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Abstract

Head motion in functional MRI and resting-state MRI is a major problem. Existing methods do

not robustly reflect the true level of motion artifact for in vivo fMRI data. The primary issue is that

current methods assume motion is synchronized to the volume acquisition and thus ignore intra-

volume motion. This manuscript covers three sections in the use of gold-standard motion-

corrupted data to pursue an intra-volume motion correction. First, we present a way to get motion

corrupted data with accurately known motion at the slice acquisition level. This technique

simulates important data acquisition-related motion artifacts while acquiring real BOLD MRI

data. It is based on a novel motion-injection pulse sequence that introduces known motion

independently for every slice: Simulated Prospective Acquisition CorrEction (SimPACE).

Secondly, with data acquired using SimPACE, we evaluate several motion correction and

characterization techniques, including several commonly used BOLD signal- and motion

parameter-based metrics. Finally, we introduce and evaluate a novel, slice-based motion

correction technique. Our novel method, SLice-Oriented MOtion COrrection (SLOMOCO)

performs better than the volumetric methods and, moreover, accurately detects the motion of

independent slices, in this case equivalent to the known injected motion. We demonstrate that

SLOMOCO can model and correct for nearly all effects of motion in BOLD data. Also, none of

the commonly used motion metrics was observed to robustly identify motion corrupted events,

especially in the most realistic scenario of sudden head movement. For some popular metrics,

performance was poor even when using the ideal known slice motion instead of volumetric

parameters. This has negative implications for methods relying on these metrics, such as recently

proposed motion correction methods such as data censoring and global signal regression.
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Introduction

Head motion is largely considered an intractable problem in functional MRI (fMRI) and

resting-state fMRI (RS-fMRI). Nearly all fMRI studies rely on blood oxygenation level-

dependent (BOLD) contrast, generated by a vascular response to increased neuronal activity.

BOLD signal changes, whether spontaneous or in response to a stimulus, are relatively

small, at most a few percent of the average signal level. Therefore, head motion during

acquisition can result in signal changes from several underlying processes that can easily be

greater than the BOLD signal changes, reducing sensitivity and specificity (Bullmore et al.,

1999; Friston et al., 1995; Friston et al., 1996; Hajnal et al., 1994; Hajnal et al., 1995).

Subtle differences in motion characteristics can affect the conclusions drawn by a study

(Bullmore et al., 1999; Lund et al., 2005) and important past findings have been called into

question by recent work (Hallquist et al., 2013; Power et al.,; Satterthwaite et al.,; Van Dijk

et al.).

There are many motion correction strategies at present, but these are limited by the

assumption that motion is synchronized to the volume acquisition1. To test the sensitivity to

intra-volume motion and develop an intra-volume correction, new methods are needed. The

first requirement is realistic BOLD-weighted validation data with known intra-volume

motion corruption in order to assess volumetric and intra-volume methods. This is important

because past validations have been limited to evaluating the effects on variance reduction in

live human data, the effects on residuals in simple partial volume simulated data, or the

average activation in real data(Ardekani et al., 2001; Morgan et al., 2007; Morgan et al.,

2001; Oakes et al., 2005; Wu et al., 1997; Xu et al., 2007) (Johnstone et al., 2006). These

evaluations all used either real data with unknown motion, neuronal and physiologic activity

or simulations that did not model motion effects realistically. Therefore, we first require

realistic BOLD data with known intravolume motion.

Realistic Intra-Volume Motion Corrupted Data

BOLD MRI is, in the vast majority of cases, acquired with 2D echoplanar imaging (EPI),

and in EPI individual slices are acquired separately in time on a temporal grid spaced over

the volumetric repetition time (TR). Newer multiband EPI is similar, except that two or

more spatially-separated slices are acquired simultaneously. Most current motion correction

techniques assume that when motion occurs, the entire volume is affected the same way.

The volumetric, partial-volume effects are hence termed the first-order motion effects. This

assumption reduces the problem of correcting the motion to a simple head registration

problem. Volumetric motion registration methods determine the average head motion over a

1There is a method to interpolate volumetric motion to the slice acquisition Roche, A., 2011. A four-dimensional registration
algorithm with application to joint correction of motion and slice timing in fMRI. IEEE Trans Med Imaging 30, 1546-1554., but the
resulting motion at each slice remains a function of the volume motion.
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volume, and this average volume-to-volume motion can be removed using either a

prospective motion correction during data acquisition(Thesen et al., 2000) or a retrospective

motion correction after acquisition(Cox and Jesmanowicz, 1999; Friston et al., 1995; Hajnal

et al., 1995; Jenkinson et al., 2002; Jiang et al., 1995). Most importantly, these methods do

not remove the intra-volume out-of-plane motion artifact or other second-order effects.

Second-order motion artifacts arise from four primary sources: spin history, intra-volume

partial-volume, B1 inhomogeneity, and B0 inhomogeneity. Spin history effects can

dominate the acquisition and are solely due to out-of-plane motion(Friston et al., 1996;

Muresan et al., 2005). These effects are discussed in more detail in the supplement.

We implemented a simple experimental method that acquires a BOLD-weighted MRI

dataset with an “inverted” prospective motion correction. By altering the gradient axes on-

the-fly independently for each slice according to pre-defined motion parameters, we can

inject arbitrary motion with very high accuracy: Simulated Prospective Acquisition

CorrEction (SimPACE), described in more detail in Theory. Note that this sequence does

not simulate intra-slice motion, and any data it produces must assume that motion occurs

exactly at the slice raster, which is not entirely realistic. Note also that this sequence cannot

produce B0 shim change effects or B1 receive/transmit field effects, but it will obtain most

of the signal changes due to real head motion, including intra-volume partial volume, spin

history and B0 phase-encode image warping effects. This simple modification allows the

creation of real BOLD data with accurately-reproduced signal artifacts. Acquisition of such

data in cadavers and live subjects represents gold-standard data that can be used to test

existing motion characterization and correction methods with a ground truth. In this study,

we acquired gold-standard known-motion BOLD data in living subjects at rest and in

cadavers using this sequence.

Motion Correction Methods

Motion correction methods used in BOLD MRI are well known to fMRI researchers. Nearly

all head motion correction strategies include a method to detect the correct sampling grid

using the data and then resample accordingly at the boundaries of each volume acquisition.

In most implementations, head motion is assumed to be rigid-body motion, with 3

translations and 3 rotations comprising the 6 degrees of freedom (DOF) of rigid-body

motion. Volumetric correction for BOLD MRI was initially done in the early days of fMRI

by adapting Roger Woods’ automated image registration (AIR) algorithm, originally

developed for PET functional imaging studies(Woods et al., 1992). BOLD-specific methods,

which were initially described nearly 20 years ago(Friston et al., 1995; Hajnal et al., 1994;

Hajnal et al., 1995), have since undergone rapid development(Ardekani et al., 2001; Cox

and Jesmanowicz, 1999; Derbyshire et al., 1998; Lee et al., 1998; Thesen et al., 2000), and

have been implemented comparably(Ardekani et al., 2001; Morgan et al., 2007; Morgan et

al., 2001; Oakes et al., 2005) across common MRI analysis packages(Cox, 1996; http://

www.fil.ion.ucl.ac.uk/spm, ; Smith et al., 2004). These methods all rely on using small

displacement approximations to produce an analytic solution (unlike the AIR method, which

is an iterative, generalized method). These techniques resample the volume to be corrected

and compare the repeatedly updated resampled volume to a “base” image using a search for

the minimum total difference through various cost functions. Robustness is dependent on
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signal-to-noise ratio (SNR), image contrast, the assumption of small, volumetric head

motion (or continuous smoothly interpolated motion(Roche, 2011)), and sufficient image

coverage in 3 dimensions.

