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Abstract

In ecology, ‘‘disease tolerance’’ is defined as an evolutionary strategy of hosts against pathogens, characterized by reduced
or absent pathogenesis despite high pathogen load. To our knowledge, tolerance has to date not been quantified and
disentangled from host resistance to disease in any clinically relevant human infection. Using data from the Swiss HIV
Cohort Study, we investigated if there is variation in tolerance to HIV in humans and if this variation is associated with
polymorphisms in the human genome. In particular, we tested for associations between tolerance and alleles of the Human
Leukocyte Antigen (HLA) genes, the CC chemokine receptor 5 (CCR5), the age at which individuals were infected, and their
sex. We found that HLA-B alleles associated with better HIV control do not confer tolerance. The slower disease progression
associated with these alleles can be fully attributed to the extent of viral load reduction in carriers. However, we observed
that tolerance significantly varies across HLA-B genotypes with a relative standard deviation of 34%. Furthermore, we found
that HLA-B homozygotes are less tolerant than heterozygotes. Lastly, tolerance was observed to decrease with age, resulting
in a 1.7-fold difference in disease progression between 20 and 60-y-old individuals with the same viral load. Thus, disease
tolerance is a feature of infection with HIV, and the identification of the mechanisms involved may pave the way to a better
understanding of pathogenesis.
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Introduction

In response to pressure by pathogens, host populations can evolve

in two ways: They can develop either resistance or tolerance to the

disease [1–8]. Resistance mechanisms reduce the pathogen burden.

Tolerance mechanisms, in contrast, reduce the damage that

accompanies infection without affecting the pathogen directly.

One of the best examples for tolerance are sooty mangabeys

infected with Simian Immunodeficiency Virus (SIV), which—

despite harboring high virus loads—do not develop disease [9].

Whether hosts evolve resistance or tolerance affects the

evolutionary trajectory of host-pathogen systems [2,3,10–12].

The evolution of resistance genes in the host provokes counter-

adaptations of the pathogen that overcome host resistance,

resulting in an endless arms race. In contrast, tolerance genes

benefit both the host and the pathogen and are therefore predicted

to fix.

It is increasingly recognized that disentangling resistance and

tolerance not only advances our understanding of the coevolution

between hosts and pathogens but also is relevant clinically [13].

Like resistance factors, mechanisms of tolerance, once identified,

can be exploited for therapy. In contrast to resistance-based

therapy, tolerance-based treatment does not aim at reducing the

pathogen load but rather at ensuring the well-being of the host.
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For that reason, tolerance-based therapy is also hypothesized to be

evolution-proof—that is, not to select for drug-resistant pathogens

[4,5,14]. It has been argued, however, that the pathogen

population might evolve higher virulence in response to toler-

ance-based treatment [3,15,16].

Although numerous review papers have been written on the

potential benefits of tolerance research [1–8], the formal

framework for disentangling tolerance and resistance has not been

applied to many animal disease systems. There is a paradigmatic

study on mouse malaria [17] and a few on insects [18–20]. But a

quantitative tolerance analysis has, to our knowledge, not yet been

conducted for any clinically relevant human disease. In this study,

we apply such an analysis to HIV infection in humans.

Formally, tolerance can be quantified as the change in disease

progression across different levels of pathogen burden (see

Figure 1A) [2,4]. In the context of HIV, excellent measures of

disease progression and pathogen burden are available (see

Figures 1B and 2A). A few weeks after infection, HIV attains a

level in the plasma of infected individuals that is approximately

stable over several years. This level, called the set-point viral load,

is very well suited as a proxy for the ‘‘parasite burden’’ necessary

for a formal tolerance analysis.

The rate of disease progression—the second essential parameter

for an analysis of tolerance—can be measured quantitatively by

the decline of CD4+ T lymphocytes. Before infection, individuals

have on average 1,000 CD4+ T cells per ml of blood. A decline of

CD4+ T cells below 200 per ml of blood defines AIDS. Thus, the

decline of CD4+ T cells reflects what we know about the

mechanistic basis of the disease. CD4+ T-cell declines have also

been found to be independent predictors of disease progression in

the Swiss HIV Cohort [21] that we analyzed here and other

cohorts [22]. Importantly, the rate of decline can be calculated in a

much shorter time scale than the direct observation of disease

progression requires. The faster the CD4+ T cells decline, the

higher the rate of progression toward disease and death—that is,

the higher the virulence of the infection in the sense of

evolutionary ecology. For these reasons, also previous studies on

virulence relied on the CD4+ T-cell decline [23]. To our

knowledge, such a well-established, quantitative measure of

virulence is not available for any other human infection.

