler distribution that scaled all

dimensions similarly sufficed.

Second, the way in which the size of the consequential region is generated for each

dimension in the space will have important consequences for the predictions derived from

the model. Because of the uniform distribution for x within a region, small regions have a

higher likelihood to have produced a particular data point than large regions (see Equation

4). As noted before, this “size principle” will be important in explaining compound

generalization phenomena. Here we assume that the sizes for each dimension j of a

consequential region are generated independently from each other, leading to

hyperrectangular consequential regions. Note that since the area of the region is the product

of the length of its sides, a small value on any one dimension is sufficient to reduce the

overall area and thus to increase the likelihood of stimuli that are sampled from this region.

Because consequential regions in our model are axis-aligned, generalization is stronger

along the axes of the stimulus space (Austerweil & Griffiths, 2010; Shepard, 1987).

Empirically, such a pattern of generalization is observed for stimuli with dimensions that are

psychologically distinct (e.g., shape and orientation), known as separable dimensions

(Garner, 1974). This suggests that separable dimensions should each be represented as a

separate axis (and dimension) in our stimulus space.

On the other hand, dimensions that are not psychologically distinct (e.g., brightness and

saturation), known as integral dimensions (Garner, 1974), are not privileged with respect to

generalization. In this case, there is no reason to align consequential regions with these

stimulus dimensions, and one way in which consequential regions theory has dealt with

integrality is by allowing for inference of consequential regions that are aligned in any

direction in space (Austerweil & Griffiths, 2010; Shepard, 1987)1. Assuming such non-

aligned consequential regions, and since our model preferentially infers smaller

consequential regions, we can approximate all integral dimensions using a single axis in

space, because for two stimuli differing on any number of integral dimensions the smallest

consequential region will be a line connecting the stimuli. As we will discuss later in the

context of an experiment involving three stimuli, for more than two stimuli this

approximation does not necessarily hold, however, even in that case integral dimensions are

different from separable dimensions.

In sum, only when two dimensions are assumed to be separable we will consider them as

distinct dimensions in stimulus space. When two stimuli vary on a number of integral

dimensions, each of them separable from dimension j, we will represent the set of integral

dimensions as a single dimension in stimulus space, with consequential regions aligned to

this axis, as defined above.

1Although Shepard (1987; 1991) was the first to propose this hypothesis about the origins of integrality, he advocated the view that
integral dimensions are those for which the extent of the consequential regions is correlated (e.g., squared regions, in which all sides
have the same size); using all possible orientations of consequential regions to make inferences about integral dimensions would have
only the minor role of better approximating generalization gradients typical of integrality (see Shepard, 1991, p. 68).
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Both theoretical and practical arguments support our suggestion to treat multidimensional

stimuli with integral dimensions as varying along a single dimension. Most important among

these are issues relating to the concepts of correspondence and dimensional interaction.

Correspondence (Dunn, 1983) refers to the assumption— widespread in research and theory

involving multidimensional stimuli (e.g., Ashby & Townsend, 1986; Dunn, 1983; Hyman &

Well, 1967; Ronacher & Bautz, 1985; Soto & Wasserman, 2010)—that stimulus dimensions

manipulated or identified by a researcher correspond to perceptual dimensions. In general,

there is no reason that the dimensions chosen by a researcher would necessarily correspond

to atomic units of processing in perceptual systems. For example, in some applications color

hue is treated as a single stimulus dimension, although a higher-dimensional space could be

used (e.g., the RGB color model). Conversely, in other cases hue is combined with other

color and shape properties into extremely abstract dimensions (e.g., “identity” and

“emotional expression” of faces; see recent examples in: Fitousi & Wenger, 2013; Soto &

Wasserman, 2011). Representing hue as a single dimension is thus not fundamentally

different from, say, representing the integral dimensions of hue and saturation as a single

dimension, as we will do here. The arbitrariness of the dimensions selected to represent a set

of stimuli is a problem that plagues the study of multidimensional generalization and is in no

way aggravated by the assumptions of our model. That is, although our choice to represent

several perceptually real (integral) dimensions as a single dimension may be a violation of

correspondence, this assumption is violated in most work with multidimensional stimuli.

The popularity of the correspondence assumption, despite it being wrong for most

applications, is perhaps due to the fact that it allows one to focus on the more interesting

problem of dimensional interaction. That is, regardless of whether or not two perceptual

dimensions represent indivisible atoms of perceptual processing, the question is how do

those two dimensions or their components interact with each other (Ashby & Townsend,

1986). Following this tradition, our model implies different interaction rules for separable

and integral dimensions: as demonstrated below, stimuli differing on separable dimensions

(that is, dimensions that lie on distinct axes of stimulus space in our generative model) tend

to give rise to inference of separate consequential regions, whereas stimuli differing on

integral dimensions are more likely to be attributed to a common consequential region.

Finally, we note that there is a theoretical precedent to our implementation of integrality, as

one interpretation of integrality is that dimensions that interact in this way are, in effect,

combined into a single new stimulus dimension (Felfoldy & Garner, 1971; Garner, 1970).

Thus, our representation of integral dimensions can be seen as an implementation of this

“integration of dimensions” interpretation, in addition to being an approximation to other

interpretations of integrality from consequential regions theory, as previously discussed.

However, there are many other ways in which dimensions can be integral (see Ashby &

Maddox, 1994; Maddox, 1992; Pomerantz & Sager, 1975), as integrality is not a single form

of dimensional interaction, but rather a blanket category used to refer to dimensions that are

not separable. While there is no doubt that a more complete treatment of this issue is worth

pursuing in the future, our results will show that our simple implementation of integrality is

sufficient to account for the empirical results of most interest to our study of compound

generalization.
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Generation of outcome magnitudes—All latent causes present during trial t produce

an outcome with magnitude rt according to the following distribution:

(11)

where

(12)

The outcome observed in a trial is generated from a normal distribution with mean Rt and

variance  (in our simulations, the variance was fixed to ). Each latent cause

influences the mean of the outcome distribution through its weight wk and we assume that

the influences of different latent causes are additive, such that the mean of the outcome

distribution is equal to the sum of the weights of all active causes.

The values of wk are also sampled from a normal distribution:

(13)

with the parameters fixed at μw = 0 and  in our simulations. Step 4 of Figure 2 shows

schematically how the latent causes z generate rt in the model.

Inference Algorithm

Inferences in our model are aimed at determining the expected value of the outcome on test

trial t, or rt, given the current observation of the compound of stimuli xt:, and the data

observed on previous trials. That is, inference is focused on finding E(rt | X, r1:t-1, θ), where

θ is a vector of all the variables describing the prior, which are fixed and assumed as known

in our model θ = {α = 5, π = 0.9, λ = 0.99, a = 0, b = 5, μm = 0, σm = 101/2, μw = 0, σw =

11/2, σr = 0.011/2}, X is a matrix of observed stimuli (both those observed so far and the

current observation), and r1:t-1 is a vector of previously observed outcome values. In order

to calculate the distribution p(rt | X, r1:t-1, θ) and from it the expected value of rt, a number

of hidden variables of the model that are not specified and thus not known, need to be

integrated out (or averaged over). Specifically:

(14)

Since this integral is not tractable, we approximate it using a set of L samples { , Z1:L,

w1:L, m1:L, s1:L} drawn from the posterior distribution using a Markov Chain Monte Carlo

(MCMC) procedure. Our MCMC algorithm involves a combination of Gibbs and

Metropolis-Hastings sampling (Gilks, Gilks, Richardson, & Spiegelhalter, 1996). The

general strategy is to use a Gibbs sampler to cycle repeatedly through each variable,

sampling them from its posterior distribution conditional on the previously sampled values

of all the other variables. In the cases in which the conditional posterior is itself intractable,
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we use Metropolis-Hastings to approximate sampling from the posterior. A more complete

description of the inference algorithm can be found in Appendix B.

For the simulations presented here, the MCMC sampler was run for at least 3,000 iterations

so as to converge on the correct posterior distribution (“burn in”). Then, the algorithm was

run for another 2,000 iterations, from which every 20th iteration was taken as a sample, for a

total of 100 samples. This sampling interval was used because successive samples produced

by the MCMC sampler are not independent from each other. The approximated expected

value of rt is then the average of the 100 samples:

(15)

Note that a small number of samples is sufficient to accurately compute the expected

outcome value, as the standard error of this estimator decreases as the square root of the

number of samples (Mackay, 2003).

Finally, we assume that behavioral measures in Pavlovian conditioning experiments (e.g.,

rate or strength of response to a stimulus), and in human contingency and causal learning

experiments (e.g., causal ratings), are monotonically related to the outcome expectation

computed according to Equation 15. However, the exact mapping between outcome

expectation and response measures in different paradigms is unknown and not necessarily

linear. Therefore, the simulations presented next have the aim of documenting the ability of

our model to reproduce only the qualitative patterns of results observed in the experimental

data.

Simulation of empirical results

In this section, we evaluate the predictions of our model against empirical data from several

experiments in compound generalization. To evaluate the model's performance, it will be

useful to compare its predictions against those from previous models of associative and

causal learning. No previous rational model can handle the effects of stimulus factors on

compound generalization, but there are several flexible mechanistic models that have been

developed with this goal in mind (Harris, 2006; Kinder & Lachnit, 2003; McLaren &

Mackintosh, 2002; Wagner, 2003, 2007). We will compare the predictions of our model to

those of two of these flexible models: the replaced elements model (REM; Wagner, 2003,

2007) and an extension of Pearce's configural model (ECM; Kinder & Lachnit, 2003). These

two models represent recent extensions to traditional elemental (REM) and configural

(ECM) models of associative learning, and show enough flexibility to predict opposite

patterns of results for compound generalization experiments depending on the value of free

parameters in the model.

Simulations with REM and ECM were carried out using the simulation software ALTSim

(Thorwart et al., 2009; which can be downloaded from http://www.staff.unimarburg.de/

~lachnit/ALTSim/). All parameters were set to their default values, except for the free

parameters controlling the proportion of replaced elements in REM, represented here by ρ (r

in the original articles), and the amount of generalization across configurations in ECM,
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represented by δ (d in the original article). Due to space limitations, the interested reader

should consult the original articles by Wagner (2003), Kinder and Lachnit (2003), and

Thorwart et al. (2009) for a more detailed description of the models and their

implementation.

