Skip to main content
. 2014 Sep 16;9(9):e107330. doi: 10.1371/journal.pone.0107330

Table 2. AICM estimates for the fit of different discrete trait models.

Joint Discrete trait models AICMb S.E.c Mod1d Mod2 Mod3 Mod4 Mod5 Mod6 Mod7 Mod8
Mod1 Reduce_BSSVS_sym a 111031 +/−7.5 107 490 712 863 1102 4084 6582
Mod2 Reduce_nonBSSVS_sym 111137 +/−9.449 −107 384 605 756 995 3977 6475
Mod3 Reduce_BSSVS_asym 111521 +/−11.798 −490 −384 221 372 611 3593 6091
Mod4 Reduce_nonBSSVS_asym 111742 +/−7.822 −712 −605 −221 151 390 3372 5870
Mod5 Original_BSSVS_sym 111893 +/−6.668 −863 −756 −372 −151 239 3221 5719
Mod6 Original_nonBSSVS_sym 112132 +/−13.455 −1102 −995 −611 −390 −239 2982 5480
Mod7 Original_BSSVS_asym 115115 +/−14.662 −4084 −3977 −3593 −3372 −3221 −2982 2498
Mod8 Original_nonBSSVS_asym 117612 +/−26.584 −6582 −6475 −6091 −5870 −5719 −5480 −2498
a

The names of the 8 models (Mod1-8) in the comparison test.

b

The estimated AICM score of the posterior: lower values of marginal likelihood indicate a better fit to the data. The model with the best performance is indicated in bold.

c

The standard error of the AICM estimated using 1000 bootstrap replicates.

d

The AICM comparisons are shown in the matrix composed of columns 4 to 11. In each row of the matrix, the positive value in a cell represents the support for one model (in column 1) over the other (indicated in the column titles). A difference of AICM = 10 is considered to indicate a strong preference for one model over another.