Residual effects of motion that remain in the corrected data are typically modeled

retrospectively using the motion parameters from the motion correction. In this method, a

second-order polynomial function of the motion parameters or a Taylor series expansion of

the effect on the Bloch equations (and possibly containing derivatives of these) can be least-

squares fitted to the timeseries data(Bullmore et al., 1999; Friston et al., 1996). The

regressed model is subsequently subtracted to attenuate the motion artifact, which we call

second-order motion correction. Early work demonstrated efficacy using the volumetric

parameters(Friston et al., 1996), but later work extended this to the more appropriate

trigonometrically-derived voxelspecific displacements based on the volumetric

parameters(Bullmore et al., 1999). This method can be useful in attenuating severe motion

artifact associated with difficult patient populations such as those with movement

disorders(Beall et al., 2013), but unavoidable overlap with the experimental paradigm or

BOLD signal results in a reduction in sensitivity for fMRI studies. As the complexity of the

model is increased in an attempt to model more of the motion-related artifact, BOLD

sensitivity drops. This is true regardless of what is being regressed, including arbitrary

random vectors, and the only way to reduce this loss is to reduce the number of

regressors(Beall, 2010).

Motion Characterization

The characterization of motion present in data is almost as important as motion correction.

For many years, the most reliable way to assess for motion present in data was a qualitative

“visual inspection” of the resulting statistical map by an experienced researcher. This, of

course, is very subjective and is only relatively robust for the assessment of false positive

increase from stimulus-correlated motion in block-style fMRI paradigm designs. An

increase in false negatives is difficult to assess visually since it cannot be distinguished from

reduced connectivity or activation, such as is the case for event-related fMRI, connectivity

and block fMRI with stimulus-uncorrelated motion. Many objective, quantitative motion

metrics have been proposed over the years, the first being that of Jiang et al. (Jiang et al.,

1995). They proposed to use the average voxel displacement over the voxels intersecting a

parallelipiped running in the dorso-ventral direction centered on the isocenter of the volume,

or total displacement (TD). The dominant practice in the field at present relies on simpler

metrics based on the vector sum of the effect of all 6 DOF motion parameters on a voxel at

the edge of the brain(Jenkinson et al., 2002; Power et al., 2011). The first derivative of

motion parameters or the RMS difference between subsequent motion matrices(Jenkinson et

al., 2002) is computed. Then each rotation is converted to representative edge-of-brain

translation by multiplying the rotation by a value approximating the radius of the human

head. The vector sum across the first derivative volume translations and these converted

rotational translations produces a single metric for each volume. Metrics such as these are

used for quality control, in censoring methods or, in the case of the global BOLD signal, as a

regressor of no interest that is intended to capture variance due to motion and physiology. In

this study, the accuracy of each metric at capturing motion-related variance is examined
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using SimPACE data. A detailed discussion of motion censoring and global signal

regression as motion correction is included in the supplemental material.

Intra-Volume Motion Correction

The results of our investigations with SimPACE cadaver data led us to believe an intra-

volume correction was possible. A key finding was the realization that the volumetric

parameters are related to the sum of the slice motion. This insight led us to the development

of an algorithm to estimate the out-of-plane motion and correct the data using these

estimates: SLice-Oriented MOtion COrrection (SLOMOCO). Our method is not a

coregistration technique, but a slicewise rigid-body motion parameter estimation and

subsequent correction through regression using these parameters. We will show that, with

our implementation, we observe motion estimates that correspond to the true motion. We

will also show that with our algorithm the correspondence is stable over time. Thus, these

motion estimates can be used as regressors in a voxel- and slice-accurate motion model.

First, we perform an in-plane slicewise (intra-volume) motion correction. Then, we freeze

the motion on all slices but a slice of interest and pass the mostly frozen volume to a

standard volumetric correction. This is repeated for all slices. Finally, we use these motion

estimates in a voxel- and slice-specific second-order motion regression. If these motion

estimates correlate very highly with the true motion, then they will be suitable for

regression, regardless of the correctness of the amplitude of the motion estimates. We show

with SimPACE and in real data, that this is indeed the case and that the estimated motion

parameters correlate very highly with the true motion parameters.

Our objective in this study was to use a new acquisition, SimPACE, to test, evaluate and

develop motion methods. For motion characterization, we evaluate the efficacy of several

metrics based on volumetric motion parameters and metrics based on BOLD signals that

have been used in the literature and demonstrate that none of them are effective at robustly

identifying realistic motion corrupted volumes in fMRI data. For motion correction, we

compare the accuracy of 3 widely-used volumetric correction methods and we compare the

effect on motionrelated signal from second-order correction (volumetric and voxel-specific).

Finally, we compare SLOMOCO and show that this technique produces a correction that is

superior to existing methods.

Materials and Methods

Study overview

In this study, we acquired BOLD-weighted data obtained with a motion-injection pulse

sequence (described in the Appendix: SimPACE) in cadavers and living subjects and

compared the true motion with the efficacy of several motion characterization metrics. We

then compared the efficacy of several motion correction methods, including SLOMOCO. To

assess the effect of each method on motion-related signal, we compared the image standard

deviation in cadaver data across corrections described in detail in the Appendix.

Beall and Lowe Page 5

Neuroimage. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Study population

This study made use of cadaver data acquired through a rapid postmortem protocol study

described in Fisher et al(Fisher et al., 2007). MRI data were acquired from a total of 7

cadaver subjects (all cadavers scanned within 8 hours postmortem and before any tissue

removal). The collection and use of human tissue were approved by Cleveland Clinic’s

Institutional Review Board. A total of 2 male and 1 female live healthy participants (mean

age, 35 y; range, 33–38 y) were recruited for MRI examination (controls). All study

procedures were approved by the Cleveland Clinic’s Institutional Review Board, and all

research participants provided informed consent after receiving complete verbal and written

descriptions of the study.

MRI data acquisition

Two scans were acquired in all subjects. Data were acquired with a 12-channel receiveonly

head array on a Siemens Trio 3T scanner (Siemens Medical Solutions, Erlangen, Germany).

All controls were fitted for a bite bar to restrict head motion during scanning. Each scan

session consisted of the following scans:

• Scan 1: Anatomic 3D whole-brain T1 study: T1-weighted inversion recovery

turboflash (MPRAGE); 176 axial slices; thickness, 1 mm; field of view, 256 mm ×

256 mm; TR/echo time/inversion time/flip angle, 1900 ms/1.71 ms/900 ms/8°.

• Scan 2: Resting connectivity scan (rest): Whole-brain BOLD-weighted EPI

sequence using SimPACE and a motion injection vector file described in the

supplementary material. 132 repetitions of 31-4 mm thick axial slices; echo

time/TR, 29 ms/2,800 ms; matrix, 128 × 128; field of view, 256 mm × 256 mm;

receive bandwidth, 250 kHz. Controls were instructed to rest with their eyes closed

and refrain from any voluntary motion.

For controls, physiologic signals were acquired with a pulse oximeter on the index finger of

the left hand and with respiratory bellows around the chest in Scan 2. Physiologic timing

files were synchronized to scanner data acquisition according to a previously published

method (Beall and Lowe, 2007).

Image postprocessing

The functional connectivity MRI data from Scan 2 were branched into multiple parallel

correction pipelines. A comparison of three commonly used volumetric corrections is

described in the supplement. For simplicity of presentation, we present results here using

3dvolreg from AFNI. After volumetric head motion correction with AFNI (Cox, 1996), the

data were branched down two separate pipelines to compare second-order motion correction

methods including SVOL (Friston et al., 1996) as described in Eqn 2 and SVOX (Bullmore et

al., 1999) as described in Eqn 3 (see Appendix for equations and details). Briefly, second-

order motion correction methods are regression-based corrections that consist of fitting and

then removing the projection of various motion models at every voxel. The primary

difference between these models is the use of either the same motion model matrix for all

voxels as in SVOL or a unique, trigonometrically-derived motion model matrix for each

voxel, as in SVOX. These corrections were performed using volumetric motion parameters to
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construct the motion models. This study also sought to compare effectiveness of slicewise

motion parameters. Thus, for additional comparisons using the known, true injected

slicewise motion and SLOMOCO-detected slicewise motion, we branched the data down

two additional separate pipelines both using SVOX-SLC as described in Eqns 5 & 6; one

corrected using the injected slicewise parameters and the other corrected using SLOMOCO.

For data corrected with SVOX-SLC no volumetric correction was performed first. Additional

comparisons are included in the supplement, using the other models and a volume-averaged

form of the true injected slicewise motion. No further corrections were performed.