Two features of these models are important for a correct interpretation of the results of our

simulations. First, REM and ECM are mechanistic models of associative learning, so they

provide a different kind of explanation of behavioral phenomena than the rational model

presented here. However, the two types of explanation can constrain each other, so that a

successful rational explanation gives clues to what is required from a successful mechanistic

explanation, and vice-versa. Thus we provide predictions from mechanistic models only as a

benchmark to compare our model to. We do not present a systematic comparison of the

different models with the aim of showing that one is categorically better than others, neither

in terms of simulating all the relevant data from the literature, nor in terms of evaluating

what model offers the best quantitative fit to the data.

Second, both REM and ECM include a free parameter that affects the amount of associative

strength that is generalized from one stimulus configuration to another. This allows both

models to flexibly reproduce any possible result from several experimental designs in the

literature. However, the models can be constrained by fixing their free parameters to the

same value for all experiments using similar stimuli. For example, Wagner (2007) has

pointed out that results from experiments using stimuli from different modalities are

reproduced by REM with ρ = 0.2, whereas results from experiments using stimuli from the

same modality are reproduced by using ρ ≥ 0.5. Accordingly, here we present simulations of

REM with ρ equal to 0.2, 0.5 and 0.8.

Similarly, the ECM acts as Pearce's configural model when its free parameter δ is equal to 2.

Lower values lead to behavior that is more similar to elemental models of associative

learning and higher values lead to more configural processing. Here, we present simulations

of ECM with δ equal to 1, 2 and 3.

In sum, both REM and ECM can implement the similarity hypothesis, if we assume that

larger values of their free parameters correspond to stimuli that are more similar (e.g., within

the same modality), whereas lower values correspond to stimuli which are more dissimilar

(e.g., from different modalities). What our model adds is a principled explanation for why

parameters of a specific mechanistic implementation may differ between conditions. In

addition, as will be seen below, despite their flexibility, the REM and ECM cannot account

for the full range of phenomena that our model explains.

Associative and rational models offer different and complementary explanations of

behavior, and thus we do not conduct a quantitative comparison of the models, but rather

concentrate on qualitative comparisons. Additional considerations discourage an evaluation

of quantitative fits of the models to data: In general, quantitative predictions are outside the

scope of most associative models, including REM and ECM. These models make

predictions about an unobservable theoretical quantity, usually termed “associative

strength.” Although this quantity is assumed to be monotonically related to overt behavior,
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the shape of this relation is left unspecified. This should not be seen as a criticism of REM

and ECM – our model makes the same assumption regarding the relation between expected

outcome value and measures of behavior. However, as a result of this assumption, it is

difficult to adjudicate between the three models based on quantitative fits to behavioral data.

Moreover, even if we added some simple assumptions to the models (e.g., a linear relation

between associative strength/expected outcome and a response measure) and obtained

measures of model fit to data, it would be unclear whether a better quantitative fit is due to a

model's ability to capture a psychological process versus simply being more flexible than its

competitors. To perform quantitative model selection taking into account model complexity,

it would be necessary to make further modifications to associative models to make them not

only quantitative, but also statistically defined (Pitt et al., 2008). Such modifications could

potentially change the predictions of the original associative models (see Lee, 2008). As a

result, we believe that the qualitative comparison proposed here is the most informative

comparison of the models as defined.

Simple summation with stimuli from the same or different modalities

A summation experiment involves training with two stimuli separately paired with an

outcome until both acquire a strong response (presumably due to prediction of the outcome),

followed by a test in which each stimulus is presented separately, as well as in compound,

and the strength of responding is measured. The critical comparison is the degree of

responding to the compound as compared to that for the separate stimuli. Elemental models

of associative learning predict that the response to the compound should be larger than the

response to each of its components due to summation of the predictions for each element,

whereas configural models predict that the response to the compound should be equal or

lower than the average of the response to each component due to generalization decrement

for a never-seen compound that is not wholly similar to any of the previous conditioning

trials.

Early literature reviews by Weiss (1972) and Kehoe and Gormezano (1980) concluded that

summation tests in Pavlovian conditioning can lead to any of these results. Thus, empirical

evidence regarding this test does not allow us to reach any conclusion about whether

stimulus processing is elemental or configural. More recent investigations have led to the

same pattern of results, with some finding response summation (e.g., Kehoe et al., 1994;

Rescorla, 1997), others something closer to response averaging (e.g., Rescorla & Coldwell,

1995), and still others a response to the compound that is lower than the average response to

the components (e.g., Aydin & Pearce, 1995, 1997).

One important difference among summation studies leading to different results is that many

of those supporting a configural hypothesis (i.e., no summation) have used stimuli from the

same sensory modality, whereas those supporting an elemental hypothesis (i.e., summation

of predictions) have used stimuli from different sensory modalities. Kehoe et al. (1994; see

also Rescorla & Coldwell, 1995) directly tested the consequences of training with stimuli

from the same or different modalities for the summation effect in rabbit nictitating

membrane conditioning. Their results, reproduced in the left panel of Figure 3, show that the

response to a compound of tone and light is larger than the response to each individual
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stimulus, whereas the response to a compound of a tone and a noise is closer to the average

of the response to each individual stimulus.

To simulate this experiment using our model, each stimulus was represented by a vector of

two variables, one encoding sound and the other encoding visual stimulation. Representing

the tone and noise stimuli as each varying along a single perceptual dimension is appropriate

for two reasons. First, it is commonly assumed that the primary perceptual dimensions of a

sound are pitch, loudness and timbre (e.g., Melara & Marks, 1993). Kehoe et al. matched the

loudness of the tone and noise, and the latter does not have a characteristic pitch. Therefore,

the two sounds varied mostly in timbre. Second, there is some evidence that these three

sound dimensions are not separable (e.g., Grau & Nelson, 1988; Melara & Marks, 1993). On

the other hand, different modalities are the quintessential example of stimulus dimensions

that are separable (Garner, 1974). Although there is evidence suggesting violations of

separability between dimensions, such violations seem to stem from decisional rather than

perceptual processes (for a review, see Marks, 2004). Thus we represent stimuli from

different modalities as varying along two separable dimensions. This means that, in our

framework, multimodality can be seen as a special case of dimensional separability. We

assumed that all stimuli are represented in a common stimulus space and have a value on

each dimension. Finally, only dimensions relevant for the experimental task were included

in this simulation and all those that follow.

To simulate the “different modality” condition, the tone was represented as the vector

(sound=1, visual=0), whereas a light was represented as the vector (sound=0, visual=1). To

simulate the “same modality” condition, the tone was represented as the vector (sound= 21/2,

visual=0) and the noise was represented as the vector (sound=0, visual=0). These values

were chosen to match the distance between stimuli in the two simulations, so as to establish

that inference of a common latent cause in our model is determined due to the alignment of

stimuli along a dimension rather than their distance. Note that here a value of zero is

arbitrary and does not represent the absence of a feature (i.e., there was visual stimulation

coming from the speaker and the noise had a particular timbre).

The right panel of Figure 3 shows the results of our simulations. The model correctly

predicts the observed pattern of results, and Figure 4 presents a schematic explanation of the

reason behind this success. When the two stimuli are from different modalities (left panel of

Figure 4), their spatial separation is too large for them to have been generated by a single

large consequential region. Instead, the model infers the presence of two different small

regions, each producing a single stimulus and an outcome of magnitude one. When the two

stimuli are presented together during the compound test, the model infers that both latent

causes are active, and so the outcome magnitudes produced by each cause are added

together (according to Equation 12) and a summation effect occurs.

On the other hand, when the two stimuli are from the same modality (right panel of Figure

4), the model infers that a single consequential region, very small along the irrelevant

dimension (Dimension 1 in Figure 4) and elongated along the relevant dimension

(Dimension 2 in Figure 4), has produced both observations. This is true even for stimuli that

are very dissimilar along the relevant dimension, because the size of the consequential
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region along the irrelevant dimension can be arbitrarily small, leading to a small area for the

region and a high likelihood for stimuli contained in that area (see Equation 4). Because the

two stimuli are inferred to be generated by one latent cause, the expected value of the

outcome for trials with each single stimulus and their compound is the same (one unit of

outcome, as typically generated by this latent cause) and no summation is observed.

In sum, the likelihood function for stimuli (Equation 4) embeds in it the principle that

stimuli that have similar values on a particular dimension are likely to have been produced

by the same latent cause. This is an instantiation of the size principle proposed by the

rational theory of dimensional generalization of Tenenbaum and Griffiths (2001a), which

was discussed in the introduction section. The size principle explains why stimuli varying on

a single dimension do not produce summation effects, and it will prove useful in explaining

several other contradictory results observed in the literature on compound generalization.

It is important to underscore that what our model predicts is an effect of separability and

integrality of stimulus dimensions on the summation effect. The effect of stimulus modality

is considered a special case of the separability/integrality distinction, with different

modalities being one case of separable dimensions. However, regardless of whether cues

vary within a modality or across modalities, the model predicts a summation effect if cues

vary across separable dimensions and no summation effect if cues vary across integral

dimensions. This also means that, according to our model, stimuli used in previous studies

finding no summation effect (notably, experiments using visual stimuli and autoshaping

with pigeons) must have varied either along integral dimensions or along a single

dimension, as in Kehoe et al. (1994).

According to previous mechanistic theories (Harris, 2006; McLaren & Mackintosh, 2002;

Wagner, 2003, 2007), similarity between two stimuli is what modulates the extent to which

they are processed configurally, that is, as a whole rather than as a sum of their parts. Figure

5 shows the predictions of the REM (top) and ECM (bottom) models for a summation

experiment. Assuming that more similar stimuli produce more configural processing (larger

values of ρ and δ), both models can correctly reproduce the experimental results of Kehoe

and colleagues (Figure 3).

However, explanations based on the concept of stimulus similarity have difficulty

explaining the results of a related experiment by Rescorla and Coldwell (1995, Experiment

6), who found that although simultaneous presentations of two visual stimuli in compound

does not produce a summation effect, the sequential presentation of the same stimuli does

lead to such effect. The problem for approaches based on the concept of similarity is that it

is difficult to think of stimuli that are close in time as more “similar” to each other than the

same stimuli when they are separated in time. Our model incorporates the idea that

similarity is an important factor in compound generalization, because distance along several

dimensions can be interpreted as inversely proportional to the similarity between two

stimuli. However, the model also expands beyond the limitations of the similarity

hypothesis, because for other dimensions distance is better interpreted as inversely

proportional to the contiguity between two stimuli. This is the case for the relative temporal

and spatial position of stimuli during an experimental trial. Temporal contiguity–and spatial

Soto et al. Page 20

Psychol Rev. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



contiguity, as we will see later–can both be cast as differences on the dimensions of time and

space, so that stimuli that are closer together in these dimensions have a higher likelihood of

having been produced by the same latent cause.

