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Abstract

Background—The early biological impact of short-term mechanical ventilation on healthy lungs

is unknown. We aimed to characterize the immediate tidal volume (VT)-related changes on lung

injury biomarkers in patients with healthy lungs and low risk of pulmonary complications.

Methods—Twenty-eight healthy patients for knee replacement surgery were prospectively

randomized to volume-controlled ventilation with VT 6 (VT6) or 10 (VT10) mL/kg predicted body

weight. General anesthesia and other ventilatory parameters (positive end-expiratory pressure 5

cmH2O, FiO2 0.5, respiratory rate titrated for normocapnia) were managed similarly in the two

groups. Exhaled breath condensate (EBC) and blood samples were collected for nitrite, nitrate,

tumor necrosis factor α, interleukins-1β, 6, 8, 10, 11, neutrophil elastase (NE), and Clara Cell

protein 16 (CC16) measurements, at the onset of ventilation and 60 min later.

Results—No significant differences in biomarkers were detected between the VT groups at any

time. The coefficient of variation of EBC nitrite and nitrate decreased in the VT6 but increased in

the VT10 group after 60-min ventilation. Sixty minute ventilation significantly increased plasma

NE levels in the VT6 (35.2 ± 30.4 vs. 56.4 ± 51.7 ng/mL, P = 0.008) and CC16 levels in the VT10

group (16.4 ± 8.8 vs. 18.7 ± 9.5 ng/mL, P = 0.015). EBC nitrite correlated with plateau pressure (r

= 0.27, P = 0.042) and plasma NE (r = 0.44, P = 0.001). Plasma CC16 correlated with compliance

(r = 0.34, P = 0.014).

Conclusion—No tidal volume-related changes were observed in the selected lung injury

biomarkers of patients with healthy lungs after 60-min ventilation. Plasma NE and plasma CC16

might indicate atelectrauma and lung distention, respectively.

INTRODUCTION

Large tidal volumes (VT) contribute to and worsen the acute respiratory distress syndrome

(ARDS) in Intensive Care Unit (ICU) patients after hours or days of ventilation1–8. Recent

studies suggest intraoperative ventilation settings affect postoperative pulmonary

outcomes1,9–13. Many surgical patients undergo short-term ventilation with large VT

(greater than 10 mL/kg predicted body weight [PBW])12,14 without negative consequences.

These observations reinforce the lack of translation of ICU protective ventilation strategies

with low VT (6 mL/kg PBW)7 into the perioperative setting. It is not known if widely used

VT 10mL/kg PBW12,14 triggers any immediate inflammatory changes in healthy lungs.

Understanding the early inflammatory changes triggered by different VT in healthy lungs,

and the relationship of these changes with ventilatory parameters, may help identify

injurious pulmonary insults and susceptible individuals. This knowledge may complement

recently developed risk scores for predicting ARDS15–19 or postoperative pulmonary

complications13,20 in their goal of early detection and prevention of lung inflammation.
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Several VT-associated injury biomarkers have been identified. The nitrite and nitrate levels

in exhaled breath condensate (EBC), representing the metabolism of nitric oxide in the lung,

have been measured frequently for assessing lung injury in patients breathing spontaneously

or ventilated in the ICU2,6,21,22 and after cardiothoracic surgery23–25. Nitrite concentration

in the EBC showed a positive correlation with VT in ICU patients with or without ARDS6,

and with the degree of lung overdistention in chronic obstructive pulmonary disease

(COPD) patients26. Increasing nitrite and nitrosylated proteins in the bronchoalveolar lavage

(BAL) may have a prognostic value suggestive of lung injury progression in ARDS27. In

humans, cytokines such as tumor necrosis factor α (TNFα), interleukin (IL)-1β and IL-6 in

plasma and BAL were increased in ARDS patients ventilated with greater VT and lower

positive end-expiratory pressure (PEEP), compared to those receiving smaller VT and

greater PEEP28. The levels of TNFα and IL-8 in BAL also increased in ICU patients without