Results

We determined set-point viral loads and CD4+ T cell declines

in 3,036 HIV-1–infected individuals (see Figure 2, Materials and

Methods, and Data S1). To investigate tolerance of humans

against HIV, we determined the relationship between CD4+ T-

cell decline and set-point viral load in our study population. We

started by establishing this relation for the entire study population.

In subsequent analyses, this relationship served as a baseline,

against which we later compared the relationships between CD4+
T-cell decline and set-point viral load in specific subgroups.

Finally, we used the baseline relationship to define a tolerance

phenotype for each individual in our study population and

investigated if they are associated with single nucleotide polymor-

phisms (SNPs) in the human genome.

Tolerance Curve Is Nonlinear
To establish the baseline relationship between CD4+ T-cell

decline and viral load, we performed a regression analysis. We

found that this relationship is significantly nonlinear (see Figure 2).

Although nonlinear tolerance curves are a departure from what

has been reported in other systems, this finding is not surprising.

Linearity is an assumption generally adopted in regression analyses

mostly for the sake of simplicity and convenience. Commonly, low

sample sizes precluded the assessment of a potential nonlinearity.

The establishment of such a nonlinearity in the context of

tolerance, however, is particularly crucial to reliably establish

tolerance differences between groups [24].

The relationship is best described by a quadratic relationship

(see Figure 2B and Text S1). The intercept of the relationship is

not significantly different from 0. This is in line with the

expectation that uninfected individuals should have relatively

stable CD4+ T-cell counts. Also the linear term is not significantly

different from 0.

Mathematically, we can write the relationship as:

DCD4~a( log10 V )2: ð1Þ

In this equation, DCD4 denotes the rate of change of CD4+ T

cells per ml of blood per day, and log10 V the logarithm to the base

10 of the viral load per ml of plasma. The quadratic model explains

5% of the variation in CD4+ T-cell decline, consistent with previous

studies investigating this relationship with linear models [25].

The parameter a is the quantitative measure of the average

tolerance across the entire study population, which we used in the

present study. It describes how the relationship curves downwards;

that is, it measures how the decline in CD4+ T cells, DCD4—a

surrogate measure of disease progression—changes with the set-

point viral load. For a value a = 0, CD4+ T cells would not decline

irrespective of the set-point viral load. This case would correspond

to complete tolerance. If a,0, an increase in the set-point viral

load accelerates the progression towards disease. The lower a, the

lower the tolerance. For the entire study population, we estimated

a = 20.011160.0003.

Four individuals with an infection characterized by very high

viral load and minimal disease progression are also depicted in

Figure 2B. They lie above the average tolerance curve. These

individuals, referred to as viremic nonprogressors [26], share the

transcriptomic, interferon response, and gut microbial transloca-

tion profile of nonpathogenic SIV infection in their natural host

species [26–28]. Thus, the tolerance analysis correctly identified

individuals whose tolerance had been previously established.

Tolerance, Sex, and Age
First we tested if the tolerance parameter differs with sex and the

age at which individuals were infected. Information on these

Author Summary

When confronted with pathogens, hosts can either evolve
to fight them or learn to live with them. The first of these
two strategies is called ‘‘resistance’’ and the second
‘‘tolerance’’. In the context of HIV, many genes conferring
resistance have been identified, but no tolerance genes are
known. Using statistical techniques originating from plant
ecology, we analyzed data from an HIV cohort to look for
differences in tolerance between HIV-infected individuals
and tested whether they go hand in hand with genetic
differences. We found that younger people are more
tolerant to HIV infection. We also observed that individuals
who carry two different alleles of HLA-B, an important
immunity gene, are more tolerant. These findings add to
our understanding of how hosts tolerate infections and
could open new avenues for treating infections.

Human Tolerance Against HIV
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demographic characteristics was available for all 3,036 individuals

in our study population (see Materials and Methods). Although

females had an almost 2-fold lower viral load set-point than males,

we did not find significant differences in tolerance between sexes,

either in a univariate analysis (F test: p = 0.69; Figure 3A) or in an

analysis adjusting for age difference between sexes (F test:

p = 0.45). This result challenges previous reports, according to

which females are less tolerant (see Discussion) [29].