The only additional assumption required to apply our model to such dimensions is that the

origin of each dimension is set in each trial by a landmark event. The position of stimuli in

space and time is encoded relative to such landmarks. For example, “trial time” would be

encoded relative to an event that signals the beginning of a trial, such as the beginning or

end of an inter-trial interval (as demarcated by the outcome in a previous trial, or the first

stimulus in the current trial, respectively). This is a reasonable assumption as our model is a

trial level model, in which we assume that latent causes become active at the beginning of a

trial and only stimuli happening after that point (and before the beginning of the next trial)

can be generated by the active latent causes. Similarly, “task space” would be encoded

relative to the position of a landmark stimulus, such as the corner of a monitor or the

experimental chamber. Importantly, one of the cues could itself serve the function of a

landmark to set up ‘trial time’ and ‘task space’ (e.g., the first cue presented or the most

salient cue in a compound). These assumptions are common to most other theories dealing

with contiguity, which usually parse an experiment coarsely into individual trials, simulating

events within a single trial.

To summarize, a focus on generalization as an inference task gives a unified and principled

explanation of the effects of stimulus modality and temporal separation over the summation

effect.

Differential summation with stimuli from the same and different modalities

A variant of the summation design involves training with three stimuli, A, B, and C,

followed by an outcome, and testing with the compound ABC. In this experiment there are

two training conditions: in the single condition, all stimuli are independently paired with the

outcome (A+, B+, C+), whereas in the compound condition, all combinations of two stimuli

are paired with the outcome (AB+, AC+, BC+). If one of these conditions leads to a higher

level of responding during the summation test with ABC, then a “differential summation”

effect is said to be found (Wagner, 2003). Traditional elemental models (Rescorla &

Wagner, 1972) predict more summation in the single condition, whereas traditional

configural models (e.g., Pearce, 1987) predict more summation in the compound condition.

The left panel of Figure 6 shows the results of a differential summation experiment carried

out by Myers and colleagues (Myers, Vogel, Shin, & Wagner, 2001, Exp. 2) using a tone, a

light and a vibrotactile stimulus as conditioned stimuli. The experiment confirmed the

predictions of elemental theory, finding higher summation in the single condition than in the

compound condition. The middle panel of Figure 6 shows the results of a differential

summation experiment carried out by Ploog (2008), using only visual stimuli that differed in

color and size. In this case, there was no evidence of summation for either condition

(responding to ABC was not higher than to the training stimuli) and the small difference

between conditions observed in the figure is not statistically significant.
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To simulate the experiment of Myers et al. (2001), which used stimuli from different

modalities, we represented the tone as the vector (sound=1, visual=0, somatosensory=0), the

light as (sound=0, visual=1, somatosensory=0) and the vibrotactile stimulus as (sound=0,

visual=0, somatosensory=1). To simulate the experiment of Ploog (2008), which used

stimuli from the same modality, we represented the first visual stimulus as (sound=0,

visual=0, somatosensory=0), the second as (sound=0, visual=21/2, somatosensory=0) and

the third as (sound=0, visual=2×21/2, somatosensory=0). That is, our simulation assumes

that the dimensions of size and color are integral for pigeons, at least in the stimuli used in

this experiment. To the best of our knowledge, there is currently no empirical evidence that

contradicts this assumption. In both cases, our choice of values on each dimension makes

the present simulation comparable to the simulation of a simple summation effect presented

in the previous section.

The results from our simulation are presented in the last panel of Figure 6. It can be seen that

the model predicts the results obtained by Myers et al. (2001) using stimuli from different

modalities and the results obtained by Ploog (2008) using stimuli from the same modality.

The explanation is the same as for our simulation of the simple summation effect: stimuli

that vary along multiple separable dimensions lead to the inference of a separate latent cause

for each stimulus, whereas stimuli that vary along a single dimension lead to the inference of

a single latent cause for all stimuli (see Figure 4).

Using visual stimuli and the same experimental paradigm as Ploog (2008), Pearce and

colleagues (Pearce, Aydin, and Redhead, 1997, Exp. 1) found higher summation in the

compound condition than in the single condition. As is clear from our simulation, the latent

causes model cannot predict this result using the current parameter values and stimulus

encoding. However, the differential summation effect found by Pearce and colleagues was

statistically significant only in 5 out of 15 testing trials, and no correction for multiple

comparisons was applied in this analysis. Thus, both the experiments of Ploog (2008) and

those of Pearce et al. (1997) seem to suggest that it is difficult to obtain a reliable differential

summation effect using stimuli from the same modality.

Flexible mechanistic models, such as REM and ECM, can predict all the observed patterns

of results in differential summation experiments. This can be seen in Figure 7, which shows

the results from simulating these models. However, both models run into the same problem

as our latent causes model when attempting to explain the contradictory results of Ploog

(2008) and Pearce et al. (1997). These studies used similar visual stimuli, the same species

and the same experimental paradigm, so there is little reason to justify different values of ρ

and δ to explain their different results. Only further empirical research will shed light on

whether specific experimental conditions can produce a robust differential summation effect

using visual stimuli.

As these are the only experiments involving more than two stimuli varying along integral

dimensions discussed in this paper, a short discussion of the validity of our assumptions in

the case of three stimuli is in line. In our simulation of the study by Ploog (2008) we have

represented all visual stimuli as varying along a single dimension, as exemplified in Figure

8a. As discussed previously, variation along a single dimension is a good approximation for
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cases in which two stimuli vary along integral dimensions, because if consequential regions

can orient in any direction of integral space (Shepard, 1987), the size principle will result in

the regions orienting in the direction of a line connecting the two stimuli, which is

equivalent to representing the stimuli as points along one axis in stimulus space.

What happens when three (or more) stimuli differ on two integral dimensions? In this case,

if the stimuli are aligned in integral space (that is, if they can be connected by a straight line,

as in Figure 8b), our choice to represent the stimuli as points along a single axis is still

reasonable as in the integral subspace consequential regions need not be aligned to axes. If

the stimuli are not aligned the approximation of consequential regions that are not axis-

aligned by representing all integral dimensions as one axis no longer holds. However, even

in this case, we argue that application of the size principle would still lead to more

“configural” representations when stimuli vary on two integral dimensions, as in Ploog

(2008), as compared to three separable dimensions as in Myers et al. (2001), for two

reasons. First, even if we represent size and color as two separate axes in stimulus space,

large regions encompassing two or three stimuli are more likely in the two-dimensional

space of color and size (as shown in Figure 8c) than in the three-dimensional auditory-

visual-tactile space needed to represent Myers et al.'s (2001) multimodal stimuli, because a

hyperrectangle in a two dimensional plane has a much smaller volume than one in a three

dimensional space. In general, low-dimensional consequential regions are considerably more

likely than high-dimensional ones. This is demonstrated in Figure 8b-d by using the auditory

dimension, on which consequential regions are essentially planes regardless of the

configuration of stimuli in the dimensions of color and size. Second, because within the two-

dimensional integral space consequential regions do not have to be aligned to axes (as no

specific direction of axes is privileged), in integral space hypotheses involving thin

elongated regions that include pairs of cues as in Figure 8d are possible. Due to the size

principle, such hypotheses will have high posterior probability, thus implying a summation

effect that is smaller than when each cue is produced by its own latent cause, as would be

the only high probability solution for three separable dimensions. If color and size were

separable dimensions rotation of consequential regions would not be possible, so unless two

stimuli shared values on either of the dimensions, this configuration of consequential regions

would not be possible.

In sum, regardless of whether we choose to represent the integral dimensions of size and

color as one or two axes in space, that is, whether Ploog's (2008) cues are aligned in the

integral space or not, the theory predicts that cues varying along two integral dimensions

should lead to less elemental summation than cues that differ on three clearly separable

dimensions. Our simulations capture this effect of modality on differential summation

qualitatively by collapsing integral dimensions into a single axis in stimulus space, as in

Figure 8a, but the results would not change qualitatively if we assumed a two dimensional

space with consequential regions that are not necessarily axis-aligned, as in Figure 8d.

Summation with a recovered inhibitor

Perhaps the best-known design for the study of inhibitory learning involves a feature-

negative discrimination, in which presentations of a stimulus followed by an outcome
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(denoted A+) are intermixed with presentations of the same stimulus in compound with a

second stimulus and not followed by the outcome (AB-). After this training, B acquires the

ability to inhibit responding to an excitatory stimulus (Rescorla, 1969).

Elemental and configural theories make different predictions about what would happen if

the inhibitory stimulus, B, were paired with the outcome after the feature-negative

discrimination is learned. The Rescorla-Wagner model predicts that pairing B with the

outcome would make this stimulus gradually lose its inhibitory properties and acquire

excitation; thus, after training with B+, responding to AB should be higher than responding

to A, because the excitatory properties of both stimuli should summate. On the other hand,

Pearce's configural model predicts that there will be less responding to AB than to A during

test, because the compound as a whole would keep some of its inhibitory properties despite

the B+ training, and B would only produce some excitation to AB through generalization.

Pearce and Wilson (1991) performed a series of experiments with variations of this basic

design that supported configural theory: even after extensive training with B+ following a

feature-negative discrimination, subjects showed responding to AB that was equal or lower

than their response to A. Importantly, responding to AB was not higher than responding to A

regardless of whether the stimuli were from the same or different modalities, as shown in the

left panel of Figure 92. Thus, these results provide evidence against the similarity

hypothesis.

Shanks, Charles, Darby and Azmi (1998) have shown that essentially the same pattern of

results is found in human causal learning experiments using foods as stimuli and allergic

reaction as the outcome. Although the stimuli in these experiments did not come from

different modalities (they were all food names presented visually on a computer screen),

other studies have shown that they produce a robust summation effect when they are

separately paired with the outcome and presented in compound (Collins & Shanks, 2006;

Soto et al. 2009). In sum, there is good evidence that stimuli that usually produce a

summation effect in compound generalization experiments do not produce the same effect if

the compound has been explicitly paired with no outcome early in the experiment.