ARDS ventilated with VT 10–12 mL/kg PBW for 12 h3 compared to those ventilated with

VT 5–7mL/kg PBW and similar PEEP. The antiinflammatory cytokine IL-10 was affected

by ventilatory settings and ventilation duration in brain-injured patients2 and used for

functional repair of human donor lungs29. IL-11 has a protective role against murine

hyperoxia-induced DNA fragmentation and lung injury30,31. The plasma concentration of

neutrophil elastase (NE) is an indicator of alveolar recruitment32 and activation of

neutrophils during the development of lung injury33. Finally, plasma Clara cell protein 16

(CC16), an antiinflammatory protein secreted by the Clara cells of the distal respiratory

epithelium, is a marker of acute epithelial lung injury34,35 and increases in ventilated

preterm neonates36 and after 5-h ventilation during abdominal surgery in adults37.

We hypothesized that mechanical ventilation induces early VT-related changes in selected

lung injury biomarkers in surgical patients with healthy lungs and low risk of pulmonary

complications. Healthy patients undergoing knee replacement surgery under general

anesthesia were randomized to volume-controlled ventilation with VT 6 (VT6) or 10 (VT10)

mL/kg PBW. The levels of selected biomarkers in EBC and plasma and their time or tidal

volume dependent changes were analyzed.

MATERIALS AND METHODS

The experimental protocol was approved by the University of Colorado Multiple

Institutional Review Board (Aurora, Colorado) before conducting the study.

Experimental protocol

After obtaining informed consent, 30 patients scheduled to receive elective orthopedic

surgery for total knee replacement under general anesthesia were prospectively randomized

to receive a tidal volume (VT) of 6 or 10 mL/kg predicted body weight (PBW) during

mechanical ventilation. Exclusion criteria for study patients included: American Society of

Anesthesiologists (ASA) class 4; age ≥70 yr; emergency procedure; status post

pneumonectomy; diagnosed COPD, emphysema, asthma, pulmonary hypertension, sleep

apnea or any other respiratory disease; oxygen-therapy during last month; tobacco use in the

last 5 yr; severe obesity (body mass index [BMI] ≥35 kg/m2); immunosupression within 3

months prior to the procedure; diagnosed infection; or shock. Preoperatively, all patients

Fernandez-Bustamante et al. Page 3

Anesthesiology. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



received sciatic and femoral regional blocks for postoperative analgesia. The predetermined

general anesthesia management included intravenous propofol for induction and

maintenance (2–2.5 mg/kg and 0.05–0.2 mg/kg/min, respectively), to avoid potential

differences of cytokine-induction between different anesthetic drugs 38,39, fentanyl (1–2

mcg/kg initially, then 0.7–10 mcg/kg as needed) and rocuronium (0.6–1.2mg/kg for

intubation, 0.1–0.2 mg/kg as needed when 25% recovery of T1 in train-of-four

neuromuscular monitoring). Induction was performed in all patients while breathing FiO2

1.0. Immediately after confirmation of adequate endotracheal tube placement, mechanical

ventilation was started with a volume control ventilation mode with VT of either 6 (VT6) or

10 (VT10) mL/kg PBW as randomly selected. To set up the appropriate VT the PBW was

calculated based on the following formulas7: PBW-Males = 50 + 0.91(centimeters of height

- 152.4); PBW-Females = 45.5 + 0.91(centimeters of height - 152.4). The respiratory rate

was titrated for eucapnia (end-tidal carbon dioxide partial pressure [ETCO2] 30–40 mmHg),

and all patients received the same following ventilatory settings: inspiratory: expiratory (I:E)

ratio 1:2, inspiratory pause 5 %, fresh gas flow 2 L/min, FiO2 0.5, PEEP 5 cmH2O.

Ventilatory parameters, except the respiratory rate, were unchanged during the study.

Withdrawal criteria from the study were established as: 1) VT needed to be changed after

randomization for any clinical or provider-related reason; 2) airway plateau pressure could

not be managed to remain below 30cmH2O; or 3) for any other reason at the discretion of

their anesthesia providers.