The age at which individuals become infected with HIV,

however, was very strongly associated with tolerance (Figure 3B),

both in univariate (F test: p = 1029) and multivariate analyses

controlling for sex (F test: p,361028). According to this analysis,

at equivalent viral load, the disease progression rate of an

individual who contracts HIV at the age of 60 is 1.7-fold faster

than that of an individual becoming infected at the age of 20.

No Association of Tolerance with Known Resistance
Genes

Next, we investigated if the tolerance parameter a differs across

well-established human genetic polymorphisms associated with

HIV control and disease progression—that is, resistance to HIV in

the sense of evolutionary ecology. For more than 850 individuals

in our study population, information on HLA class I alleles and the

CC chemokine receptor 5 (CCR5) genotype was available (see

Materials and Methods).

In a first step, we focused on HLA-B alleles that have been

found to associate with lower viral load—that is, with resistance

[30]. We wondered if these alleles are also associated with

tolerance. We found that protective HLA-B alleles are not

associated with higher or lower tolerance in a univariate analysis

(F test: p = 0.40; Figure 3C). This is independent of how

stringently we define protective HLA-B alleles (see Materials and

Methods and Figure S2). Thus, the protection these alleles confer

can be fully attributed to the effect they have on viral load.

Higher HLA-C expression has been associated with better

control of HIV viremia and slower disease progression [31–33].

The expression level of HLA-C is reasonably predicted by classical

HLA-C alleles, which are in strong linkage disequilibrium with a

causal polymorphism in the 3’ untranslated region of HLA-C [33].

We could thus predict the HLA-C expression level for 850

individuals in our study population, of which 243, 434, and 173

had low, medium, and high expression, respectively. We found

Figure 1. Quantifying tolerance and resistance. (A) The tolerance of a group of individuals can be measured as the change of fitness across
varying levels of parasite burden. Fitness is inversely related to the virulence of the infection. The difference in resistance between groups can be
quantified simply as the difference in the mean parasite burden. (B) In the context of HIV, virulence can be quantified by measuring the CD4+ T-cell
decline in an infected individual, and the set-point viral load is a good proxy for the ‘‘parasite burden’’. (C) and (D) show conceivable outcomes of a
tolerance-resistance analysis for the HIV resistance genes, such as classic protective HLA-B alleles. In the scenario entitled ‘‘pure resistance’’ (C), the
reduction of viral load that the resistance genes confers fully explains the reduction in disease progression. Alternatively, resistance genes could
additionally confer tolerance, as shown in plot (D).
doi:10.1371/journal.pbio.1001951.g001

Human Tolerance Against HIV
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that the tolerance parameter a does not vary significantly with

HLA-C expression in a univariate analysis. We also did not find

any association of tolerance with protective HLA-B alleles and

predicted HLA-C expression in a multivariate analysis including

both factors together with sex and age at infection as covariates.

Another important polymorphism related to HIV acquisition

and disease progression is located in the gene coding for the

chemokine receptor CCR5. About 10% of Europeans carry a

CCR5 allele with a 32 base pair deletion (CCR5D32). Homozy-

gous individuals are almost completely resistant to infection, while

carriage of a single allele has been reported to be associated with

slightly lower set-point viral load and slower disease progression

[34]. We divided the fraction of our study population, for which

we had information on the CCR5 genotype, into individuals with

(n = 163, all heterozygous) and without (n = 699) CCR5D32.

There was no significant difference in tolerance between these

two groups in a univariate analysis. Again, we obtained the same

result in a multivariate analysis including sex and age at infection

as covariates.

Variation of Tolerance Associated with HLA-B
Combinations

The analyses above aimed at determining if known resistance

genes also induce tolerance. We found that they do not. But what

if there are yet unknown genes, unrelated to resistance, that confer

tolerance?

As first candidates for such tolerance genes, we considered

HLA-B alleles irrespective of their protectiveness. To assess if

there are differences in tolerance associated with HLA-B, we

adopted a mixed-effects modeling approach. We combined the

two HLA-B alleles of an individual into a genotype (see Materials

and Methods) obtaining 375 unique genotypes in our study

population. The frequency distribution of the combined HLA-B
genotypes is shown in Figure 4A.