As is shown in Figure 9, our latent-cause model can explain this paradoxical pattern of

results. The results of a simulation of the Pearce and Wilson (1991) design are presented in

the right panel of Figure 9. Importantly, this simulation used the same stimulus

representations used in our simulations on simple summation. The experimentally observed

difference in mean percent responding between A and AB (left panel of Figure 9) is not as

large as the difference in outcome expectation predicted by the model (right panel of Figure

9). However, the model correctly reproduces the qualitative pattern of results: lower

responding to AB than to A regardless of whether the stimuli come from the same or

different modalities.

2The results presented in Figure 9 come from two experiments that used different testing conditions. In experiment 1, both A and AB
were not reinforced throughout the test, whereas in experiment 2, A was always reinforced and AB not reinforced. Only the data from
the first test session of experiment 2—before any considerable re-learning of the A+, AB- discrimination had occurred—are shown in
Figure 8, in order to show more comparable results for the two conditions.
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As in a simple summation experiment, the early A+ trials and the late B+ trials can be

explained either by two different latent causes each producing a single stimulus and an

outcome of magnitude 1.0, or by a single latent cause producing both stimuli and an

outcome of magnitude 1.0. The first solution is favored with stimuli from different

modalities, whereas the second solution is favored with stimuli from the same modality.

However, both solutions make the data observed during the early AB- trials very unlikely. In

both solutions, if the same latent cause(s) that produced A and B separately is (are) active

during the AB- trials, this would explain the observation of both A and B, but it would also

mean that the outcome should be generated from a normal distribution with a very high

mean (about 2.0 in the first solution, and about 1.0 in the second solution). The likelihood of

observing an outcome of magnitude equal to 0.0 generated from such distribution is so

small, that the inference algorithm must consider alternative hypotheses about the causal

structure underlying the observed data. An example of such an alternative hypothesis would

be a structure in which independent latent causes generate A or B together with an outcome

magnitude of 1.0 (these latent causes account for single cue trials and are inactive during

compound trials), and a different latent cause, accounting for compound trials, generates

both A and B together with an outcome of magnitude of 0.0 (that is, no outcome).

Figure 10 shows the predictions of REM and ECM for this design. Both models are capable

of reproducing the experimental results with large values for their free parameters (ρ ≥ 0.5 in

REM and δ ≥ 2 in ECM). However, the parameter value of ρ = 0.2, proposed by Wagner to

explain compound generalization with stimuli from different modalities, cannot explain the

observed higher responding to A than AB with stimuli from different modalities (see Figure

9). It is possible to find values of the parameters ρ and δ that reproduce the qualitative

pattern of results in Figure 9, while also showing a summation effect. However, the stimulus

similarity hypothesis predicts that stimulus modality should modulate the magnitude of the

difference in responding between A and AB in this experiment, and the experimental results

show no indication of such modulation.

Effect of the spatial position of stimuli on the blocking effect

A well known feature of Pavlovian conditioning and other forms of associative learning is

that “stimulus competition” effects arise when several stimuli are presented in compound

and paired with an outcome (e.g., Kamin, 1969; Rescorla, 1968; Wagner, Logan,

Haberlandt, & Price, 1968). The typical result of stimulus competition experiments is that

those stimuli in a compound that are best predictors of the outcome interfere with the

acquisition of a response by other stimuli.

The best known stimulus competition effect is blocking. In the first phase of a blocking

experiment, a stimulus A is repeatedly paired with an outcome; in the second phase, a

compound AB of the blocking stimulus A and a target stimulus B is paired with the same

outcome. In the typical control condition, a compound CD is paired with the outcome during

the second phase, with neither C or D being previously trained. The main finding is that

presentations of A followed by the outcome during the first phase reduce the amount of

responding that B acquires during compound training (Kamin, 1969). Responding to the

target stimulus B is lower than responding to either C or D, despite the fact that responding
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to the latter stimuli is already quite low due to an overshadowing effect–that is, lower

responding to a stimulus when it is trained in a compound, compared to when it is trained by

itself. The blocking effect shows that the predictive value of a stimulus depends not only on

its own history of pairings with the outcome, but also on how well other simultaneously

present stimuli predict the outcome.

Because the blocking effect is considered such a fundamental associative learning

phenomenon, most contemporary theories of associative learning have been designed to

predict it. However, there are also many reports of failures to observe blocking empirically

(e.g., Lovibond, Siddle, & Bond, 1988; Martin & Levey, 1991; Williams, Sagness, &

McPhee, 1994). More importantly, some studies have been able to identify factors that

determine whether or not blocking will occur. These include properties of the stimuli

presented in the compound, as detailed below.

In a human eyelid conditioning study using lights of different colors as conditioned stimuli,

Martin and Levey (1991) found that spatial separation of the blocking (A) and target (B)

stimuli enhanced the blocking effect. As shown in the left panel of Figure 11, no blocking

occurred in a group for which the two stimuli were presented adjacent to each other (Group

1 of Experiment 1), whereas a robust blocking effect occurred when the two stimuli were

spatially separated (Experiment 4). Although this modulation of the blocking effect also

depended on the order in which test stimuli were presented, it is clear from this study that

spatial separation of the target and blocking stimuli enhances the blocking effect.

The same result has been found in human contingency learning experiments. The middle

panel of Figure 11 shows the results of an experiment carried out by Glautier (2002,

Experiment 2; see also Livesey & Boakes, 2004) using a “casino game” task in which

participants were presented with cards with different shapes and colors printed on them and

asked to predict whether or not the card would produce a cash payout. As can be seen in

Figure 11, here as well a blocking effect was found with spatially separated stimuli

(presented on different cards), but no blocking effect was found with spatially contiguous

stimuli (presented on the same card).

To simulate these results, we assumed that stimuli varied on two dimensions: spatial

position and color. Although the separability of these dimensions has not been established

empirically, some researchers have deemed these two dimensions ‘highly separable’ (Fific,

Nosofsky, & Townsend, 2008, p. 361). The stimuli in Glautier (2002) varied both in shape

and color, but there is some evidence of integrality for those dimensions (see Cohen, 1997),

and thus we modeled them as a single dimension. In our simulation, the value on the color

dimension was either one (for A) or zero (for B). Close stimuli were represented through

position values of 0 and 0.2, whereas distant stimuli were represented with position values

of 0 and 3.

The results of the simulation are shown in the right panel of Figure 11. As can be seen, our

model correctly predicts a blocking effect with spatially separated stimuli, and the absence

of such effect with spatially contiguous stimuli. The model predicts this result for the same

reason that it predicts modulation of the summation effect by stimulus modality. Adjacent
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stimuli lead the model to infer a single cause for A, B and the outcome, thus B cannot be

blocked by A since they represent different stimuli produced by the exact same cause. On

the other hand, spatially separated stimuli lead to the inference of a different cause for A and

B. Because the cause that generates A must have generated an outcome during the first

experimental phase and should be present during the second phase, the model infers that the

cause that generates B must not be generating any additional outcome in the second phase

(otherwise, the magnitude of the outcome during AB+ trials would be larger than that

observed during A+ trials). As a result, at test there is no responding to B in the second case,

and intact responding to B (equivalent to the responding to A) in the first case.

The results of simulations with REM and ECM are shown in Figure 12. Both models predict

a blocking effect across a large range of values of their free parameters; that is, responding

to the blocked stimulus is low across all simulations. Changes in the free parameters ρ and δ

only modulate the response to the non-blocked control, representing the level of

generalization from a compound to one of its components (i.e., the size of the

overshadowing effect). This is at odds with the experimental results that show the opposite

effect: a release from the blocking effect with stimuli closer in space, with responding to the

control stimulus staying at relatively high values. The prediction of a blocking effect is

robust across values of ρ and δ because it stems from the adoption of an error-driven

learning rule for updating associations between stimuli and outcomes in both models. That

is, blocking is a learning effect in these models. The free parameters in REM and ECM

affect only generalization across stimulus compounds, not associative learning and thus the

models cannot predict the observed release from blocking.

The distance between stimuli is not the only spatial variable that can affect the blocking

effect. In a human predictive learning study, Dibbets, Maen and Bossen (2000) showed that

the blocking effect is abolished if the position of stimuli is varied from trial to trial. They

used a stock market task in which participants were presented with a list of stock names

ordered in a column and information about whether the stock had been traded or not. The

participants’ task was to predict whether the value of the entire stock market would change

or remain equal. In two different experiments, Dibbets et al. trained people in a blocking

design using this task. The main difference between the two experiments was whether the

position of the stocks in the list was fixed across trials (Experiment 2) or it was variable

(Experiment 3). Mean ratings for the most important stimuli in the design are shown in the

left panel of Figure 13. Whereas a fixed position of the stocks led to a blocking effect,

randomization of stimulus position abolished blocking.

In our simulation of this study, stock identity was coded along a single stimulus dimension

and spatial position along a different, orthogonal dimension. Thus, it was assumed that the

two dimensions were separable and that different stocks varied only along integral

dimensions. Both the position and identity of the objects were represented through the

values 1, 2, 3, and 4. The difference between the fixed and random position conditions was

that only in the former each stimulus was assigned to a specific position throughout the

experiment. The simulated results are presented in the left panel of Figure 13. The model

reproduces the results of Dibbets et al., namely, a blocking effect with fixed stimulus

position and no effect with randomized stimulus position. However, note that in Dibbets et
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al.'s experiment the effect of randomizing stimulus position is both an increase in responding

to the blocked stimulus and a reduction in responding to the nonblocked control. Our model

can only reproduce the first part of the effect.

The reason for the model's behavior is that when the compound AB is presented with the

components in a fixed spatial position, the model infers that two different latent causes have

generated A and B, producing blocking. With randomized positions, however, both stimuli

are varied across an overlapping area of the spatial dimension, leading the model to infer a

single cause for them, linked to a large consequential region. As a result, in this case no

blocking effect is observed.

The above reasoning leads to a yet untested prediction: If the positions are randomly varied

such that they do not overlap (e.g., one stimulus in each visual hemifield), then different

causes should still be inferred for each stimulus, leading to a blocking effect.