A separate pipeline correction was performed to demonstrate the effect of SVOL, SVOX and

SVOX-SLC on false positives due to motion in functional connectivity MRI data. In this

pipeline, the data for controls were corrected for volumetric motion and were then corrected

for adaptive physiologic noise sources using the monitored physiologic data and the

PESTICA for AFNI v2.0(Beall, 2010; Beall and Lowe, 2007); the three variations of

second-order motion correction were then performed as described above. Cadaver data were

corrected in the same way but without physiologic correction. Corrected data were then

spatially filtered and analyzed using tools integrated with InstaCorr from AFNI(Jo et al.),

and connectivity maps were generated for the posterior cingulate and left primary motor

cortex. The purpose of this final comparison is to demonstrate the use of these three

corrections in real data and show there is a visible effect on false positive rate. We stress that

it is not possible to separate the false positive and false negative voxels from such a simple

analysis.

Data Analysis

Image motion metric analysis and global signal

BOLD-based motion metrics: Four variants of average BOLD signal were computed: 1)

global signal (GS), 2) percent global signal (PGS), 3) global root-mean-square (RMS) signal

(VARS), and 4) DVARS(Power et al., 2011). GS was computed by averaging the signal at

each voxel over the entire brain; the result was then detrended to obtain the GS. Following

this step, the mean signal level of every voxel was normalized to 1000 and only voxels

completely inside the brain at all timepoints were used, as described in Power et al(Power et

al., 2011). PGS was computed by first subtracting the mean over time, detrending and then

dividing by the mean (over time) signal at each voxel, and then taking the average over the

entire brain. VARS was computed by calculating the square of the detrended and de-meaned

image data before summation over voxels and then calculating the square root of the

resulting timeseries. The VARS metric was so named for consistency with the DVARS

metric, as it is the same measure but created without taking the first derivative. The DVARS

(or 1st temporal derivative of the RMS signal)(Power et al., 2011) was computed by first

subtracting the previous timepoint from each timepoint of the detrended data to generate a

new difference timeseries, which was then squared, summed over voxels and the square root

of the resulting timeseries was taken. A threshold of 0.5 DVARS was used to identify

corrupted volumes(Power et al., 2011), and this was the threshold used for all BOLD signal-

based metrics.
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Volumetric motion metrics: The volumetric motion parameters from each volumetric

correction were converted into several motion metrics. However, it is important to note that

there are currently two different ways of using the motion parameters: absolute and relative

motion. Absolute motion means simply taking the motion metrics without any further

processing, while relative motion means taking the difference between subsequent volumes.

The relative motion will be referred to herein with the suffix -1D, because it is created by

taking the difference between subsequent volumes, or the first derivative. The absolute

motion will be referred to with the suffix -0D, because there is no derivative taken. We

make no claims here as to which is more appropriate (beyond showing that neither works

well), but note that both are commonly used, with first derivative being more popular. These

-0D or -1D parameters are then used to generate various motion metrics.

The metrics included 1) the method of Jiang et al for mean voxelwise total displacement

(TD) over a parallelepiped centered on isocenter of the acquired volume(Jiang et al., 1995);

2) the square root of the sum of squares of the volumetric translations (VTD)(Van Dijk et

al., 2012); and 3) framewise displacement (FD) or the straight sum across the 6 absolute

value volumetric motion parameters, after first converting rotations to displacements on a

50mm sphere(Power et al., 2011). Thus we generated the following motion metrics for each

dataset: TD-1D, TD-0D, VTD-1D, VTD-0D, FD-1D and FD-0D. For identification of

corrupted volumes, a threshold of 0.5 was used for TD and FD(Power et al., 2011) and a

threshold of 0.1 was used for VTD(Van Dijk et al., 2012), both 0D and 1D forms.

Slicewise motion metrics: Additionally, each of these measures was computed using the

slicewise injected motion parameters (TRU): TD-1D-TRU, TD-0D-TRU, VTD-1D-TRU,

VTD-0D-TRU, FD-1D-TRU and FD-0D-TRU. These all have the suffix –TRU added to

indicate that these are a version of the metric calculated using the true motion. The TRU

motion metrics contain more datapoints (the number of slices times volumes) than the other

metrics, so for comparison, each TRU metric was converted to a volumetric form. Because

the intent is to identify volumes containing motion corruption, the metric should be sensitive

to the largest motion within a volume. Therefore, the maximum slicewise motion within

each volume was taken and used as the motion for that volume. This is denoted by the

additional suffix –TRU– SLC.

To evaluate the correspondence between these metrics, each metric was used to identify

motion corruption using thresholds as described in published reports. The indices

corresponding to known motion corruption events were compared to indices detected by

each metric. Finally, the various motion metrics and global signals were plotted for visual

inspection, to demonstrate the relative robustness of identification of motion corrupted

volumes associated with each metric and illustrate differences in sensitivity to motion that is

primarily rotational or translational.

Volumetric correction performance analysis: correlation and NMSE with
ground truth—To compare the true injected motion parameters with the detected

volumetric parameters, the injection vectors must be averaged across the volume to produce

a single set of rigid-body parameters per volume. In contrast to the process described above

for the TRU–SLC metrics, in this case it is the average motion that is most relevant to
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detected volumetric parameters. Therefore, for each volume of the injected motion

parameters the average was taken over the slices, separately for each of the 6 DOFs. This is

denoted by the additional suffix –TRU–VOL. The volumetric motion parameters obtained

were then compared with the TRU–VOL injected motion parameters using Pearson linear

correlation. Results for each of 3 different software tools are given in the tables, with more

details in the Supplement. The distribution of motion parameters was assessed for

significantly different means between tools using a 2-sample t-test and a corrected p-value

of 0.05. The Pearson linear correlation is not sensitive to amplitude, so we examined how

closely the detected motion amplitude followed the injected motion using the normalized

mean square error (NMSE). In the following calculations NMSE is the ratio of the standard

deviation of the difference to the standard deviation of the average motion, as described in

Eqn 1, where ×= (detected motion – injected motion) and y = ½ (detected motion + injected

motion).

Eqn1

Motion correction comparison: image temporal variance—The temporal standard

deviation (tSTD) of the raw data and each motion corrected dataset was computed within a

whole-brain mask and a histogram was created. The mean brain tSTD was computed for

each dataset’s histogram and stored. The mean and standard deviation of this mean tSTD

across subjects was computed and reported.

Results

Image motion metric analysis and global signal

Table 1 shows the percent of timepoints during realistic motion-injection identified as

corrupted with each volumetric metric, the percent of timepoints that correctly corresponded

to injected motion timepoints and the percent of timepoints misidentified as motion. The

table shows that DVARS and VARS metrics identified no volumes as corrupted at the 0.5

threshold, and slightly better performance at a lower threshold of 0.1. Note it is possible that

FD and TD may perform better if different thresholds were used, we simply used the

thresholds from the literature(Power et al., 2011; Van Dijk et al., 2012). In the lower section

of Table 1, the metrics based on slicewise injected motion (TRU) are also shown for

comparison. Note these are idealized metrics, because the slicewise true motion is not

available in standard practice, thus these are intended only to show that with slicewise

motion, one can identify corruption events with high accuracy and specificity, in comparison

with those metrics based on volumetric parameters, which do not perform well.

Figures 3 and 4 show motion metrics derived on two distinct segments of SimPACE data.

Figure 3 shows metrics during realistic (intra-volume) motion injection and Figure 4 shows

metrics during unrealistic (volumetric) motion injection. Figures 3a and 4a shows the four

mean signal metrics: GS, PGS, VARS and DVARS. Figures 3b and 4b shows 1D volumetric
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(AFNI) motion parameter-based motion metrics (TD-1D, FD-1D and VTD-1D) with the 0D

form of TD based on the original injected motion parameters at every slice (TD-0D-TRU).

Figures 3c and 4c shows the non-derivative motion parameter-based motion metrics

(TD-0D, FD-0D and VTD-0D). These metrics produce very different results and, of note,

the 1D-based mean BOLD signal (DVARS) indicates that for every moderate to large

motion injected, there are two adjacent volumes that would be indicated as being equally

corrupted (see Figure 5, all peaks of derivative-based metrics are 2 volumes wide).