In the mixed-effects models, we used HLA-B genotype as a

random effect. Specifically, we assumed the following relationship

between CD4+ T-cell decline, DCD4, and set-point viral load, V,

in a univariate analysis:

DCD4~(�aazah)(log10 V )2: ð2Þ

The parameter �aa characterizes the average tolerance in our

study population, and ah denotes how the tolerance of genotype h
deviates from this average. We treated this parameter as a random

effect—which means that we did not estimate it for each genotype

but estimated the variance of its distribution (see Text S1).

We found significant variation in the random effect ah of HLA-
B genotypes. Compared to a model without this random effect

with a likelihood ratio test, we obtained a significance level of

p = 0.0002. This variance is illustrated in Figure 4B: across HLA-
B genotypes, tolerance differs approximately 2-fold and the

relative standard deviation (the standard deviation divided by

the absolute value of the mean) is 0.34. This variance in tolerances

translates into an approximately 1.7-fold difference in the rate of

disease progression for two randomly selected HLA-B genotype

groups. Restricting our analysis to genotypes represented by more

than one individual yields an even larger and more significant

random effect, and a multivariate analysis that includes sex and

age at infection as covariates shows that these two variables do not

confound our analysis (see Text S1).

Table 1 lists 5% (n = 18) of the HLA-B genotypes with the most

extreme tolerance as predicted by the mixed-effects model. The

values in Table 1 are best linear unbiased predictions [35], rather

than estimates of tolerance parameters for each combined HLA-B
genotype group, and should therefore be interpreted with care.

Figure S3 shows a histogram of the best linear unbiased

predictions of tolerance for the HLA-B genotypes.

As outlined in Text S1, we could not identify any association of

tolerance with particular HLA-B alleles, suggesting that the effects

of the two HLA-B alleles on tolerance depend on the specific

combination of HLA-B alleles, rather than just on the sum of their

Figure 2. Relationship between CD4+ T-cell decline and set-
point viral load in our study population. (A) Calculation of the set-
point viral load and CD4+ T-cell decline, illustrated for a single
individual. The set-point viral load (red line) is calculated as the
geometric mean of the viral load measurements (after primary infection
and before treatment). The decline of CD4+ T cells is determined as the
regression slope (blue line) of CD4+ T-cell counts against time. The
CD4+ T-cell counts and virus load measurements of three randomly
selected individuals are shown in Figure S1. (B) Nonlinear tolerance
curve characterizing the relationship between CD4+ T-cell decline and
set-point viral load in our study population (n = 3,036). The black line
shows the quadratic regression line. Blue crosses indicate individuals
that were identified as viremic nonprogressors in a previous study [26].
doi:10.1371/journal.pbio.1001951.g002
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effect (see Figure S4). A case in point is the least tolerant genotype

group ‘‘3501/3501’’. Carriage of this allele (considering homo-

and heterozygotes together) is not associated with higher set-point

virus load, faster CD4+ T-cell decline, or lower tolerance. But

HLA-B*3501 homozygotes display the most extreme departure

from the average tolerance curve. This is due to a very fast CD4+
T-cell decline in two individuals in this genotype group.

HLA-B Homozygosity Is Associated with Lower Tolerance
To further explore the importance of HLA-B allele combination

on tolerance, we compared homozygous to heterozygous individ-

uals. Of the 923 individuals in our study population, for which we

have information on the HLA-B alleles they carry, 39 were

homozygous, displaying 14 unique genotypes. A regression

analysis of the CD4+ T-cell decline against set-point viral load

with HLA-B homozygosity as a covariate confirmed a significant

association of homozygosity with tolerance in univariate (F test:

p = 0.00016) and multivariate analysis including sex and age at

infection (F test: p = 0.00005).

Figure 3D depicts the difference in tolerance between hetero-

and homozygotes according to a univariate analysis. Homozygotes

have higher set-point viral loads than heterozygotes and are

therefore expected to display faster CD4+ T-cell declines.