Immediately after starting mechanical ventilation (0-min time point), before the surgical

incision, we initiated the collection of EBC. During the EBC collection, ventilatory and

hemodynamic physiology parameters were recorded, and a sample of venous blood for

analysis of biomarkers and an arterial blood gas sample were also obtained. At 60 min after

the initiation of mechanical ventilation we repeated the sample and data collection (60-min

time point).

Demographics, physiology and outcomes

Age, gender, ASA classification, height, weight and BMI were recorded for all patients.

Patients’ PBW was calculated preoperatively as described above for VT calculation.

Physiology parameters were recorded simultaneously with the arterial blood gas sample

collections, including: hemodynamics (heart rate, respiratory rate, mean blood pressure),

temperature, gas exchange (saturation of oxygen by pulse-oximetry or SatpO2, and ETCO2

as described before) and ventilation parameters (exhaled tidal volume or VT, respiratory

rate, minute volume ventilation, peak and plateau airway pressures and respiratory system

compliance). Compliance was calculated as exhaled VT/(plateau pressure − PEEP).

Measurement of the functional dead space was attempted for calculating the alveolar minute

ventilation, but it was impossible due to imperfect capnography calibration in several

patients (i.e., equal or nonphysiological ETCO2-PaCO2 differences).

Any complications occurring intraoperatively were recorded (i.e., high airway pressure,

hypoxemic event, need for withdrawal). Any postoperative respiratory complications were

also recorded, as well as length of hospital stay and any in-hospital complications.
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Exhaled breath condensate and blood sample collection

EBC samples were collected with an Rtube™ breath condensate vial (Respiratory Research,

Inc., Austin, TX) inserted in the expiratory limb of the ventilatory circuit for 20 minutes.

This Rtube™ consists of a sterile polypropylene collection tube with a one-way valve trap

that is kept cooled with an outer chilled aluminum sleeve (−80°C) during the collection

period to condense the breath at the inner wall of the tube. No humidification was added to

the ventilatory circuit, and the heat moisture exchange filter adjacent to the Y connector was

removed. After 20 min, EBC samples were immediately placed in regular ice, volume

measured and aliquoted into vials prewashed with deionized water and frozen at −80C until

analysis.

Venous blood were obtained at each time point in EDTA vials and immediately transported

in regular ice to the laboratory. Samples were centrifuged at 2,000 rpm for 10 min, plasma

volume aliquoted and frozen at −80C until analysis.

Arterial blood was obtained from the radial artery at each time point in heparinized syringes

and immediately processed for arterial blood gas analysis.

Inflammatory and oxidative stress biomarkers

Nitric oxide metabolites—All samples were maintained frozen until analysis to

minimize stability changes from freezing/thawing cycles and ambient contamination40. The

collection and storage manipulation were strict because of concerns of nitric oxide

metabolites instability and contamination from ambient air41,42. Concentration of nitrite and

nitrate were independently measured in duplicates by a dedicated HPLC system (ENO-20,

Eicom, San Diego, CA)43. Before measurement, plasma samples were mixed 50:50 v/v with

methanol, vortexed, and centrifuged to remove fat and protein. The clarified supernatants

were used for measurement. EBC samples were run without pretreatment. Nitrite and nitrate

concentrations were calculated based on authentic standards. Nitrite and nitrate

concentrations were summed to reflect the Total Nitric Oxide (NOx) levels.

Cytokines—Concentrations of cytokines TNFα, IL-1β, IL-6, IL-8, and IL-10 were

measured in EBC and plasma samples with the Fluorokine® MAP Human High Sensitivity

Cytokine Base Kit (cat# LHSC000 R&D Systems, Inc., Minneapolis, MN). IL-11

concentration was analyzed in EBC and plasma samples with the Quantikine® Human IL-11

Immunoassay (cat#D1100 R&D Systems, Inc.). Average concentrations from duplicates

were used if variation between them was less than 20%, and results excluded from the

analysis if variability greater than 20% after analysis repetition.