However, this is not the case, as the signal artifact in individual voxels is predominantly

synchronous with the instantaneously injected motion. This clearly presents a problem for

all 1D-based metrics, whether based on signal changes or motion parameters. Figures 3 and

4 demonstrate that in-plane (3DOF) translation parameter-based metrics (VTD-0D and

VTD-1D) have dramatically different sensitivity to rotational and translational motion.

Figure 4 has notations indicating rotational motion injection, demonstrating that VTD is not

as sensitive as the other measures to rotational motion. Further, motion occurring on only a

few slices, during the slices-only injection phase of the scan, is not detected well by either

signal-based or parameter-based methods. Figure 3 shows clearly that volumetric motion

parameter-derived metrics miss non-volumetric motion. This inaccuracy is proportional to

the number of slices with a given motion, and thus in real data, volumetric-based motion

parameters miss on average at least 50% of the motion. Multiple independent directions of

motion within a given volume may actually increase the amount of missed motion.

Volumetric correction performance analysis: correlation and NMSE with ground truth

The motion parameters obtained from all software tools were highly accurate when

compared to the volume-averaged injected TRU motion. These findings were true both for

linear correlation and NMSE measures. It is important to note that in order to make

comparisons among different software, the parameters must be converted to have the same

rotational origin. FSL rotation is about the corner of the image cube, rather than image

center, so for comparison, these were converted to center of image following the MATLAB

code detailed in the Supplement.

For SLOMOCO detected motion parameters, the linear correlation to the injected motion

was very high (Table 4). A slicewise examination of accuracy showed that slices at the outer

edges of the volume had poor correlation to injected motion, while all other slices had a very

strong correlation with the injected motion (Figure 7). If one discards the outermost slices,

the performance of this method is excellent.

Motion correction comparison: image temporal variance

As can be seen in the cadaver data columns of Table 5, the image noise is reduced by over

half (56% reduction in tSTD) by the best corrections (second-order correction using the

retrospective SLOMOCO method). Volumetric coregistration alone (VOL in Table 5)

performed about half as well by comparison, reducing image standard deviation by 27%.

Second-order correction with the volumetric model produced a modest improvement of a

further 13% (SVOL and VOL+SVOL), marking a further improvement of about halfway to

the best corrections. Meanwhile, the voxel-specific model, using the retrospective motion

parameters (SVOX in Table 5) performed nearly as well as the fully slicewise model
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(SVOX-SLC with SLOMOCO). Additional data from previously-acquired cadaver brains was

examined for a baseline measurement of tSTD without motion injection. This data was

identical to the SimPACE data except for the lack of injected motion, and shows the level of

non-motion noise present in this data. The cadaver baseline data indicates that common

motion correction methods can account for between 52 and 74% of the motion-related

artifact.

Table 6 shows the same, but using the injected truth motion as the basis for each motion

correction. Interestingly, the use of volume-averaged truth motion in regression models

produced very similar reduction in tSTD as when using the retrospective motion parameters.

The best performance came when using slice-wise motion, whether using retrospective

slicewise motion (SVOX-SLC SLOMOCO in Table 5) or the truth slicewise motion

(SVOX-SLC TRU-SLC in Table 6). The voxel-specific volumetric model (SVOX in Table 5 or

SVOX TRU-AVG or TRU-SLC in Table 6) approached this performance but the fully

slicewise models performed better by about five percent. It is interesting to note that in live

subjects, the fully retrospective models (Table 5, last column) performed better than truth.

We believe this may be due to small real subject motion in these live subjects that caused the

actual motion to deviate from the TRU motion parameters. In live subjects, there will be

some real unanticipated motion such that TRU motion parameters deviate from the actual

motion. In cadaver data, there is no such deviation and TRU motion is the actual motion,

which was the primary motivation for obtaining the cadaver data.

Figure 7 shows seeded connectivity maps in a cadaver and Figure 8 in live subject

SimPACE data corrected with VOL, VOL+ SVOL, VOL+ SVOX, using SVOX-SLC with

SLOMOCO and SVOX-SLC with TRU parameters prior to spatial filtering and analysis,

demonstrating a reduction of motion artifact that was not removed by the current best

methods available (SVOL or SVOX). In the case of the cadaver data, SLOMOCO correction

was comparable to TRU, while in live subject data SLOMOCO performed better than TRU,

presumably because of real additional subject motion such that the true motion deviated

from TRU. Insets in the lower right of each figure show a representative voxel timecourse

after each correction (see Supplement for additional displays).

In a supplementary analysis, we simulated the effect of BOLD contamination on estimated

motion from SLOMOCO. This is described in the supplement, but we note here we did not

observe a change in the SLOMOCO estimates from the presence of BOLD signal

contamination.

Discussion

We have demonstrated that motion injection with SimPACE is useful for the evaluation of

motion correction methods. Using cadaver data acquired with SimPACE, we have

demonstrated that commonly used motion metrics based on volumetric motion estimation

are not robust estimators of actual motion. We have further shown with SimPACE that for

BOLD-weighted data, if one knows the motion parameters for every slice, it is possible to

remove most of the motion artifact. Finally, we have demonstrated the effectiveness of a

new, retrospective algorithm that obtains accurate motion parameters for nearly all slices
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and provides an avenue for retrospective correction of motion-corrupted BOLD-weighted

MRI data.

As assessed with correlation and mean square difference, SPM, AFNI and FSL performed

equally well at obtaining the correct motion parameters. However, it is important to note that

while AFNI and SPM assume the image center for rotations, FSL’s mcflirt (v5.0.2) is

instead converted to rotations about the first image voxel in the lower image corner. The

result is that the translation parameters reported (MAT files) by mcflirt (v5.02) must be

converted prior to comparison with other tools. Furthermore, all versions of the motion

metrics compared herein may be inappropriate if this is not accounted for. In particular,

FSL-derived TD and FD may count the effect of rotations about center of mass more

strongly, and in a manner dependent on the image field of view because the translations will

include center of mass rotation multiplied by the distance to image corner (for small angles).

This issue could also negatively affect second-order motion correction, whether voxel-

specific or volumetric models are used.

The parameters produced by our new SLOMOCO algorithm correlated with injected

parameters (4836 timepoints) nearly as highly as the volumetric motion correlated with the

volume-averaged injected motion (156 timepoints); however, considering that SLOMOCO

produces the full timeseries of all slices and volumes, the correlation coefficient has a much

higher significance. When including live subjects, the correlation and NMSE with the truth

vectors is expected to diverge, as there is real motion in addition to the injected motion, and

this is indeed what was observed (Table 4). The lowest mean tSTD was seen with the new

slicewise model and either the TRU motion timeseries or the SLOMOCO timeseries.

In addition to our new slice motion model, we compared the Friston volumetric 12DOF

model (SVOL) and the Bullmore voxel-specific 12DOF model (SVOX). Tellingly, the

reduction in mean image tSTD in both cadavers and live subjects was about half as effective

with the volumetric model as with the voxel-specific model (Tables 5 & 6, cadavers only

column). With TRU regression or SLOMOCO with the new slice model, there was a

reduction of 56%. These are substantial potential increases in detectability, if they translate

directly to reduced noise level alone. For a simplistic illustration, if mean EPI signal level is

1000 and the noise level is 20, then a BOLD signal change of 1% is swamped by a noise

level double its size. For an acquisition such as the one used here in a 4.5-cycle block

paradigm experiment with 156 volumes, simulation shows that the linear correlation

between the reference and a BOLD timecourse increases from 0.218 (p=0.006) at tSTD=20

to 0.261 (p=0.00095) at tSTD=15 and to 0.2912 (p=0.00021) at tSTD=12, corresponding to

uncorrected, volumetric and voxel-specific regression respectively. In simple tests, this

translates to the difference between surviving a search penalty of 160, 1000, and 5000,

respectively. Real data and tests are not so simple, and data are typically smoothed for a

variety of reasons. Nevertheless, the use of volumetric motion model comes with a

significant cost to the correction efficiency and it should be avoided in favor of the more

appropriate voxel-specific model in every case, as there is no cost to the user beyond

additional care in setting up corrections.
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In a similar vein, we showed that the use of a simplistic volumetric translations-only (VTD)

motion metric(Van Dijk et al., 2012) is unsuitable for modeling the level of motion

corruption in a dataset. Any motion analysis using translations alone to generate the motion

metrics is likely to produce poor results. It may be expected that, because the correlations

between translations and rotations is high, translations alone are sufficient for a metric of

total displacement. Indeed, when using such metrics, where a single Euler angle and a single

total translation are calculated from the 3 rotation and 3 translation parameters

respectively(Van Dijk et al., 2012), the correlation between angle and translation is

extremely high for FSL. This is partly because the conversion to rotations about the image

corner results in a large portion of rotational motion appearing in the translation parameters.