REM and ECM, like most other models of associative learning, do not offer a way to

straightforwardly encode spatial position in their stimulus representation. Thus, the models

do not make any predictions for the Dibbets et al. (2000) experiment without further

assumptions. In associative learning theory, a standard way to deal with aspects of a

stimulus that are experimentally varied is by representing discrete stimuli through many

“elements” that can be common across stimuli or unique to a particular stimulus (e.g.,

Atkinson & Estes, 1963; Blough, 1975; Mackintosh, 1995; Rescorla, 1976; Soto &

Wasserman, 2010). For example, we can present the model with the compound AP1 for

trials in which stimulus A is presented in position one, the compound AP2 for trials in which

A is presented in position two, the compound BP1 for trials in which B is presented in

position one, and so on. This way, the common element P1 represents a common location for

A and B. Encoding stimuli this way allows to simulate the Dibbets et al. (2000) experiments

using REM and ECM.

The results of those simulations are shown in Figure 14. Neither REM or ECM seem able to

reproduce the pattern of results observed by Dibbets et al. (2000), when the experiment is

modeled using this “common elements” assumption. As in the previous simulation, the

models predict a blocking effect in both conditions for most values of the free parameters. In

those cases in which the blocking effect is considerably reduced for the random-position

condition (REM with ρ ≥ 0.5; ECM with δ = 3), the same happens for the fixed-position

condition.

Notably, the notion of consequential regions in stimulus space generalizes easily to the

dimensions of space and time, explaining the effects of variations in these dimensions as just

another manifestation of the inferential problem posed by stimulus generalization. The same

is not true for the notion of stimulus similarity used by some mechanistic models of

compound generalization. Spatial and temporal distances are not usually considered stimulus

properties that can be used for the computation of similarity—stimuli are not inherently

more similar when they are closer in time or space. (but see Brown, Neath, & Chater, 2007

for a model in which temporal distance determines the confusability of memory traces). It is

only when we consider the inferential task faced by an animal in compound generalization
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that distance in space and time can be treated just as distance in any other stimulus

dimension.

Asymmetrical generalization decrement after adding or subtracting stimuli from
compounds

Another type of compound generalization test involves pairing a stimulus or a compound of

stimuli with an outcome until a strong response is acquired, and then either adding or

subtracting stimuli from the training compound during a generalization test. Pavlov (1927)

was the first to report that the addition of a novel stimulus to a trained stimulus produces a

decrement in responding, an effect that he termed “external inhibition.” He also reported that

the subtraction of a stimulus from a training compound produces a similar decrement (i.e.,

an overshadowing effect; see also Kamin, 1969).

Many studies of these two effects have been reported since then. Importantly, most studies

that have compared the magnitude of the generalization decrement in overshadowing and

external inhibition have found that the two effects are asymmetrical: the decrement found by

adding a stimulus to a training compound is lower than the decrement found by subtracting a

stimulus from a training compound (Brandon, Vogel, & Wagner, 2000; Glautier, 2004;

González, Quinn, & Fanselow, 2003; Thorwart & Lachnit, 2010; Wheeler, Amundson, &

Miller, 2006).

The left panel of Figure 15 presents results from a study by Gonzalez et al. (2003) reporting

this asymmetry. In this study, rats were first trained with either one (A+) or two stimuli (AB

+) signaling the presentation of a shock and then tested with the configurations A, AB and

ABC. As can be seen in Figure 15, for rats trained with A+ the addition of one or two new

stimuli produced a small generalization decrement, which in both cases was not statistically

significant. The same was true for rats trained with AB+ and tested with ABC. On the other

hand, training with AB+ and testing with A led to a larger and statistically significant

decrement in responding. Indeed, the magnitude of the generalization decrement after a

stimulus was subtracted from the training compound was larger than the magnitude of the

generalization decrement after a stimulus was added to both a single training stimulus (A+)

and to a training compound of two stimuli (AB+).

All stimuli in this experiment were from different modalities, so as in previous simulations

using such stimuli, to model this experiment we used a three-element vector. The presence

of a particular stimulus was represented by 1 and its absence by 0. As shown in the right

panel of Figure 15, our simulation reproduced the experimental results: no generalization

decrement in any of the testing conditions, except for the overshadowing test (AB+ then test

with A). The asymmetrical generalization decrement is correctly reproduced by the model.

Because all the stimuli in this experiment were from different modalities, causal structures

in which a different latent cause produces each of the training stimuli were favored during

inference. Specifically, AB followed by an outcome led to inference of two latent causes,

which together produce an outcome of magnitude 1.0. The presentation of a single stimulus

during the overshadowing test thus leads to the inference that a single latent cause is active

during this trial, and so the learner predicts an outcome with magnitude lower than 1.0,

leading to an overshadowing effect.
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Conversely, an external inhibition effect is not predicted because in this case the

presentation of a completely new stimulus leads to the inference of an additional new latent

cause being active. Because there is no evidence about the exact magnitude of outcome

produced by this new latent cause, the model defaults to its best guess in absence of

information: the prior. The prior on wk has a mean of 0.0, which means that, on average,

new latent causes do not produce any change in the expected magnitude of outcome.

Thus, our model does not predict the external inhibition effect found by other studies

(Pavlov, 1927; Brandon, Vogel, & Wagner, 2001; Thorwart & Lachnit, 2010; Wheeler,

Admunson, & Miller, 2006, Experiment 2) using the parameter values that we have used in

all other simulations. This, however, might be a strength of the model, as at least three

recent studies reported finding an overshadowing effect but no external inhibition effect,

using the exact same stimuli to test both effects (Glautier, 2004; Gonzalez, Quinn, &

Fanselow, 2003; Wheeler, Admunson, & Miller, 2006, Experiment 1). Furthermore,

although Brandon et al. (2001) indicate that in their results “there was a decrement due to

the adding of stimuli” (p. 71), and some of the observed decrements were indeed quite large

(e.g., in the test with ABC after training with A+, see Figure 16), they did not report

statistical tests to support the reliability of these results. Thus, the only result that is robust

across experiments is the asymmetric generalization after the addition and subtraction of

stimuli from a training compound, which our model reproduces.

Furthermore, the use of within-modality or between-modality stimuli does not seem to be

the only factor determining whether or not external inhibition occurs, since Kehoe et al.

(1994) did not find any evidence of external inhibition under either condition, using the

same stimuli that produced a robust modulation of the summation effect as discussed earlier.

Our model does, however, provide an explanation of why external inhibition might happen

under some particular circumstances, while not being a phenomenon with the generality of

other compound generalization effects. Recall that when a new stimulus is presented during

an external inhibition test, the model infers a new latent cause that generates both the new

stimulus and normally distributed outcome with mean 0.0, a value that comes from the prior

on wk. Thus, the model predicts an external inhibition effect only if the prior distribution

over outcome magnitude is assumed to have a mean in the opposite direction than the

outcome used in the experiment. Assuming such a prior seems adequate when past history

has suggested that new latent causes are likely to result in an outcome of such value, instead

of no outcome at all. The left panel of Figure 16 shows the results of an experiment

conducted by Brandon et al. (2000), which found both overshadowing and external

inhibition effects. In this experiment, different groups of rabbits were trained in an eyelid

conditioning preparation with either one (A), two (AB) or three (ABC) stimuli of different

modalities, followed by an aversive outcome. Testing was conducted with all three

compounds in all groups. As shown in Figure 16, the response decrement due to

overshadowing was larger than the response decrement due to external inhibition. The right

panel of Figure 16 shows the results of a simulation with our model, using a prior over

outcome magnitude with μw = -0.3. As expected, with this assumption the model reproduced

all the important aspects of the experimental results.
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Figure 17 shows the results of simulations of Brandon et al.'s (2000) experiments using

REM and ECM. The first thing to notice is that the ECM cannot reproduce the asymmetric

generalization after the addition and subtraction of stimuli from a training compound,

regardless of what value is given to the parameter δ. For example, responding to test AB

after training with A (external inhibition) is the same as responding to test A after training

with AB (overshadowing), for all values of δ. Wagner's REM reproduces this asymmetry

with any values for ρ, and provides a quite good fit to the experimental data with ρ = 0.2.

The success of our latent causes model in explaining Brandon et al.'s (2000) data might

seem to be the result of a rather arbitrary choice for a prior over wt. However, two

independent pieces of evidence are in line with the interpretation of these results offered by

the present model.

First, as discussed by Wheeler et al. (2006), external inhibition is more likely to arise in

experiments using stimuli that are “clearly separable” (pp. 1222), which would explain why

these authors could find an external inhibition effect using different foods as stimuli in a

human causal learning paradigm, while others (Glautier, 2004) were unable to find an

external inhibition effect using different parts of the same object as component stimuli.

Indeed in our model, inferring a new latent cause for novel test stimuli is necessary for the

external inhibition effect to occur, and a new latent cause is inferred only if the novel test

stimuli are sufficiently separated from the training stimuli in stimulus space. Thus, even

using a prior over outcome magnitude different than zero, the model predicts external

inhibition only for distantly separated stimuli.

The fact that using clearly separable stimuli increases the likelihood of observing an external

inhibition effects is also important because Wagner's REM model and the ECM both predict

the opposite pattern of results. As seen in Figure 17, REM predicts that lower values of ρ,

which have been linked to more dissimilar stimuli, decrease the magnitude of the external

inhibition effect. The same is true for lower values of δ in the ECM. These models interpret

both the external inhibition and overshadowing effects as arising from equivalent

mechanisms of compound generalization. Our model, on the other hand, does not explain

external inhibition as the result of a generalization decrement, but as the result of inhibition

from a novel stimulus which is itself associated with a predicted outcome. Thus, stimulus

similarity affects external inhibition differently from other compound generalization

phenomena in the latent causes model, with separable stimuli increasing the likelihood of

observing this effect. Other mechanistic models of compound generalization (Harris, 2006;

McLaren & Mackintosh, 2002) offer explanations that are more in line with the latent causes

model.

Moreover, the data indicate that simply using dissimilar stimuli is not sufficient to obtain a

reliable external inhibition effect, because Gonzalez et al. (2003) found no indication of an

external inhibition effect with stimuli from different modalities, although their methods

yielded a reliable overshadowing effect (see also Kehoe et al., 1994, for a report of an

increase in responding using stimuli from different modalities). In agreement with this

empirical finding, dissimilarity is not sufficient in our model as well, but rather a negative

prior over wk is required in order to produce an external inhibition effect. Such a prior might

Soto et al. Page 31

Psychol Rev. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



be an idiosyncratic feature of some, but not all, experimental preparations used to study

associative learning.