Neutrophil elastase—Plasma samples were measured in duplicates in 1:50 dilution

samples using the Human PMN Elastase Platinum ELISA assay (Cat# ALX-850-265,

Enzo® Life Sciences, Inc., Farmingdale, NY).

Clara cell protein 16—Clara cell protein concentrations was measured in duplicates in

1:25 diluted plasma samples with the Human Clara Cell Protein ELISA assay (Cat#

RD191022200, BioVendor LLC, Candler, NC).

Fernandez-Bustamante et al. Page 5

Anesthesiology. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



All analyses were performed in duplicated samples following the specific manufacturer’s

instructions.

Correlation analysis was performed between the VT-related ventilatory parameters such as

plateau pressure or compliance and lung injury biomarkers. Other ventilatory parameters

were not included in the correlation analysis if they were intrinsically dependent on our

study design (i.e., VT, respiratory rate and administered minute ventilation) or were not

available (i.e., transpulmonary pressure or other measurements of lung stretch/strain).

Association between the different biomarkers was also examined with correlation analysis to

find common factors influencing the observed biomarker changes.

Statistical analysis

This pilot study was based on the linear correlation between EBC nitrite levels and VT in

ventilated ICU patients with no lung injury (R2 = 0.79) reported by Gessner et al.6 Based on

this finding, our pilot study was designed to detect a correlation coefficient of 0.79, with the

null being 0.12 (two-tailed, alpha = 0.05, and power = 0.8). Using these parameters, the

estimated sample size was 11, which we increased to 15 in each group to account for any

lack of information on non-ICU patients and on the other biomarkers.

All recorded parameters (physiology, biomarkers, outcomes) were graphically depicted and

summarized using means and standard deviations. All biomarker measurements were

examined for normality. If not normally distributed, they were logarithmically transformed

for comparison between groups. If not normally distributed and showing a sigmoid

distribution, the zxphysiology parameters by Pearson correlation. All continuous variables

were statistically compared within the VT groups (same subjects, different time points) with

a paired t-test. The change scores of continuous variables from 0min to 60-min time points

were compared between the two VT groups using an independent t-test. Chi-square test was

used for comparing categorical variables. Because of the high variability in nonnormally

distributed biomarkers in different groups and time points, we used the coefficient of

variation (CV), calculated as a ratio of the standard deviation and the mean. All statistical

analyses were two-tailed and performed with SPSS version 21 (IBM, New York, NY).

Significance was accepted at p < 0.05.

RESULTS

Demographics, physiology and outcomes

Thirty patients who fulfilled the inclusion and exclusion criteria were enrolled and

consented for the study. One patient from each VT group was removed from the study

because of a nondisclosed steroid course within 10 days before surgery and previously

undiagnosed sleep apnea symptoms. Only the remaining 28 patients (14 per group) were

included in the final analyses. No significant differences were found between the two groups

in terms of age, gender, comorbidities, ASA classification, height, weight, BMI, PBW, ASA

classification and comorbidities. No respiratory complications were detected and there was

no significant difference in hospital length of stay between the two groups (table 1).
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Hemodynamic parameters, temperature and oxygenation were comparable at the 0-min time

point in both VT groups (table 2). ETCO2 was within the targeted range (30–40 mmHg) in

both groups. At the 0-min time point, as it was expected from the study design, the VT10

group had lower respiratory rate and greater exhaled VT, minute volume ventilation, peak

and plateau airway pressures and compliance. The arterial blood gas analysis showed a

lower PaCO2 and higher pH in the VT10 compared to the VT6 group.

From 0-min to 60-min time points, both groups experienced a small but statistically

significant decrease in oxygenation in terms of SatpO2 (P = 0.045 for both). Only in the

VT10 group there was a reduced but statistically significant decrease from 0 min to 60 min

in heart rate (P = 0.030), respiratory rate and minute volume ventilation (P ≤ 0.001 for

both), an increase in plateau pressure (P = 0.010) and a reduction in compliance (P = 0.023).