Figure 3D, however, shows that the CD4+ T-cell decline is in

fact much faster in homozygotes than their set-point viral load

predicts. Quantitatively, the tolerance paramete a of homozygotes

is 20.019 (versus a = 20.012 in heterozygotes). This difference in

the tolerance parameter translates into a 1.6-fold faster rate of

Figure 3. Investigating associations of tolerance with sex, age at infection, and HLA-B alleles. (A) Tolerance does not differ significantly
between sexes in a univariate analysis. (B) Young age at infection is strongly associated with tolerance. The data are plotted stratified by age. The
younger, the redder. The three curves show the relationships between set-point viral load and CD4+ T-cell decline when infected at age 20, 40, and
60. (C) Classic protective HLA-B alleles induce pure resistance. The tolerance curves do not differ significantly for individuals with (red, n = 416) and
without (blue, n = 507) protective HLA-B alleles. Protectiveness is defined according to the data presented in table 1 of [30] (see Materials and
Methods). (D) HLA-B homozygosity is associated with tolerance. Homozygotes also have significantly higher set-point viral loads—that is, are more
resistant than heterozygotes.
doi:10.1371/journal.pbio.1001951.g003

Human Tolerance Against HIV
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disease progression of homozygotes compared to heterozygotes

with the same set-point viral load. The tolerance difference

between homo- and heterozygotes further supports the view that

the effect of HLA-B alleles is not additive and refines our

understanding of the well-established HLA-heterozygote advan-

tage with respect to set-point virus load and disease progression

[36,37].

No Trade-Off Between Tolerance and Resistance
In contrast to previous studies on tolerance and resistance [17],

we did not find a trade-off—that is, a negative correlation—

between resistance and tolerance across HLA-B genotype groups

(see Text S1). The lack of a correlation between tolerance and

resistance suggests that there are no mechanistic or genetic

constraints to display both traits. If both tolerance and resistance

mechanisms are costly, a trade-off could eventually evolve, but the

co-evolutionary history between humans and HIV may have been

too short for distinct resistant and tolerant lineages to separate.

However, we found a positive relation between tolerance and

resistance across age. As individuals get older they become less

tolerant and less resistant.

No Genome-Wide Association with Tolerance
We also looked for genome-wide associations with tolerance. To

this end, we defined a tolerance phenotype for each individual by

calculating the residual in a quadratic regression between an

individual’s CD4+ T-cell decline and viral load, controlling for the

age at infection (see Figure S5A). This analysis failed to identify

any SNPs associated with tolerance (Figure S5B). It is important to

note that this analysis, in addition to setting very stringent

requirements for significance by correcting for multiple testing,

also assumes additivity of allelic effects—that is, ignores a potential

heterozygote advantage.

Discussion

In summary, we presented the first formal tolerance analysis of a

clinically relevant human infection. HIV infection features well-

established measures of pathogen burden and disease progression

that are required for such an analysis. The analysis consistently

identified a subset of individuals that tolerate high viral load with

minimal disease progression—the so-called viremic nonprogres-

sors [26], whose biological profile (transcriptome, interferon

response, gut microbial translocation) is reminiscent of SIV

infection in sooty mangabeys [26–28].

But beyond this consistency with the tolerant profile of these

four individuals, adopting the evolutionary ecology framework for

tolerance allowed us to assign quantitative tolerance measures to

well-defined groups of individuals and to statistically compare

them. In addition to investigating age- and sex-related differences

in tolerance to HIV, we could, due to the wealth of information

available for individuals in the Swiss HIV Cohort Study, test for

potential associations with genes implicated in disease susceptibil-

ity and progression, such as HLA class I and CCR5.

The finding that there is no difference in tolerance between the

sexes challenges a previous report by Farzadegan et al. [29],

according to which females are less tolerant than males. Just like

Farzadegan et al., we found that females have significantly lower

viral loads, but do not differ in their disease progression. In

contrast to Farzadegan et al., however, this pattern did not result

in a significant difference in the relationship between disease

progression and set-point viral load. One reason for this

discrepancy may be that Farzadegan et al. used data on AIDS

diagnosis during a time window of observation, whereas we used

CD4+ T-cell decline to measure disease progression. Furthermore,

Farzadegan et al. performed a survival analysis, whereas we

performed a regression analysis. Lastly, in contrast to our analysis,

Farzadegan et al. did not adjust for the age at which individuals

became infected. For all these reasons, the previous and present

analyses are difficult to compare and the discrepancy remains

unresolved.

In all of the figures that show our data, it is apparent that the

relationship between the set-point viral load and CD4+ T-cell

decline is weak. The noise in this relation is entirely consistent with

previous studies [25] in which 5%–9% of the variation in the

CD4+ T-cell decline could be explained by the set-point viral load.