Second, according to our interpretation, external inhibition can only happen when a stimulus

previously paired with an outcome is presented in compound with a completely novel

stimulus. If the external inhibitor is not novel, but has been paired with either no outcome or

an outcome of some magnitude, then the model would infer a value for wk based on that

experience, instead of defaulting to the prior. This prediction of the model has been

confirmed by Reiss and Wagner (1972), who found that nonreinforced pre-exposure to a

stimulus decreases its ability to produce external inhibition. Importantly, the results plotted

in Figure 16 and those of Reiss and Wagner (1972) were obtained using the same species,

paradigm and methods. Thus, as a whole, these results provide convergent evidence

supporting our use of different priors to explain the conditions under which external

inhibition should be seen.

Pavlov (1927) himself interpreted the external inhibition effect as the result of interruption

of responding by a competing orienting response elicited by the novel test stimulus. In this

view, the decrement in responding results from a response controlled by the novel stimulus,

rather than as a result of incomplete generalization of the response controlled by the original

stimulus to the new compound. This is similar to the interpretation we offer here, although

Pavlov's explanation is mechanistic in nature.

Discussion

We have presented a rational (Bayesian) model of compound generalization in associative

learning that provides a principled explanation of several previously puzzling effects of

stimulus manipulations on compound generalization. Our generative model extends both the

latent cause theories of compound conditioning (Courville, 2006; Courville, Daw, &

Touretzky, 2002; Gershman, Blei, & Niv, 2010) and other rational models of associative and

causal learning (e.g, Cheng, 1997; Griffiths & Tenenbaum, 2005, 2007; Lu, Yuille,

Liljeholm, Cheng, & Holyoak, 2008; Novick & Cheng, 2004) by including new assumptions

about how observable stimuli with specific values in physical dimensions are generated

from latent causes. To achieve this, we used the notion of consequential regions, first

developed in the context of rational theories of multidimensional generalization (Navarro,

2006; Navarro et al., 2008; Shepard, 1987; Tenenbaum & Griffiths, 2001a, 2001b), which

provides a unified framework to understand both dimensional and compound generalization

phenomena using the same theoretical principles.

Similar to some previous rational theories of dimensional generalization (e.g., Navarro,

2006; Tenenbaum & Griffiths, 2001a, 2001b), our model uses a generative process for

observed stimuli that is based on the assumption that stimuli are directly sampled from

consequential regions. This assumption would lead humans and animals to use the “size

principle” during inferences about consequential regions: for a given set of stimuli, small

regions containing those stimuli are more likely to be inferred than large regions. Our

simulations show that several results in the literature on compound generalization can be

explained as resulting from this size principle. These results have been found in both
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Pavlovian conditioning and causal learning studies, using diverse species as experimental

subjects. Thus, our simulations support the claim that the size principle is a cognitive

universal, which should hold not only for humans, but also for non-human animals and

across different tasks (Tenenbaum & Griffiths, 2001b).

Table 1 shows a summary of the results of our simulations. For each empirical result that we

have discussed, the table indicates whether the latent causes model can reproduce the result

and, if so, what assumptions are required for its success. In most cases the assumptions we

made are about the interaction between different stimulus dimensions, specifically, whether

they are separable or integral. We have discussed many cases in which our assumptions are

supported by previous research. However, this is not true of all cases listed in Table 1. For

example, the lack of summation observed in experiments using autoshaping with pigeons

can only be explained assuming that the visual stimuli used in these studies are integral. To

the best of our knowledge, there is currently no empirical evidence to evaluate the validity

of this assumption. Indeed, rather than an assumption, this can be construed as a prediction

of our model: if the model is correct in its explanation of the lack of summation, then the

visual stimuli in the experiment must have integral dimensions. Fortunately, good tests of

dimensional separability/integrality involve relatively simple experiments (for a review, see

Ashby & Soto, in press), thus our predictions are easily testable. More generally, we

recommend that future research in compound generalization should be integrated with

research in multidimensional generalization and scaling, with the latter providing constrains

on the correct representation of stimuli for the former. In particular, studies should be

carried out to determine how similar are stimuli in compound generalization studies and the

number and type of dimensions on which they differ. We believe that such integration would

be not only useful for a better evaluation of our model's predictions, but would provide a

better picture of the relation between compound and dimensional generalization and of the

factors driving the results of compound generalization studies.

Table 1 also includes information about the results of simulations using REM and ECM.

Although the table suggests that our model can explain a greater number of the results,

because the latent causes model provides a different explanation of behavior than

mechanistic models, we believe that simply counting the number of successes of the

different models is rather uninformative. More productive is to understand how our model

suggests that mechanistic theories could be developed in the future to provide better

accounts of behavior. First, our results suggest that mechanistic theories must go beyond the

similarity hypothesis and incorporate spatial and temporal contiguity as factors affecting

stimulus configurality. Second, results and simulations of summation with a recovered

inhibitor suggest that some compound generalization effects are immune to the influence of

stimulus modality. Thus, the similarity hypothesis should be relaxed to allow for such

exceptions. Third, the effect of spatial position on blocking suggests that the blocking effect

may not be as robust as mechanistic models predict. Under some predictable circumstances,

no blocking effect occurs. Our successful simulation of this phenomenon suggests ways in

which mechanistic models could be modified to predict such effects. One possibility is to

allow A, B and AB to be treated as essentially the same cue (i.e., with no generalization

decrement among them) under some special circumstances. Apart from these suggestions,

perhaps the most important challenge faced by mechanistic models is to provide a unified
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theory for stimulus generalization, able to explain both compound generalization and

dimensional generalization within the same framework, as we have done here with the

rational theory of stimulus generalization.

Our model expands upon earlier latent cause theories by making a distinction between the

processes that generate stimuli and those that produce outcomes. In our model, the outcome

is assumed to be a continuous scalar variable with a mean that equals the sum of outcome

magnitudes produced by all active latent causes in a trial (see Equation 12). This feature

makes the generative process for outcome magnitude in our model similar to that proposed

by the Kalman filter model of Pavlovian conditioning (Dayan, Kakade, & Montague, 2000;

Kakade & Dayan, 2002). However, in our model the outcome is produced by latent causes,

whereas in the Kalman filter the outcome is directly caused by observable stimuli and the

only latent variables are the weights connecting stimuli to outcomes. The generative process

we assume for the outcome allows our model to explain the summation effect (e.g., Kehoe et

al., 1994; Collins & Shanks, 2006; Rescorla & Coldwell, 1995; Soto et al., 2009; Whitlow &

Wagner, 1972), which cannot be explained by latent cause models in which the outcome is

assumed to be a binary, non-additive variable (Courville, 2006; Courville, Daw, &

Touretzky, 2002).

In addition to these improvements, the present model inherits from previous latent cause

theories the ability to explain a number of important phenomena in associative learning that

were not our focus here (see Courville, 2006). Our simulations above demonstrate the ability

of the model to explain stimulus competition effects such as blocking and overshadowing.

As other Bayesian models of associative learning, the model is also capable of explaining

so-called retrospective revaluation effects, such as unovershadowing and backward

blocking (e.g., Chapman, 1991; Chapman & Robbins, 1990; Denniston, Miller, & Matute,

1996; Miller & Matute, 1996; Shanks, 1985; Urcelay, Perelmuter, & Miller, 2008;

Wasserman & Berglan, 1998). Retrospective revaluation refers to a group of experimental

observations indicating that humans and animals are able to update their knowledge about

some events even in the absence of those events. For instance, in a backward blocking

experiment (e.g., Chapman, 1991; Miller & Matute, 1996; Shanks, 1985) participants are

first presented with a number of trials involving a compound of two stimuli followed by an

outcome (AB+). Learning during this phase generalizes to both A and B (with possible

overshadowing), as can be seen by their ability to individually produce a response indicative

of their association with the outcome. In a second phase, participants are presented with A

alone followed by the outcome. Test trials show that this A+ training reduces the ability of B

to produce a response, even though B was not seen or trained in these latter trials.

Most mechanistic models of associative learning have difficulty explaining retrospective

revaluation effects, because they assume that experience only modifies the predictive

properties of stimuli that are physically present in a trial. Although extensions to traditional

associative learning models have been proposed to deal with retrospective revaluation

phenomena (e.g., Aitken & Dickinson, 2005; Dickinson & Burke, 1996; Van Hamme &

Wasserman, 1994), the same models cannot explain the results of compound generalization

experiments.

Soto et al. Page 34

Psychol Rev. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In contrast, rational Bayesian models of human causal learning (e.g., Griffiths &

Tenenbaum, 2005, 2007; Lu et al., 2008) and Pavlovian conditioning (Courville, 2006;

Courville, Daw, & Touretzky, 2002; Dayan, Kakade, & Montague, 2000; Kakade & Dayan,

2002) can readily explain backward blocking and other retrospective revaluation

phenomena. A feature of Bayesian inference is that if an observation can be explained

equally well by either of two hypotheses, new observations that favor one of the hypotheses

will decrease the posterior probability of the other hypothesis. In the case of backward

blocking, the observation of AB followed by an outcome is consistent with the hypotheses

that stimulus A, stimulus B or both (or their latent causes) produced the outcome. The later

observation of A paired with the outcome gives evidence for the hypothesis that this

stimulus (or its latent cause) produces the outcome, “explaining away” the hypothesis that B

might have produced the outcome (Dayan & Kakade, 2001).

Thus, the present work represents a step forward toward providing a more unified theory of

associative learning. Although our model says nothing about the mechanisms that give rise

to phenomena such as retrospective revaluation and compound generalization, it could guide

and constrain the development of new mechanistic explanations for such effects. One

possibility would be to build models that combine the machinery of Bayesian inference with

heuristics to explain behaviors that are interpreted to be deviations from rationality. An

example is the “locally Bayesian” learning algorithm recently developed by Kruschke

(2006), which assumes that the cognitive system is divided into several processing modules

or layers, each one performing Bayesian inference and optimizing its output to other

modules as a function of its input from previous modules in the processing sequence. This

algorithm can explain not only backward blocking, but also trial-order effects that are more

difficult to explain by globally rational models. A second possibility would be to interpret

generic algorithms used to approximate exact Bayesian inference (MCMC, particle filters,

etc.) as possible mechanistic models of how our rational model might be achieved in the

brain (Daw, Courville & Dayan, 2008; Sanborn, Griffiths, & Navarro, 2010). A third,

related possibility would be to build mechanistic models of associative learning that can

approximate the behavior of a specific rational model, without being restricted to use the

generic algorithms for approximate inference developed in the machine learning and

statistics literature (e.g., Danks, Griffiths, & Tenenbaum, 2003).