The decrease of compliance in the VT10 group was related to a small but significant increase

in plateau pressure from 17.8 ± 3.1 to 18.6 ± 2.9 cmH2O, while tidal volumes and PEEP

were unchanged. The observed decrease in PaO2 in both groups only reached statistical

significance in the VT10 group (P = 0.013). Similarly, the decrease in SataO2 observed in

both groups only reached statistical significance in the VT6 group (P = 0.040).

After 60 min of mechanical ventilation, the ETCO2 remained within the target range in both

groups. From 0 min to 60 min there was a similar decrease in oxygenation in both groups.

The decrease over time observed in minute ventilation, bicarbonate concentrations and base

excess was significantly greater in the VT10 group than in the VT6 group.

There were no complications or withdrawals related to the study. No respiratory

complications (respiratory failure for any reason requiring reintubation, noninvasive

ventilation or oxygen therapy needed at hospital discharge) were observed in the early

postoperative period and during the rest of the hospital stay. The hospital length of stay was

not different between the two groups (2.9 ± 0.9 days in the VT6 group vs. 2.6 ± 0.5 days in

the VT10 group, P = 0.445).

Effect of mechanical ventilation with different tidal volumes on measured biomarkers

Nitric oxide metabolites—Nitrite and nitrate concentrations were detectable in EBC and

plasma samples from all ventilated patients. At 0 min, the average EBC concentrations of

nitrite and nitrate were similar in patients from both groups. There was a slight decrease

from 0 min to 60 min of EBC nitrite in the VT6 group and an increase of EBC nitrate in the

VT10 group, but no changes reached statistical significance in the EBC or plasma

concentrations of nitric oxide metabolites between time points or between the VT groups

(fig. 1). The variability of EBC nitrite, nitrate and Total NOx (nitrite + nitrate)

concentrations, measured with the CV was comparable in both groups at 0 min (fig. 2). At

60min, a few individuals in the VT10 group doubled their respective baseline levels of EBC

nitrite and EBC nitrate. No individuals in the VT6 group showed this magnitude of increase

in EBC nitrite or nitrate or Total NOx. Thus, the CV of EBC nitrite and nitrate, and

therefore of Total NOx, decreased in the VT6 group (by 47.1%, 17.1%, and 32.6%,

respectively) but increased in the VT10 patients (by 4.2%, 75.1%, and 61.9%, respectively)

(fig. 2).
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Cytokines—Only a few EBC samples (out of the total 56) showed detectable levels of

TNFα (n = 8), IL-1β (n = 21) and IL-10 (n = 19). Most of the measured concentrations were

lower than the detection limit and not reliable for quantitative comparison. No significant

differences were observed in plasma cytokine concentrations from 0-min to 60-min time

points, or between the change scores of the VT groups (fig. 3A).

Neutrophil elastase—Neutrophil elastase was not detectable in the EBC samples. Plasma

NE levels from all patients combined did not significantly increase from 0-min to 60-min

time points. The mean concentration of NE from the VT6 patients significantly increased

from 0 min to 60 min (P = 0.008), but not in the VT10 group. There were no significant

differences between the change scores of the VT groups (fig. 3B).

Clara cell protein 16—CC16 was not detectable in the EBC samples. CC16

concentrations from all patients significantly increased from 0-min to 60-min time points. It

significantly increased in the VT10 group (P = 0.015) but not in the VT6 group (P = 0.081).

There were no significant differences between the change scores of the VT groups (fig. 3C).

Correlation between biomarkers and ventilatory parameters

Nitric oxide metabolites—Measurements of EBC nitrite concentration, but not of EBC

nitrate or total NOx, logarithmically correlated with the plateau pressure measurements in

the pooled samples from all patients and time points (r = 0.27, P = 0.042) (fig. 4A).

EBC nitrite concentrations showed a significant positive logarithmic association with

plasma neutrophil elastase when all measurements were pooled for analysis (r = 0.44, P =

0.001) (fig. 4B). Levels of EBC nitrate or total NOx did not present any significant

association with neutrophil elastase measurements.