However, this does not mean that rotations and translations are thus equivalent, and our

results show that this is not the case. The rotations are weighted arbitrarily by the distance

from image center to the image corner and may be over-weighting rotations for most fields

of view. Regardless, most in the field are unaware this is specific to one software tool, and

using this same metric with center-based motion parameters will be more inappropriate

because it will ignore rotations completely. We feel we must point out that using translations

alone should be expected to result in lower sensitivity than using metrics based on the full 6

DOF and thus we strongly recommend against this.

Because of the limited sensitivity of volumetric metrics to intra-volume motion (see Fig 3),

censoring using volumetric metrics cannot be expected to work reliably. It is possible

previous studies reporting efficacious results after using censoring are reflective of reduced

sensitivity, rather than effectiveness. It is difficult to draw conclusions from the use of

censoring in real data due to the metrics that were used to identify motion corrupted

volumes. It may be possible to use the SLOMOCO results to identify corrupted volumes, but

this must be determined using a larger set of data with more variety in the injected motion.

We point out that a justification often given for regression of global signal (or white matter

or CSF signal) is the assumption that some or much of the motion artifact can be modeled in

this way(Power et al.). This is not substantiated; as we demonstrate that the global signal has

little to do with the motion-related signal changes at each voxel (Figs. 3 and 4) and therefore

regressing global signal is not justified as a motion correction.

We did not assess a wider set of motion characterization methods, as these depend on having

a variety of different motion parameters to inject, which was considered outside the scope of

this study. We further point out our evaluation is naturally limited by the variety of motion

induced in our data. We are attempting to study the effect on bias and sensitivity. Ideally one

would inject motion that corresponds to real human head motion during tasks and rest. One

possibility would be to acquire motion data in a mock (i.e., no static field) scanner using a

commercial non-MRI tracker while subjects undergo a range of block-paradigm fMRI,

event-related fMRI and RS-fMRI scans, and then inject this motion into later RS-fMRI

scans of the same subjects in a real MRI. fMRI bias due to motion would be assessed by

treating the RS-fMRI data as fMRI data and analyzing these data as if the subjects were

performing the task. This data would also present a more thorough test of these motion

correction methods as pertains to fMRI or RS-fMRI bias and sensitivity. This effort is

outside the scope of this study, but we intend to follow up with such a study in the future.

Motion-injection data acquired in live subjects will also contain unavoidable real, non-

Beall and Lowe Page 13

Neuroimage. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



injected head motion which will result in divergence from the ground truth. For this reason,

data was only acquired in a few highly experienced subjects with known low motion

performance. Live subject data were acquired to demonstrate comparability and as proof of

principle for the type of study that would be needed to more fully assess BOLD sensitivity.

For this study, we did not compare any sequence protocol parameters for motion artifact

sensitivity, such as slice acquisition order, TR, flip angle and other parameters. It would be

advantageous to use protocols that minimize motion artifacts, and we intend to follow this

study with a protocol-optimization study using SimPACE.

Our evaluation of BOLD contamination was based solely on simulation, and this simulation

showed that there was very small contamination from the BOLD activation in the motion

metrics. The BOLD contamination in live subjects, whether from task or endogenous

fluctuations, could be much higher as the simulations are likely somewhat inaccurately

reflecting reality. BOLD contamination is a well-studied problem(Freire and Mangin, 2001;

Freire et al., 2002) and solutions exist for some fMRI experiments, but when the paradigm is

complex or unknown, as in the case of RS-fMRI, no solution exists. It may be possible to

use ICA to denoise the data, considering BOLD fluctuations as the noise, and effectively de-

BOLD the data, before estimation of the motion parameters. Subsequently, the de-BOLD

estimated motion could be applied to the original data with less motion contamination.

However, the full exploration and validation of such a method, is outside the scope of the

present study.

In live subject data, the use of image tSTD as a metric for the comparison of methods is

complicated by the existence of neuronal-related signal changes with a non-white temporal

noise spectrum that we do not wish to reduce, and some neuronal signals will be correlated

with motion as neuronal processes ultimately underlie head motion. The main problem with

using tSTD as a metric is that any regression noise removal will also remove variance,

regardless of the correctness of the model(Beall, 2010). If one were to compare a regression-

based noise correction to no correction, one has to somehow account for the intrinsic

reduction in variance through the reduction in degrees of freedom. However, by keeping the

number of regressors the same across compared methods, this problem is largely avoided

(but not completely, as the reduction in DOF is also dependent on the level of overlap, or

non-orthogonality, between regressors; motion regressors typically overlap). One can also

perform a Monte Carlo simulation of the effect of a given regression on a dataset’s variance

using regression of random, arbitrary vectors as in (Beall and Lowe, 2010), but this was not

necessary for our purposes as all comparisons were made across data with equal numbers of

regressions performed.

SimPACE does not obtain signal changes due to receive-field contrast and changes in static-

field homogeneity due to head position. However, in most of the brain these changes are

typically smaller than partial volume and spin history motion effects, and for a relatively

homogeneous coil both are likely to be smaller than the effect of motion on the phase-

encode warping, which SimPACE does produce accurately. Furthermore, these can be

accounted for or simulated retrospectively (Hartwig et al., 2011; Ooi et al., 2013; Xu et al.,

2007), although this is outside the scope of the present study. Additionally, SimPACE does

not produce within-slice acquisition motion or motion between excitation and completion of

Beall and Lowe Page 14

Neuroimage. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



EPI readout and thus is limited to between-slice motion. However, it is possible to induce or

retrospectively simulate readout acquisition motion effects by adding spatially-varying

phase to the raw k-space data(Bydder et al., 2002). It is unknown what the relative

contribution of readout motion is with respect to all other sources of motion artifact. This

could be studied with head motion tracking in a mock scanner setup.

There is considerable room for improvement to the SLOMOCO method. In particular, the

outermost slices of the acquired volume are detected poorly by SLOMOCO. This is not

surprising considering that the correction method relies on creating a template where the

surrounding slices are motion-free. This can easily be dealt with, as long as one knows when

setting up a protocol that the outermost slices will be at risk for motion. It may be possible to

use adjacent slice information to improve or otherwise clean up the detected motion

parameters for a given slice. Most head motion is slow enough that motion for a given slice

should be reflected in the slices acquired before and after it. Then these two slices could be

used to improve the motion estimation. In particular, the problem that SLOMOCO has with

the outermost slices might be addressed in this manner. To fully understand the robustness

of this method and the amount of head motion it is sensitive to, a study assessing a large

sample of head tracker data and alreadyacquired MRI data is needed. In Figure 2, the

injected and detected parameters are shown, and tellingly, there is some similarity over time

in the smaller deviations from truth for some DOF in some slices. However, the per-slice

accuracy correlations and MSE shown in Figure 6 shed more light on this situation. Figure

6a) shows that the spatially outermost slices have poor estimates with this method, and

Figure 6b) shows that there is a nearly geometric relationship between accuracy and location

within the volume. Figure 6c) breaks these data out by parameter and illustrates there is

indeed a relative scaling factor variability across slices, that is probably reducing the

effectiveness of the method. Given how the addition of an incorrect scaling parameter to any

one DOF degrades the regression substantially, this may provide an effective avenue for

improving the accuracy of motion estimates for each slice. At present time however, the use

of SLOMOCO requires the discarding of the outermost slices. This can be accounted for in

many cases when setting up a given acquisition protocol.

Head tracker systems for MRI may be useful for obtaining these motion parameters

independently and would be invaluable for further validation and development of this

method. However, given the accuracy with which SLOMOCO parameters represented the

true motion vectors, and the difficulty experienced in translating early results into accurate

head tracking, it is unclear whether head tracker data will be as accurate in obtaining

parameters as accurate for regression as SLOMOCO. Adding 100-micron resolution noise to

our injection timeseries resulted in a decrease in correlation between injection and injection

+noise to 0.876 over 4836 timepoints (drop from a correlation of 1.0 when noise=0). This is

comparable to the accuracy of the SLOMOCO z-translation parameters in Table 2 and

suggests that SLOMOCO is accurate to approximately 100 microns or better.