Another way in which our model improves over previous rational models of associative

learning is by explaining the effects of temporal and spatial contiguity between stimuli as

cases of the more general inferential problem posed by stimulus generalization: determining

the regions in stimulus space corresponding to particular latent causes. This opens up the

possibility of explaining temporal phenomena of associative learning within the framework

of a rational Bayesian theory. Most previous rational models of associative and causal

learning (e.g, Cheng, 1997; Courville, Daw, & Touretzky, 2002; Griffiths & Tenenbaum,

2005, 2007; Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008; Novick & Cheng, 2004) are

silent about how temporal factors within each experimental trial (e.g., temporal separation

between a stimulus and an outcome) can alter what is learned about the events observed in

those trials (see Courville, 2006, for a notable exception). This is a significant shortcoming

of rational theories of associative learning because there is much evidence indicating that
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temporal contiguity between events within in a trial strongly affects learning in both

Pavlovian conditioning (e.g., Davis, Schlesinger, & Sorenson, 1989; Smith, Coleman &

Gormezano, 1969) and human causal learning (e.g., Reed, 1992; Shanks, Pearson, &

Dickinson, 1989; Schlottmann & Shanks, 1992). Our model can explain the effects of

contiguity between two stimuli on inference of a common or different latent causes, and as

such, is directly applicable to the effects of temporal factors in phenomena such as sensory

preconditioning and second-order conditioning (e.g., Lavin, 1976; Rescorla, 1980).

There are several ways in which future work can improve upon the present model. Our

model was focused exclusively on the task of compound generalization; that is, transfer of

learning from a trained stimulus compound to a new stimulus compound, based on their

shared components. Stimulus factors may also have an effect on compound discrimination;

that is, the process of learning to discriminate different compounds that share some

components. Experiments have shown that the relative difficulty of different compound

discrimination tasks might depend on stimulus factors. As in the case of compound

generalization, experiments using stimuli from different modalities seem to favor elemental

theory (e.g., Bahçekapili, 1997), whereas experiments using stimuli from the same modality

tend to favor configural theory (e.g., Pearce & Redhead, 1993).

Our model was designed to account for generalization behavior after all learning is

complete. It uses a batch inference algorithm, in which all the data gathered across the

experiment are used to make inferences. Therefore, compound discrimination phenomena,

which are studied by examining learning curves, are currently outside its scope. One

possibility, however, would be to use the same or a similar generative model, together with

an on-line inference algorithm, such as sequential Monte Carlo methods (for reviews, see

Arulampalam, Maskell, Gordon, & Clapp, 2002; Cappé, Godsill, & Moulines, 2007), to

produce trial-by-trial predictions. An on-line inference algorithm would also provide a tool

to explore whether the model can explain the effect of stimulus factors on configural

processing in latent inhibition (Honey & Hall, 1988, 1989; Reed, 1995), in which pre-

exposure to a stimulus without an outcome leads to a reduction in learning rate during

subsequent pairings of the stimulus and an outcome.

Compound discrimination is influenced by several variables besides stimulus factors

(reviewed in Melchers et al., 2008). For example, previous experience with compound

discrimination tasks seems to have an effect on the strategy that rats (Alvarado & Rudy,

1992) and humans (Mehta & Williams, 2002; Melchers, Lachnit, & Shanks, 2004; Melchers,

Lachnit, Üngör, & Shanks, 2005; Williams & Braker, 1999; Williams, Sagness & McPhee,

1994) use to solve new compound discrimination tasks. One way to model such “learning to

learn” effects is through hierarchical Bayesian modeling (Gelman, Carlin, Stern, & Rubin,

2004). For example, several parameters in our model influence the likelihood that different

latent causes are inferred for different stimuli in a compound. One of these parameters is α

(see Equation 1), which controls the probability of sampling a novel latent cause in a new

trial of the experiment. Putting a prior on the value of this parameter and inferring it from

data rather that setting it arbitrarily, would allow previous experience in discrimination tasks

to influence inference in novel tasks.
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Our model assumes a particular causal structure in which latent causes produce both stimuli

and outcomes. As indicated in the introduction, a whole different class of models assume a

different causal structure in which stimuli directly produce outcomes. This latter causal

structure might be a better description of many learning tasks (or the assumptions made by

the learner) than the latent causes structure. This could be the case for some causal learning

experiments, in which participants are directly instructed to learn causal relations between

stimuli and outcomes. For example, humans learning causal relations between foods and

allergy show a summation effect (Collins & Shanks, 2006; Soto et al., 2009). Our model can

explain this result only if it is assumed that different foods vary along separable dimensions,

but some models (e.g., the Kalman filter) that assume a stimulus-generates-outcome

structure can explain summation in this experiment without resorting to assumptions about

separability. More empirical and theoretical work will be necessary to determine which kind

of theory provides a better explanation for the data as a whole. Currently, however, only the

latent causes theory presented here is able to explain the effect of stimulus factors on

compound generalization.

An important assumption of our model is that the correct way to represent integral

dimensions in consequential regions theory is through regions which can be oriented in any

direction of space. This assumption is crucial for the success of our model in explaining

compound generalization phenomena. However, a different view of integrality within

consequential regions theory, favored by Shepard (1987, 1991), is that the sizes of

consequential regions along integral dimensions are correlated (e.g., regions are squares or

circles). Both hypotheses are capable to reproduce the shape of generalization gradients for

integral dimensions, but only the hypothesis that consequential regions can orient in any

direction of space can explain compound generalization, at least in the framework of our

model. An important goal for future research is to directly test these two hypotheses about

integrality.

Finally, our model deals only with cases in which learning is generalized to new stimuli and

compounds on the basis of their similarity or shared components. There is evidence that

human causal learning can also be generalized on the basis of rules (e.g., Shanks & Darby,

1998). Hierarchical Bayesian modeling is capable of handling such examples of rule-based

generalization (e.g., Kemp, Goodman & Tenenbaum, 2007) and it could be used in the

future to provide a unified account of dimensional, compound and rule-based forms of

generalization.

In sum, both rational and mechanistic theories of generalization have treated generalization

across compounds and generalization across dimensions as separate phenomena. However,

recent work in associative and causal learning questions these assumptions, by showing that

changes in stimulus dimensions can have an important effect on generalization across

stimulus compounds. Although much more work can be done to improve the rational theory

of generalization, the present work represents an advance as it expands the scope of latent

cause theories of compound generalization and bridges between these theories and the

rational theory of dimensional generalization.
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Appendix A: The Indian Buffet Process

Recall that Z in our model is a matrix of zeros and ones, with columns representing different

latent causes and rows representing different experimental trials. To define a distribution on

Z, the main goal is that several latent causes can be simultaneously active on a particular

trial to jointly produce the observed data. Also, because we do not know the total number of

latent causes in advance, we need a distribution capable of generating Z with an unbounded

number of columns. A simple stochastic process that can generate Z with such

characteristics is the Indian Buffet Process (IBP; Griffiths & Ghahramani, 2011).

The IBP was originally explained by its authors through a culinary metaphor: N customers

enter a restaurant with a buffet of infinitely many dishes arranged in a line. The first

customer starts at the beginning of the buffet and samples a Poisson(α) number of dishes.

The tth customer moves along all the dishes already sampled by previous customers,

sampling dish k with probability qk/t, where qk is the number of previous customers that

have already sampled the dish. After considering all the previously sampled dishes, the

customer samples from a Poisson(α/t) number of new dishes.

It can be shown (see Griffiths & Ghahramani, 2011) that if we attend only to those columns

for which qk>0 (taking into account those matrices that can be made equivalent after a re-

ordering of their columns) then the probability of obtaining a matrix Z from this process

equals:

(A1)

where K+ is the number of columns with qk > 0, Kh is the number of columns whose entries

correspond to the binary number h (e.g., 1000..., 0100..., 1100...), and HN is the nth harmonic

number, .

This distribution has the following important properties: (1) the effective number of latent

causes K+ follows a Poisson(αHN) distribution, (2) the number of latent causes sampled on a

trial follows a Poisson(α) distribution, (3) Z remains sparse as K→∞, and (4) the

distribution is “exchangeable”, that is, the probability of a matrix Z is unaffected by the

order of trials.
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Appendix B: Inference Algorithm

The general strategy of this inference algorithm is to use a Gibbs sampler to cycle repeatedly

through each variable, sampling them from their posterior distribution conditional to the

sampled values for all the other variables. Whenever the conditional posterior is intractable,

we use Metropolis-Hastings to approximate sampling from the conditional posterior.

Sampling z

Given that ztk is a discrete variable with only two possible values, it is possible to compute

the conditional posterior probabilities by enumeration. From our generative model and

Bayes rule we have that:

(B1)

Here, Z-tk represents all entries in the matrix Z except for ztk. The first likelihood term in the

right side of this equation is given by Equation 7, while the second likelihood term is given

by the Gaussian distribution defined in Equations 11 and 12. Values for the final term, p(ztk

= v | Z-tk), can be computed thanks to the exchangeability of the IBP. We start by assuming

that the tth customer is the last to enter the restaurant. This customer should sample each

dish that has already been sampled with p = q-tk/T, where q-tk is the number of ones in

column z:k for all cells except ztk, T is the total number of clients, and then the customer

should sample Poisson(α/T) new dishes. This means that we can start at the leftmost

position on each row of Z, and then sample each individual zt for that row taking into

account that there are two possibilities for ztk. If q-tk > 0, then p(ztk = 1 | Z-tk) = q-tk/T. If q-tk

= 0, then ztk can be considered as being sampled for the first time, together with all other

columns with no entries.