Cytokines—Plasma levels of these parameters did not correlate with any ventilatory

parameters.

Neutrophil elastase—Plasma concentrations of NE did not correlate with any ventilatory

physiology parameters. Plasma concentrations of NE, as mentioned above, showed a

positive logarithmic correlation with EBC nitrite levels.

Clara cell protein 16—Plasma levels of CC16 showed a significant positive correlation

with compliance (r = 0.34, P = 0.014) (fig. 4C).

DISCUSSION

Our prospective randomized pilot study examined the early changes of selected lung injury

biomarkers induced by 60-min mechanical ventilation with either 6 or 10 mL/kg PBW VT in

surgical patients with healthy lungs and low risk of pulmonary complications.

Nitrite or nitrate concentrations in EBC did not significantly change after 60-min ventilation

in our patients, and changes were not significantly different between the VT groups. Nitrite

and nitrate levels in EBC, individually or combined, are often used as biomarkers of lung
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nitrosative stress. Increased nitric oxide metabolites reflect activation of macrophages,

neutrophils or other various lung cell types27,44,45 through the inducible or endothelial nitric

oxide synthase46,47,48. Nitrite in EBC and nitric oxide in exhaled air are accepted by the

American Thoracic Society as complementary but not equivalent measurements of

nitrosative stress42,49,50. Nitrite and nitrate are relatively stable metabolites of nitric oxide in

aqueous EBC samples51. In physiological conditions nitric oxide can be oxidized to nitrite

by lung epithelial cells, making nitrite measurable in the EBC of healthy individuals52.

Nitrite can be reduced to nitric oxide, if decreased availability of oxygen, or further oxidized

to nitrate53. Human cells are not able to reduce nitrate to nitrite; thus nitrate is either exhaled

or diffuses into the circulation53. Multiple questions remain about the biological role of

nitric oxide metabolites in pulmonary function. For example, EBC nitrite significantly

increases in healthy recreational runners in a time-dependent manner without change in lipid

peroxidation54, suggesting an increased nitric oxide production independent of significant

lung injury. Nitrite level increases with lung distention in the EBC of COPD or ventilated

patients with or without ARDS6,26 as well as with high VT ventilation of isolated rabbit

lungs55. EBC nitrate reflects the severity of asthma better than nitrite or exhaled nitric

oxide56. Our observed nitrite and nitrate concentrations in EBC were comparable to those

found in healthy humans23,54,57, suggesting healthy lung conditions during our study period.

An insufficient time or intensity of the mechanical insult may explain the absence of

significant changes in EBC nitrite or nitrate in our study patients.

The coefficients of variation of EBC nitrite and nitrate were noticeably different in the VT

groups after 60 minutes of ventilation, decreasing in the VT6 group while increasing in the

VT10 group. This difference reflected a few patients in the VT10 group who had at least a

two-fold increase of their initial EBC nitrite or nitrate levels. These patients did not differ

from the rest of the group in physiology parameters or other biomarkers. Low VT ventilation

attenuates the increases in the concentration of other biomarkers (cytokines, CC16 and

procoagulants)58–62. However, the interpretation of the increased variability of EBC nitrite

or nitrate as an early sign of individual susceptibility to ventilator-induced lung injury

deserves caution. The additional alveolar space ventilated with larger VT could contribute to

the increased nitric oxide metabolites without any associated lung injury. Furthermore, we

cannot exclude a role of ambient contamination in this variability, since our study lacked of

controlling for inspiratory nitric oxide metabolites41.

EBC nitrite levels positively correlated with ventilatory plateau pressures in our study.