Figure 4. Variation of tolerance associated with HLA-B geno-
type. (A) Frequencies of the HLA-B genotypes in our study population
of 923 individuals. Approximately half of the genotypes are represented
by only one individual. (B) Visualizing the random effect of the mixed
effect modeling approach. Estimated tolerance curves for each HLA-B
genotype, based on best linear unbiased predictions, are shown. We
estimated a mean tolerance parameter �aa~{0:012 (red curve), and a
deviation of the random effects, ah , of sh~0:0040 (see Text S1).
doi:10.1371/journal.pbio.1001951.g004

Human Tolerance Against HIV

PLOS Biology | www.plosbiology.org 6 September 2014 | Volume 12 | Issue 9 | e1001951



The analysis we performed to identify variation in tolerance aimed

at detecting differences in this relationship between different

subgroups in our study population. Given how noisy this relation

is, it is remarkable that we could identify significant associations of

host factors with tolerance at all.

In our study, we considered the most important host genes but

disregarded the potential impact of virus genetics on tolerance.

The viruses harbored by the individuals in our study population

differ by subtype. Although viral subtypes are hypothesized to vary

in virulence, this effect is difficult to ascertain due to usually

unaccounted differences in the study populations [38]. However, a

large fraction of individuals in the Swiss HIV Cohort carry subtype

B virus [39,40]. We therefore do not expect the genetic variation

of the virus to confound our analysis.

The framework for investigating tolerance we adopted for this

study, despite its internal consistency, has its limits. The parasite

burden—central as the x-axis in our tolerance curve plots—is not

simply an external factor affecting virulence but will itself be

influenced by the host genotype and phenotype. If we had virus

dynamics models that described the entire course of HIV

infection, the relationship between virulence and virus load could

be mechanistically derived, and we would not have to rely on the

statistical approach adopted here. Such a comprehensive model

has, however, been elusive to date [41], mostly because the slow

depletion of CD4+ T cells cannot be accounted for by HIV

targeting and killing these cells. Rather, a generalized immune

activation in infected individuals is currently conceived to be at the

heart of the mechanisms of pathogenesis [42], and a straight-

forward relationship between set-point virus load and CD4+ T-cell

decline is unlikely to emerge from the probably complex dynamics.

Until a better dynamical understanding of HIV pathogenesis

emerges, the low power of the set-point virus load to predict the

CD4+ T decline [25] provides some justification of treating these

two entities as independent.

Our analysis implicates HLA-B in modulating tolerance. In

particular, we established a tolerance advantage of HLA-B
heterozygotes, providing an additional example of a benefit that

host diversity affords against pathogens [36,43–46]. Mechanisti-

cally, it is conceivable that certain HLA-B alleles cause faster

disease progression without increasing viral load by modulating

immunopathology, rather than leading to the killing of infected

cells by cytotoxicity. The higher tolerance of individuals, who

contracted HIV at a young age, is likely to be explained by the

higher thymic output of young individuals that can compensate

infection-related CD4+ T-cell loss [47]. Confirming or refuting

these hypothetical mechanisms will be an important direction of

future research on tolerance against HIV.

Materials and Methods

Ethics Statement
The Swiss HIV Cohort Study was approved by the local Ethics

Committees of all participating centers, and written informed

consent was obtained from the participants. This project was

approved by the Scientific Board of the SHCS as project 697.

Study Population
We used data from the Swiss HIV Cohort Study (www.shcs.ch)

[48]. Briefly, the study has enrolled more than 18,000 HIV-

infected individuals to date. Sociodemographic and behavioral

data are recorded at entry to the study, in particular year of birth,

gender, and the date of the last negative HIV test. Laboratory and

clinical data, including viral load and CD4+ T-cell count, are

obtained at each semiannual follow-up visit. Approximately 2,000

individuals have been genotyped in the context of previous

genome-wide association studies [31,49] and/or at loci relevant for

HIV acquisition and disease progression, such as those encoding

the Human Leukocyte Antigen (HLA) class I genes and CCR5.