It is important to point out that linear models of motion artifact are not entirely realistic.

Spin history, warping and other effects are not linear, and are only approximately modeled

by linear fitting. This is a major limitation of these regression methods, and will result in

residual motion-related signal variance after correction.
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Even with perfect modeling and removal of motion, there is typically still an effect on the

resulting analysis(Bullmore et al., 1999). In task fMRI paradigms, any motion correlated

with the stimulus will reduce the power of the experiment and effectively reduce the BOLD

contrast-to-noise ratio (CNR). In RS-fMRI experiments, some low frequency BOLD

fluctuations correlate with head motion because the head motion is ultimately neuronally

derived. The characteristics of head motion will correlate with some of the resting state

signal and thus, CNR of the connectivity measurement may also be reduced. This is a

fundamental limitation of regression methods, that they cannot separate two covarying

signals “correctly”. At best, they should assign equal variance to each covarying signal but

this does not give the true proportion of variance due to each. Different experimental designs

incorporating known signal perturbations or contrasts during acquisition, such as mixing

paradigms or double-echo EPI, may be able to improve this situation. To produce analyses

that are completely free of motion artifact, one should model the effective CNR due to the

presence of motion on a subject-by-subject basis, in order to combine data with variability in

BOLD detectability, as has been shown previously(Bullmore et al., 1999). Finally, even

when using the injected motion vectors in the improved regression model, some motion

artifact remains, at what appears to be an equivalent level in cadaver and live subject data.

The regression model is still somewhat simplistic with respect to applicability to the T1

saturation effect and may therefore benefit from further modification.

Conclusions

The development and evaluation of motion correction methods for BOLD MRI have been

hampered by the lack of realistic data accompanied by truth motion timeseries. SimPACE is

an important step towards such gold-standard data. Insights obtained from these data led to

the development of a new slice-wise motion detection and correction tool. SLOMOCO, a

completely retrospective solution for head motion correction in BOLD-weighted MRI data,

is a substantial new advance. We also demonstrate that motion metrics based on commonly

used volumetric motion correction are not robust estimators of motion present in BOLD

data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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0D no derivative, absolute motion

1D first derivative, relative motion
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BOLD blood oxygenation level-dependent

DOF degrees of freedom

EPI echoplanar imaging

FD frame-wise displacement

fMRI functional magnetic resonance imaging

GS global signal

NMSE normalized mean square error

PACE Prospective Acquisition CorrEction

PGS percent global signal

PV partial volume

RF radiofrequency

RMS root mean square

ROI region of interest

RS-fMRI resting state fMRI

SLOMOCO SLice-Oriented MOtion COrrection

SNR signal-to-noise ratio

TD total displacement

TR repetition time

tSTD temporal standard deviation

VTD volumetric translations only.

Appendix

SimPACE

Modern MRI scanners include a method for semi-prospective head motion correction for

EPI. Briefly, after each complete EPI volume is collected, a volumetric coregistration

between the current volume and the first acquired volume is performed. The detected rigid-

body motion parameters are then applied to transform the current acquisition coordinate

system, which imparts an equivalent rigid-body translation and rotation of the tissue excited

and read out by the sequence of gradient pulses in the pulse sequence. This allows the

acquisition grid to follow the head motion at each volume and thereby remove accumulated

motion, although instantaneous motion is still present. This was first described and

implemented as Prospective Acquisition CorrEction (PACE)(Thesen et al., 2000). The

SimPACE acquisition consists of two simple modifications. First, instead of motion being

detected from the data, the motion parameters are read from a text file. Second, the gradient

coordinate system is updated for every slice, rather than only at volume boundaries. In this

way, instead of prospectively correcting for head motion, we can prospectively induce
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arbitrary and highly accurate head motion independently for every slice and effectively

simulate head motion effects (Fig 1). For discussion purposes, we follow the coordinate

convention described in Figure 1 and use axial slices, such that×and y are in the plane of the

acquisition, representing in-plane parameters, while z is the out-of-plane parameter. For the

present study, the goal is to obtain motion-corruption with a portion relevant for unrealistic

inter-volume motion (Fig 1a, lower left, and Fig 4) and a portion relevant for the more

realistic scenario of intra-volume motion(Fig 1a, lower middle and right, and Fig 3), using

the updating of gradients for each slice excitation and acquisition time.

Slice-accurate second-order motion model

There are several second-order motion regression models in use today that use volumetric

motion parameters. The most commonly used model (Eqn 2 for SVOL) includes the 6

volumetric motion parameters and their squares. Some implementations include one-

volume-delayed or first derivative of the parameters, to account for the spin history effect of

an out-of-plane motion on the subsequent volume, but at the cost of more regressors (Friston

et al., 1996). Note that x and xr represent translation along and rotation about the x-axis,

respectively, of the entire volume. We refer to this model as the volumetric model of

motion, because it does not model motion at each voxel independently but assumes that the

volumetric motion represents voxel motion. Because of the variable location of each voxel

with respect to the origin of rotation, this approximation will fail to model some of the

motion-related signal. For example, a rotation of the axial slice about the axis perpendicular

to it will result in opposite polarity displacements for voxels anterior and posterior to the

center of rotation. If this is combined into a timeseries with many other arbitrary head

motions, the resulting model will poorly fit signal changes due to motion. This model would

be improved by conversion of the volumetric motion into voxel-specific translations,

independently for each voxel. The voxel-specific model of SVOX described in(Bullmore et

al., 1999) and Eqn 3 converts the volumetric rotation and translation into individual voxel

translation. The model as described includes the voxel translations, translations squared and

copies of these vectors delayed by one volume to model spin history effect on the

subsequent volume.

Eqn2

The SVOX model is sufficient for modeling motion known at the volumetric time resolution.

However, to model motion known at the slice time resolution, this model must be modified

to account for the motion of adjacent slices. Eqn 4 shows the slice-specific model of

SVOX-SLC, incorporating zi and zs for the motion into this voxel of the adjacent inferior

slice’s voxel and the adjacent superior slice’s voxel, respectively. Note that the delayed in-

plane parameters (e.g., dxt-1, dyt-1, and their squares) have been removed, as we found that

these parameters did not explain any additional variance over randomly generated

regressors. Also note that parameters 7–10 in Eqn 4 are equivalent to (and identical to)

parameters 11 & 12 in Eqn 3 when using volumetric parameters instead of slicewise

parameters. Thus, with these adjustments, SVOX-SLC can describe slicewise motion artifact

signal in addition to artifact described by SVOX while retaining the same total number of
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regressors as the SVOL and SVOX models. A smaller number of regressors is useful because

increased regressors reduce sensitivity(Beall, 2010). More details on slice acquisition order

are provided in the supplementary material.

Eqn3

Eqn4

Slice-accurate motion parameters

As discussed in the introduction, we are unaware of a slice-to-volume coregistration method

for BOLD EPI that removes the timeseries motion artifact due to slicewise motion. Our

method, SLice-Oriented MOtion COrrection (SLOMOCO), is not a coregistration technique,

but a motion estimation and subsequent correction through regression. We will show that,

with our implementation, we observe motion estimates that correlate very strongly to the

true motion over an EPI dataset. The estimator amplitudes we observe are incorrect, which

precludes its use for slice-to-volume regridding, but because linear regression is insensitive

to amplitude, this drawback does not preclude a highly effective regression-based correction.

Thus, these motion estimates can be used as regressors in a slice-accurate motion model as

described above. Here we describe our algorithm:

1. The data are first corrected for in-plane motion by independently coregistering each

slice to the mean over time, while keeping the 3 out-of-plane DOF fixed to zero.

This step is not novel and implementations exist. This is hereafter referred to as

slicewise in-plane motion correction.