After the Gibbs sampler cycles through all the values of row t for which q-tk > 0, we are left

with the task of sampling new dishes from the IBP. Because K = ∞, we cannot enumerate

all possibilities in this case. However, we can take advantage of the fact that the IBP

produces sparse matrices and assume a limited maximum number of new dishes, denoted by

K+ (set to 9 in the simulations presented here). This way, we have a finite number of

hypotheses about the Knew number of new dishes, going from 0 to K+, and the conditional

posterior can be computed by enumeration using the following equation:

(B2)

Again, the first two likelihood terms are given by Equations 7 and 11, respectively, whereas

the last term is computed from the Poisson probability density function:

(B3)
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Sampling w

The generative model for r in this model is an example of a linear Gaussian model, with a

Gaussian prior over w which is conjugate for the Gaussian likelihood over r. Thus, the

posterior can be derived analytically and has the form of a multivariate Gaussian:

(B4)

where

(B5)

and

(B6)

Sampling m

Due to non-conjugacy, the conditional posterior for m is not available in closed form, and

we approximate sampling from it through a Metropolis sampler using a Gaussian proposal

distribution with . At each step of the process, we sample a candidate  from

. Then  is accepted with probability:

(B7)

which is achieved by sampling a random number u from Uniform(0,1) and accepting  if

, and setting  otherwise.

Sampling s

Again, we must resort to a Metropolis-Hastings approach to approximate sampling from the

conditional posterior over s. In this case, we wanted the sampler to explore the whole range

of possible values of s at each step, because we expected that in some occasions a region

elongated along one axis would be very likely to have generated some data patterns.

Allowing the sampler to “jump” from small to large sizes of consequential regions seems

like a desirable feature. Thus, to sample s we used an independence Metropolis-Hastings

sampler (Gilks et al., 1995) with the prior distribution p(sk) as the proposal distribution.

Here, we sample a candidate from the prior and we accept it with probability:
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(B8)

which, again, is achieved by sampling u from Uniform(0,1) and setting  if

, and  otherwise.

Notice that the acceptance probability depends only on the likelihood ratio because in the

independence sampler candidates are generated independently from the current state of the

sampler. Thus, the acceptance probability for a candidate value z’ is defined as

(B9)

where . Given that in this sampler the proposal is the prior, w(z) =

likelihood(z).
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Figure 1.
Schematic representations of the most important rational models discussed here. In each

model, latent causes (Z) are assumed to generate observable stimuli (A-D) and outcomes

(R). This generative process is represented by arrows. In the latent causes model of

Courville and colleagues (panel a; Courville, Daw & Touretzky, 2002), one or more latent

causes can produce one or more stimuli. In the rational theory of dimensional generalization

(panel b), a single latent cause produces a single stimulus with values in a number of

stimulus dimensions. In our model (panel c), one or more latent cause can produce one or

more stimuli with values in a number of stimulus dimensions.
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Figure 2.
A schematic representation of the generative process assumed by the model. In trial t of a

compound generalization experiment, each active (shaded) latent cause zk for k=1, 2,...K

(Step 1) generates a number nkt of observed stimuli (Step 2). The values of each of these

stimuli on several dimensions are sampled from a consequential region ck associated with

the latent cause (Step 3). The active latent causes also produce an outcome with magnitude

rt, which is sampled from a normal distribution around the sum of weights associated with

all active latent causes (Step 4).
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Figure 3.
Experimental data (left) and simulated results (right) of an experiment by Kehoe et al.

(1994) on the modulation of the summation effect by stimulus modality. A significant

summation effect was found with stimuli from the different modalities, but not with stimuli

from the same modality.
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Figure 4.
Schematic explanation of why the model predicts a summation effect with stimuli from

different modalities/dimensions (left panel) and the lack of a summation effect with stimuli

from the same modality/dimension (right panel). Active latent causes and their

consequential regions are shaded.
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Figure 5.
Results of simulations of a summation experiment using REM (top) and ECM (bottom).

Each simulation was run using three different values of the free parameters ρ and δ. Both

models can predict any pattern of results from a summation experiment, with responding to

the compound higher, equal or lower than to each stimulus alone.
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Figure 6.
Experimental data from differential summation experiments using stimuli from different

modalities (left) and from the same modality (middle panels), and simulated results (right).

Bar height represents responding to the compound ABC in the different conditions. The

difference between conditions found by Myers et al. (2001; left) was statistically significant,

whereas Ploog (2008, middle) did not find a statistically significant difference between the

conditions. The simulation (right) reproduces this pattern of results.

Soto et al. Page 53

Psychol Rev. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
Results of simulations of a differential summation experiment using REM (top) and ECM

(bottom). Bar height represents responding to the compound ABC in the different

conditions. Each simulation was run using three different values of the free parameters ρ and

δ. Both models can predict any pattern of results from a differential summation experiment,

with responding to ABC in the single condition being lower, equal or higher than responding

to ABC in the compound condition.
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Figure 8.
Schematic explanation of how the latent causes model explains the effect of stimulus

modality on differential summation. In our implementation, the integral dimensions of size

and color are collapsed in a single dimension (a). A separable auditory dimension is also

depicted, for didactic purposes. The application of the size principle would be similar if each

of the two dimensions was represented separately and the three stimuli were aligned, as

regions can be oriented in any direction in integral space (b). However, the size principle

applies even without stimulus alignment as long as the consequential regions are small along

the auditory dimension (in the figure, the size on this dimension is so small that the regions

are essentially planes), as they can then include more than one cue with relatively high

likelihood (c). Moreover, because in integral space consequential regions do not have to be

aligned to axes, the size principle can be applied again to generate two consequential

regions, essentially a line and a point in space, rather than three (d). Thus integral

dimensions imply less summation than separable dimensions, even for more than two non-

aligned stimuli.
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Figure 9.
Experimental data (left) and simulated results (right) of experiments conducted by Pearce

and Wilson (1991) on summation with a recovered inhibitor. Both the experimental data and

the simulation show higher responding to A than to AB regardless of whether the stimuli

were from different modalities or the same modality.
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Figure 10.
Results of simulations of an experiment on summation with a recovered inhibitor using

REM (top) and ECM (bottom). Each simulation was run using three different values of the

free parameters ρ and δ. Both models predict a modulation of the difference in responding to

A and AB depending on stimulus similarity.
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Figure 11.
Simulated results (right) and experimental data from studies on Pavlovian conditioning (left;

Martin & Levey, 1991) and human contingency judgments (middle; Glautier, 2002) on the

effect of spatial contiguity between stimuli over the blocking effect. Both experiments found

a reliable blocking effect with spatially separated stimuli, but not with spatially close

stimuli. The simulation reproduced these results.
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Figure 12.
Results of simulations of a blocking experiment using REM (top) and ECM (bottom). Each

simulation was run using three different values of the free parameters ρ and δ. Blocking is a

robust prediction of these models across variations in free parameters. Only responding to

the control stimuli is modulated by such variations.
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Figure 13.
Experimental data (left) and simulated results (right) of a human predictive learning

experiment by Dibbets, Maen and Bossen (2000), which studied the blocking effect with

stimuli whose spatial position either remained fixed or varied across training trials. The

experiment found a reliable blocking effect with spatially fixed stimuli, but not with

randomly positioned stimuli. The simulation reproduced these results.

Soto et al. Page 60

Psychol Rev. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 14.
Results of simulations of the effect of randomizing spatial position of stimuli on the

blocking effect using REM (top) and ECM (bottom). The original models do not make any

predictions for this experiment and additional assumptions were made to obtain these results

(see main text). Each simulation was run using three different values of the free parameters ρ

and δ. Blocking is a robust prediction of these models and it is not affected by variations in

the spatial position of stimuli.
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Figure 15.
Experimental data (left) and simulated results (right) of an experiment by Gonzalez, Quinn

and Fanselow (2003) on asymmetrical generalization decrements after the addition and

subtraction of stimuli from a training compound. Note that responding to the training

stimulus is represented by the black bar in the “Training A” condition, but by the grey bar in

the “Training AB” condition. The only statistically significant reduction in responding in the

experimental data is for stimulus A after training with AB. Responding to all other test

stimuli is not statistically different from responding to the training stimuli. The simulation

qualitatively reproduces this pattern of results.
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Figure 16.
Results of an experiment (left panel) conducted by Brandon et al. (2000) on asymmetrical

generalization decrements after the addition and subtraction of stimuli from a training

compound. The right panel shows the results of a simulation with the model, using a prior

distribution over outcome magnitude with μw = -0.3.
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Figure 17.
Results of simulations of an experiment testing generalization decrements after the addition

and subtraction of stimuli from a training compound using REM (top) and ECM (bottom).

Each simulation was run using three different values of the free parameters ρ and δ. Only

REM can reproduce an asymmetrical generalization decrement. ECM predicts the same

decrement in responding after adding or subtracting stimuli from a compound.
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Table 1

Summary of the results of our simulations. Each cell provides information about whether a model can

reproduce a specific empirical result and, if it can, the assumptions that are required for its success.

Empirical Result Latent Causes Model REM ECM

Effect of modality on simple
summation (Kehoe et al., 1994).

YES
Noise and tone varied in timbre; no

other assumptions are necessary.

YES
Assuming higher
replacement for
unimodal than

multimodal stimuli.

YES
Assuming more configurality for

unimodal than multimodal stimuli.

Effect of temporal separation on
simple summation (Rescorla &
Coldwell, 1995).

YES
Assuming that temporal separation

is separable from visual dimensions.

NO
Unless the model is
developed further.

NO
Unless the model is developed further.

Effect of modality on differential
summation (Myers et al., 2001;
Ploog, 2008).

YES
Assuming that color and size are

integral for pigeons.

YES
Assuming that more

similar stimuli
produce higher
replacement.

YES
Assuming that more similar stimuli
produce more configural processing.

Summation with a recovered
inhibitor not affected by modality
(Pearce & Wilson, 1991).

YES
No other assumptions are necessary

NO
Unless it is assumed
that modality does

not affect
replacement, which

contradicts first entry
above.

NO
Unless it is assumed that modality does

not affect configurality, which contradicts
first entry above.

Effect of the spatial position of
stimuli on the blocking effect
(Glautier, 2002; Martin & Levey,
1991).

YES
Assuming that spatial position and

color are separable dimensions.
Glautier's results also require

assuming that color and shape are
integral dimensions.

NO NO

Prevention of a blocking effect
by random variation in position
of cues (Dibbets et al., 2000).

YES
Assuming that stock identity can be

encoded as a single dimension,
separable from spatial position.

NO NO

Asymmetrical generalization
decrement after addition and
subtraction of cues to/from
compound (e.g., Brandon et al.,
2000).

YES
Assuming sufficiently dissimilar

stimuli.

YES
Assuming

replacement value
larger than zero.

NO

External inhibition effect (e.g.,
Brandon et al., 2000)

YES
Assuming a prior on the outcome

with mean lower than zero.

YES
Assuming

replacement value
larger than zero.

YES
Assuming suffficient configurality.
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