We included individuals into our study, for whom viral load

measurements and CD4+ T-cell counts were available, to reliably

estimate the set-point viral load and CD4+ T-cell decline, as

defined below. We restricted our analysis to data obtained before

antiretroviral treatment because the relationship between CD4+
T-cell count and viral load is dramatically altered during

treatment. To exclude the primary infection period, during

which viral load and CD4+ T-cell count exhibit strong

fluctuations, we discarded results obtained during the first 90

days after the estimated date of infection. To exclude the late

phase of the infection, during which viral load increases and

fluctuates due to severe immunosuppression, we discarded

measurements obtained when the CD4+ T-cell count was below

100 per ml. Individuals were included if they had at least two

eligible viral load results and three eligible CD4+ T-cell

measurements at least 180 days apart.

After applying these inclusion criteria, our study population

comprised 3,036 individuals. For 837, 923, and 862 individuals,

we had information on the HLA-A, -B, and -C alleles,

respectively. The CCR5D32 genotype was available for 862

individuals, whereas 852 individuals had genome-wide genotyp-

ing results. Of the 923 individuals, for whom we had information

on the HLA-B alleles, a large majority of 850 were of European

ancestry.

Table 1. The nine most and the nine least tolerant HLA-B
genotypes.

HLA-B Genotype Tolerancea Frequencyb

0702/3901 20.0061 (most tolerant) 4

1501/3906 20.0063 1

1801/4403 20.0067 7

5301/5801 20.0077 2

1501/5001 20.0080 1

1801/5101 20.0082 10

4402/4402 20.0082 3

1801/4402 20.0089 4

3501/4501 20.0089 1

4002/4501 20.0164 1

1801/2705 20.0169 7

4403/4403 20.0172 1

1402/5001 20.0174 2

1801/4002 20.0179 1

4402/5001 20.0180 3

3503/5101 20.0180 7

1402/4403 20.0200 5

3501/3501 20.0235 (least tolerant) 3

aBest linear unbiased predictions of the tolerance parameter ah for each
genotype.
bNumber of individuals with the respective genotype among the 923
individuals studied.
doi:10.1371/journal.pbio.1001951.t001
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Calculation of Set-Point Viral Load, CD4+ T-Cell Decline,
and Definition of Subgroups

Set-point viral load was determined as the geometric mean of

the eligible viral load measurements in each individual. Non-

detectable viral loads were set to half the detection limit. The

change of CD4+ T-cell count over time was estimated as the slope

in a linear regression of CD4+ T-cell count against the date at

which they were determined. Data S1 provides estimates of the

set-point viral load and CD4+ T-cell declines for the 3,036

individuals included in our study.

We defined an HLA-B allele as ‘‘protective’’ if it has been found

to associate with better HIV control and slower disease

progression, according to table 1 of [30]. In addition, we adopted

alternative, more restrictive definitions, considering either only

HLA-B27 or 57, or only HLA-B*27:05 and *57:01 as protective

(see Figure S2).

The HLA-C expression levels of the individuals in our study

were predicted from the classical HLA-C alleles using data from

table S1 in Kulkarni et al. [33].

For each individual, a combined HLA-B genotype was defined

by concatenating and sorting the four-digit alleles they carry. An

example for a genotype thus defined is ‘‘0702/3501’’.

Statistical Analysis
The statistical analysis is comprehensively described in Text S1.

Here we just give a brief overview of the logic of our statistical

procedures.

We regressed the change in CD4+ T cells over time, DCD4,

against the set-point viral load, V, using a least-square fitting

algorithm assuming linear and nonlinear relationships. Sex, age at

infection, protectiveness of HLA-B alleles, carriage of CCR5D32,

predicted HLA-C expression levels, and HLA-B homozygosity

were included into the regression analysis as covariates either

individually or in combination.

Formally, we investigated the association of tolerance with a

binary factor, such as sex or the carriage of protective HLA-B

alleles, by decomposing the parameter a in the baseline model

(equation 1):

DCD4~(a0zgfactor)( log10 V )2: ð3Þ

Hereby, a0 denotes the tolerance parameter for the subpopu-

lation without the factor, and gfactor an offset associated with the

factor. Multiple factors were included into the statistical model by

further decomposing the tolerance parameter: DCD4~(a0z

gfactor1zgfactor2z . . . )( log10 V )2.

If a factor had more than two levels, one level was defined as the

baseline and an offset parameter was added for each alternative

level. This was the case for HLA-C expression, which can be

expressed at low, medium, and high levels. Consequently, the

models including HLA-C expression as a covariate feature two

offset parameters (gC{med and gC{hi—see Text S1). Age at

infection, a, being a continuous variable, was assumed to affect the

tolerance parameter linearly:

DCD4~(a0zc a)( log10 V )2: ð4Þ

In this expression, a0 denotes the tolerance when contracting

HIV at age 0, and c describes the increase or decrease of tolerance

per life year.