2. For each in-plane-corrected slice, a 3D+time dataset is constructed around this slice

of interest by freezing the motion on all other slices. All other slice data is replaced

with the mean image, replicated for each volume, except for the slice of interest,
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which is unchanged. These 3D+time datasets (one per slice) is then blurred with a

3mm full-width-half-maximum 3D Gaussian spatial filter. In each resulting slice

dataset, there is no temporal variance except on the slice that is not frozen.

3. For each slice dataset, a volumetric coregistration is performed over time using the

mean 3D image as the registration target (the mean image is not blurred), resulting

in a timeseries of independent motion parameters for each slice dataset. The set of

slice motion parameters obtained are then used without any further processing as

the estimators of the slicewise motion.

Note that this algorithm treats in-plane and out-of-plane motion differently. Because of the

2D acquisition, in-plane and out-of-plane motion produce different signal artifacts. In-plane

motion primarily induces partial volume effects and in some regions B0 and B1 effects,

whereas out-of-plane motion is primarily a combination of spin history and partial volume

effects. The SLOMOCO method assumes that there is no cumulative motion, thus either the

data must be acquired using a prospective motion acquisition strategy or a retrospective

volumetric correction must be performed prior to this algorithm. This is important because

otherwise any residual partial volume effects on real BOLD signal changes will affect fMRI

and connectivity analyses. Because it is not possible to cleanly separate signal changes due

to neuronal changes, partial volume and spin history effects, a partial volume correction for

out-of-plane motion would introduce as much or more signal artifact than would be seen

without out-of-plane partial volume correction. Our data show that the regression model is

the most effective way, of those considered, to remove artifact due to out-of-plane motion.

Second-order model and slice acquisition order

To model effects of spin history from voxels in adjacent slices on the present voxel, it is

necessary to include motion of those voxels into the present voxel. For interleaved

acquisitions, the temporal index of the adjacent slice motion is different for slices acquired

in the first temporal half (TR/2) or second half of the interleaved volume. Eqn 4 used

previous temporal indices (t-1) for adjacent slice effects. This is only true for slices acquired

in the first half of the acquisition, because these are affected by motion of adjacent slices

that occurred during the previous volume. Thus, one should use Eqn 4 for the first half slices

acquired in an interleaved acquisition, this is repeated here as Eqn 5: S(1st-half)VOX-SLC. To

model these effects for slices acquired in the second half of the volume, it is necessary to

include current temporal indices (t) for adjacent slice effects. This is shown in Eqn 6 for

S(2nd-half)VOX-SLC. The use of both Eqn 5 and 6 depending on which slice we are

modeling, will correctly account for whether the present slice timepoint occurs before or

after the acquisition of the 2 adjacent slices. Our algorithm appropriately alternates between

these two depending on the number of slices and the current slice number within the volume

(on Siemens EPI sequences, an even number of slices is acquired starting with the first even

slice, or slice number 2, while for an odd number of slices, the first acquired slice is the first,

most inferior slice).
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Eqn5

Eqn6

For sequential ascending acquisition of axial slices, it is necessary to include motion in the

superior direction of the inferior slice’s voxel that lies immediately beneath the present

voxel for which we are modeling motion (δzit), as that motion will steal signal from the

subsequent acquisition of the present slice’s voxel. It is also important to include any motion

in the inferior direction of the superior slice’s voxel immediately adjacent and above the

present voxel under analysis, occurring during the previous volume (δzst-1) as shown in Eqn

7. This relates to signal stealing from the previous volume when the superior slice was being

acquired. For ascending sequential acquisition, the effect of the inferior adjacent slice is

much greater than the effect of the superior adjacent slice and somewhat greater than the

present slice’s out-of-plane motion, because the temporal disturbance of the sampling grid is

so much greater. Any inferior slice motion into the present voxel disrupts the sampling from

TR-to-TR into TR-to-TR/zdim and then potentially back to TR. Meanwhile, any superior

slice motion produces a much smaller temporal disruption from TR-to-TR into TR-to- (TR-

TR/zdim). This model must be modified further for arbitrary slice timing, which we do not

cover here. We only point out that the relative importance of an adjacent voxel’s motion into

the present voxel is dependent on the timing relative to the present voxel and how this

motion would disrupt the acquisition timing.
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Eqn7
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Fig. 1.
Schematic of slicewise motion detection algorithm, a) schematic of volumetric motion

synchronized to the volume, motion part-way through volume acquisition in a sequential

acquisition and motion during an interleaved acquisition, b) SLOMOCO algorithm graphic

and c) SLOMOCO flowchart diagram.
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Fig. 2.
Injected motion timeseries, metric based on slicewise known motion, and selected portions

showing performance of SLOMOCO at detecting slicewise motion. A) TRU-AVG, TRU

(separated by DOF) and TD-TRU-0D. B) First selected time shows injection of x-, y-, and z-

translation spikes of 1 mm on 10 independent, nonadjacent (temporal or spatial) slices. B)

Second selected time shows x-, y-, and z-translation spikes on volumes. C) Injection

including last z-translation and x- and y-rotations, representing all 3 critical out-of-plane

DOF. Major deviation from injected motion exists almost exclusively on the 1 most inferior
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and the 2 most superior slices. Colors: blue = x-translation, green = y-translation, red = z-

translation, cyan = xrotation, purple = y-rotation.
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Fig. 3.
Motion metrics for realistic (top row, motion injected on 10 nonadjacent slices) slice-wise

injected motion and unrealistic (bottom row, motion injected for all slices within a volume)

volume injected motion. Far left (a,e) show injected motion parameters. Top row consists of

first 50 volumes of SimPACE scan shown in Fig 2 left panel and bottom row consists of last

100 volumes of same scan. A) slicewise and E) volumetric injected motion, B,F) GS, PGS,

VARS and DVARS BOLD signal-based metrics. C,G) No-derivative (TD-0D, FD-0D,

VTD-0D) volumetric motion parameter based motion metrics and slicewise injected motion

metric (TDTRU-0D). D,H) First-derivative (TD-1D, FD-1D, VTD-1D) motion metrics and

slicewise motion (0th derivative). Dotted and colored thresholds based on literature are also

shown for each metric (0.5 for BOLD signal-based metrics, 0.5 for TD, FD and 0.1 for

VTD), demonstrating the failure of volumetric motion parameter-based or BOLD signal-

based motion detection methods to appropriately flag slice-wise motion. Segments of

volumetric injection with rotational motion impulses injected are indicated with R at bottom

of G) and H). Metrics are displayed separated by individual maxima and minima. For

zoomed detail and overlay, see Fig 4. Vectors were normalized and plotted spaced for

visualization only.
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Fig. 4.
Selected segment of Fig 3, zoomed to show detail. Metrics are displayed overlain. Note in

zoomed view of slicewise injection in A) individual slice timepoints can be observed, with

1mm z-translation injection occurring over 10 nonadjacent slices within volume 32,

followed by xrotation injection on 10 slices in volume 36, and so on (every 4th volume).

Similarly, the zoomed view of volumetric injection in E) shows injection of 0.5 degrees z-

rotation motion on all slices of volume 72, followed by -1mm z-translation on all slices of

volume 76, and so on. Vectors were normalized and plotted spaced for visualization only.
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Fig. 5.
Detail of VTD-1D and VTD-0D, demonstrating the derivative-based metrics suffer from

nearly equal levels of assigned motion on two adjacent volumes, despite the motion

occurring only on one volume. Vectors were normalized and plotted spaced for visualization

only.
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Fig. 6.
A) Pearson linear correlation versus temporal slice number (interleaved ascending

acquisition: slicetime 1 = slice 1, slicetime 16 = slice 31, slicetime 31 = slice 30). B) MSE

versus temporal slice number. C) Breakout of (B) by each DOF, with translations on top and

rotations on bottom. The most inferior slice and the 2 most superior slices exhibit poor

correlation in the presence of very strong correlation for all other slices.
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Fig. 7.
Performance of motion correction methods on rs-fMRI analyses in cadaver subject

SimPACE data. Figure shows cadaver data corrected with VOL, VOL+ SVOL, VOL+ SVOX,

SVOX-SLC with SLOMOCO and SVOX-SLC with TRU. Seed placed in posterior cingulate,

each map shows InstaCorr connectivity at 0.4 correlation threshold. Timeseries plot in lower

right shows selected voxel timeseries after each correction, showing the reduction in motion

artifact with various motion models. Lower right corner shows same voxel location

timeseries after each correction. Note the reduction in signal spikes at arbitrary motion

injection timepoints every fourth volume during bulk of scan, as shown in Figure 2a.
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Fig. 8.
Performance of motion correction methods on rs-fMRI analyses in live subject SimPACE

data. Figure shows subject data corrected for physiologic noise, then in parallel with VOL,

VOL+ SVOL TRU, VOL+ SVOX TRU, SVOX-SLC with SLOMOCO and SVOX-SLC with

TRU. Seed placed in posterior cingulate, each map shows InstaCorr connectivity at 0.4

correlation threshold. Timeseries plot in lower right shows selected voxel timeseries after

each correction, showing the reduction in motion artifact with various motion models. Note

the visual improvement of SLOMOCO retrospective correction over the best correction

using the truth motion parameters (SVOX-SLC TRU), possibly due to real subject motion that

differs from the injected motion. Lower right corner shows same voxel location timeseries

after each correction. Note the reduction in signal spikes at arbitrary motion injection

timepoints.
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Table 1

Percent of corrupted volumes in SimPACE cadaver data identified by motion metrics. Motion was injected on

24% of volumes (12 out of 50 volumes). % corrupted indicates how many volumes were over the threshold.

VTD and all BOLD signal-based metrics suffer from high false positive rates and reduced sensitivity

compared to TD and FD. As noted in the text, none of the commonly used volumetric or signal-based motion

metrics perform well.

% Corrupted TPR FPR

Global signal-based metrics

GS 58 75 53

PGS 0 0 0

VARS (0.5) 0 0 0

DVARS (0.5) 0 0 0

VARS (0.1) 2 8 0

DVARS (0.1) 8 17 5

Volumetric motion parameter-based metrics

TD-0D 2 8.3 0

TD-1D 0 0 0

FD-0D 0 0 0

FD-1D 0 0 0

VTD-0D 24 66.7 10.5

VTD-1D 42 83.3 28.9

Idealized truth-based metrics (TRU)

TD-0D-TRU 24 100 0

TD-1D-TRU 48 100 31.6

FD-0D-TRU 48 100 31.6

FD-1D-TRU 50 100 34.2

VTD-0D-TRU 38 75 26.3

VTD-1D-TRU 66 91.7 57.9

TPR=true positive rate; FPR=false positive rate.
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Table 2

Accuracy of detected motion parameters with 3 volumetric coregistration tools. Accuracy assessed with linear

Pearson correlation between volume-averaged injected motion and detected motion parameters across 6 DOF

in 7 SimPACE cadaver datasets only

Pearson linear correlation between injected and detected motion

DOF AFNI FSL SPM SLOMOCO (volavg)

x-translation 0.8607 ± 0.2344 0.8793 ± 0.2274 0.9023 ± 0.1784 0.9004 ± 0.1723

y-translation 0.8241 ± 0.2417 0.8319 ± 0.2325 0.8652 ± 0.1945 0.8536 ± 0.1999

z-translation 0.9921 ± 0.004 0.9874 ± 0.0053 0.9877 ± 0.0051 0.9872 ± 0.0066

x-rotation 0.9679 ± 0.0119 0.9681 ± 0.0116 0.9912 ± 0.0057 0.9896 ± 0.0035

y-rotation 0.9726 ± 0.0103 0.9558 ± 0.0175 0.9909 ± 0.0066 0.9916 ± 0.0047

z-rotation 0.9932 ± 0.0061 0.9791 ± 0.0338 0.994 ± 0.0068 0.9897 ± 0.0105

DOF=degree of freedom.
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Table 3

NMSE between the injected and detected parameters shown in Table 2

NMSE between injected and detected motion

DOF AFNI FSL SPM

x-translation 0.3473 ± 0.176 0.2905 ± 0.1408 0.2649 ± 0.1342

y-translation 0.4443 ± 0.1821 0.4274 ± 0.1560 0.3705 ± 0.1374

z-translation 0.136 ± 0.037 0.1586 ± 0.0318 0.1627 ± 0.032

x-rotation 0.2718 ± 0.0402 0.2888 ± 0.0458 0.146 ± 0.0566

y-rotation 0.2525 ± 0.0282 0.3832 ± 0.0649 0.1395 ± 0.0491

z-rotation 0.1602 ± 0.0765 0.1588 ± 0.0504 0.1266 ± 0.0637

NMSE=normalized mean square error.
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Table 4

Accuracy of SLOMOCO motion parameters compared with injected motion, averaged by volume and for

every slice timepoint (number of slices × number of volumes). Third column is also shown in Table 2. Note

that correlation to all slice timepoints is lower, but the number of timepoints is much greater.

Averaged by volume - 156 timepoints All slice timepoints - 4836 timepoints

DOF All subjects (incl live subjects) Cadavers only (7) All subjects (incl live subjects) Cadavers only (7)

x-translation 0.7524 ± 0.3072 0.9004 ± 0.1723 0.5943 ± 0.2325 0.7019 ± 0.1541

y-translation 0.7128 ± 0.302 0.8536 ± 0.1999 0.6001 ± 0.2202 0.7043 ± 0.147

z-translation 0.9291 ± 0.1066 0.9872 ± 0.0066 0.8395 ± 0.0513 0.8641 ± 0.0172

x-rotation 0.9218 ± 0.1283 0.9896 ± 0.0035 0.7731 ± 0.0615 0.7969 ± 0.0306

y-rotation 0.9845 ± 0.0175 0.9916 ± 0.0047 0.7847 ± 0.0408 0.7795 ± 0.0466

z-rotation 0.8615 ± 0.2854 0.9897 ± 0.0105 0.7151 ± 0.1773 0.7977 ± 0.0786
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Table 5

Mean tSTD for SimPACE motion injection data after various retrospective motion corrections, including

volumetric correction with AFNI (VOL), second-order motion correction with VOL parameters (SVOL and

SVOX) and same after both VOL and second-order correction, and second-order correction with SLOMOCO

(SVOX-SLC). SimPACE data separated into cadavers only and live subjects only. Bottom row shows ideal

tSTD in cadavers in motion-free data (separate datasets acquired without motion-injection) and heavily

scrubbed/censored data in the live subjects (81 timepoints removed out of 156 total).

Mean tSTD Data (cadavers only) Data (live subjects only)

Raw 41.53 ± 6.73 35.87 ± 3.54

VOL 30.13 ± 4.70 27.11 ± 1.62

SVOL 25.30 ± 3.65 22.63 ± 2.32

SVOX 21.16 ± 3.18 20.26 ± 2.05

VOL+SVOL 24.59 ± 3.27 20.93 ± 1.93

VOL+SVOX 20.13 ± 2.75 18.82 ± 1.69

SVOX-SLC SLOMOCO 18.20 ± 2.6 17.86 ± 1.56

Motion-Free Raw 10.01 ± 1.37 22.04 ± 6.37

VOL=volumetric registration correction, SVOL=second order motion regression with volumetric model, SVOX=regression with voxel-specific

model, SVOX-SLC=second order motion regression with SLOMOCO algorithm.
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Table 6

Mean tSTD for partial volume synthetic datasets and SimPACE motion injection data after several motion

correction methods using, including regression of the gold-standard known injected motion (TRU), TRU

averaged over each volume (TRU-AVG), and the TRU motion in the slicewise modified model (SVOX-SLC).

Mean tSTD Cadaver Data Live Subjects

Raw 41.53 ± 6.73 35.87 ± 3.54

SVOL TRU-AVG 25.11 ± 3.47 24.90 ± 5.14

SVOX TRU-AVG 21.48 ± 3.46 23.47 ± 4.92

SVOX-SLC TRU-AVG 20.76 ± 3.44 22.79 ± 5.26

SVOX TRU-SLC 18.83 ± 3.44 22.87 ± 5.16

SVOX-SLC TRU-SLC 18.11 ± 3.24 22.18 ± 5.54

SVOL=volumetric second-order motion regression, SVOX=voxel-specific, volumetric second-order motion regression, SVOX-SLC=voxel-
specific, slicewise second-order motion regression, TRU=gold-standard truth injected motion, TRU-AVG=volume-averaged TRU, TRU-SLC=
volume-maximal TRU motion.
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