We assessed if a covariate significantly affected tolerance in two

ways. First, we checked if the offset associated with the covariate

was significantly different from zero. Second, we compared the

models with and without the covariate with an F test or a

likelihood ratio test. In all cases, these two tests agreed. Each factor

was considered on its own in a univariate analysis and in

combination with the other factors in multivariate analyses (see

Text S1).

The coefficient of determination of a model, R2, was calculated

as one minus the ratio between the variance of residuals in the

respective model fit and the variance in DCD4 [50]. Note that,

because our models set the intercept to zero, the variance in DCD4

does not represent the residual sum of squares of any special cases

of our models—that is, of any model nested in our models.

Implementation
The inclusion criteria, calculation of set-point viral load and

CD4+ T-cell decline, as well as the model fitting and comparisons

were implemented and performed in the R language of statistical

computing [51]. Regression analysis was performed using the R-

functions lm() and, for the mixed effects models, lme() in the R-

package nlme(). The F tests and likelihood ratio tests were

performed using the R-function anova().

Genome-Wide Association Study
For the genome-wide association study, we assigned a tolerance

phenotype to 852 individuals in our study population, for whom

we had genomic information and who were of European ancestry.

This phenotype was calculated as the deviation of the individual’s

set-point viral load and CD4+ T-cell decline from the average

tolerance relationship of the population. Because the age at

infection was associated very strongly with tolerance, we calculated

the deviation from an age-controlled tolerance relationship (see

Figure S5A).

Study participants had been genotyped in the context of

previous studies [31,49] using Illumina 550 or 1 M chips, and

genome-wide SNPs were imputed using the 1000 Genomes

Project CEU panel as a reference. After quality control and

exclusion of nonvariable SNPs, seven million variants were

available for association testing. We used linear regression to test

for association between each SNP and the tolerance phenotype,

including sex and the coordinates of the first five principle

components of an EIGENSTRAT analysis [52] as covariates. We

used Bonferroni correction to control for multiple testing (p
threshold = 561028).

Supporting Information

Figure S1 CD4+ T-cell count and virus load measurements in

three randomly selected individuals from our study population.

The red lines show the mean of the virus load measurements. The

blue lines are the linear regression lines of CD4+ T-cell counts

against time.

(TIFF)

Figure S2 Alternative sets of protective HLA-B alleles and

tolerance. (A) Considering only HLA-B27 or 57 as protective, we

did not find differences in tolerance between individuals with and

without protective HLA-B alleles. (B) We reached the same

conclusion if we are even more restrictive and assume only HLA-
B*27:05 and *57:01 to be protective.

(TIFF)
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Figure S3 Distribution of the best linear unbiased predictions for

the tolerance parameters, ah, across HLA-B genotypes.

(TIFF)

Figure S4 Tolerance by HLA-B allele. The tolerance parame-

ters of genotypes containing an allele are plotted (transparent grey

dots). Homozygous genotypes are plotted transparent red. Alleles

are ordered by increasing mean tolerance of genotypes that

contain the allele (red bars). Blue bars show the median tolerance

for each allele. The variation in mean effects of each allele is

significantly lower than the tolerance variation across genotypes.

(TIFF)

Figure S5 Genome-wide association study. (A) The tolerance

phenotype for an individual is defined as the deviation of his/her

CD4+ T-cell decline from the average tolerance curve character-

izing his/her age class. Two individuals are shown (red and blue

dots), together with the tolerance curves (red and blue lines) for

people who contract HIV at the same age. In this example, the red

and blue individuals contracted HIV at the age of 42 and 20 years,

respectively. (B) Manhattan plot showing the p across seven million

SNPs. None of the p is above the significance level corrected for

multiple testing (dashed line).

(TIFF)

Data S1 Estimates of the set-point viral load and CD4+ T-cell

decline for the 3,036 individuals in our study population.

(TSV)

Text S1 Details on the statistical analyses. This document

contains a detailed description of the statistical analyses, the results

of which are presented in this article. It also describes additional

analyses we performed to corroborate our findings.

(PDF)
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