Gessner et al.6 reported a positive correlation between EBC nitrite concentrations and lung

distention parameters (VT, mean airway pressure, and PEEP) in ICU patients, ventilated for

at least 24 h for pneumonia or COPD exacerbation. The relationship between EBC nitrite

and VT had a steeper correlation coefficient in ARDS patients than in patients with mild, or

without, lung injury. The same authors described that EBC nitrite levels correlated

logarithmically with residual volume, total lung capacity and intrathoracic gas volume, but

not with parameters of expiratory flow or EBC cytokine levels, in spontaneously breathing

COPD patients26. Our findings suggest that plateau pressure, rather than volume parameters,

might influence nitrite changes in EBC of healthy ventilated patients. The time and pressure
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dependence of nitrite generation in healthy lungs during mechanical ventilation needs

further investigation.

EBC nitrite concentrations correlated with plasma NE levels in our study patients, which

may suggest a shared process between pulmonary nitrite production and plasma NE.

Concurrent increases in exhaled nitric oxide and NE activity have been observed in a murine

oleic acid-induced lung injury model63. Release of NE by activated neutrophils may reflect

ongoing alveolar neutrophil migration32 during mechanical ventilation. Plasma NE has been

evaluated as a marker and predictor of ARDS development33,64. In our study, plasma NE

levels significantly increased after 60-min ventilation in the VT6, but not in the VT10 group.

A greater atelectrauma in the VT6 compared to the VT10 group, despite the same PEEP

levels, might contribute to this finding65,66. One patient from the VT10 group had greater

than 200 ng/mL NE values (level usually measured in ARDS33) at 0 min and 60 min without

any sign of lung injury suggesting that the role of high NE levels in healthy individuals

needs clarification.

Cytokines have been measured in EBC samples2,21,26. Our low detection rate is similar to

findings in other studies in healthy patients ventilated during surgery2 and reinforces the

normal pulmonary status of our study patients. Plasma cytokine concentrations did not

significantly change in relation to surgical trauma or greater VT. Possible contributing

factors to this finding were the short study duration, lack of lung injury, or preoperative

regional anesthesia67,68. However, the inhibitory effect of regional anesthesia on systemic

inflammatory response after orthopedic surgery is still unproven69,70.

Plasma CC16 significantly increased after 60 minutes of mechanical ventilation in all

patients and in the VT10 group, but not in the VT6 group. CC16 is a small protein secreted

by epithelial Clara cells and an accepted biomarker of alveolar-capillary permeability34.

Leakage of CC16 into the circulation is observed after lipopolysaccharide inhalation in

healthy humans71, lung contusion72 and mechanical ventilation in preterm neonates36 or

animal models73. Plasma CC16 concentrations are increased in ventilated ARDS patients58

and predict poor outcomes such as greater mortality and fewer ventilator-free days35.

Increased plasma CC16 has been observed in surgical patients after 5 h of mechanical

ventilation37. The observed increase in plasma CC16 levels in our patients could be related

to passive leak due to positive pressure ventilation or to up-regulation of protein synthesis.

Plasma CC16 concentrations from all patients correlated with lung compliance. The VT10

patients received almost double insufflating lung volumes (≈620 mL in VT10 compared to

≈350 mL in VT6) with a small difference (≈3 cmH2O) in drive pressure, and therefore they

had greater measured compliance. Thus, compliance was more affected by volume (exhaled

VT) than drive pressure (plateau pressure – PEEP) change. Greater passive leakage of CC16

might reflect greater lung end-inspiratory volume and possible increased lung strain74.

Plasma CC16 levels however, were not significantly different between the VT groups after

one hour in our study or after 5 h in Determann et al.’s study37. Our findings could therefore

represent an immediate response of plasma CC16 to short-term positive pressure ventilation

that might be influenced by lung distention with unknown clinical relevance.
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The impact of the selected and often used VT
1,12 on respiratory physiology or clinical

outcomes of our healthy patients was minimal after 60-min ventilation. The clinically

insignificant worsening of oxygenation and compliance observed in our patients may reflect

an under-recruitment phenomenon from ventilation within the lower portion of the pressure/

volume curve65,66. This explanation, however, cannot be confirmed with our study design.

Our relatively low number of patients and the short duration of ventilation constitute the

major limitations of our study. However, our study was designed primarily to characterize

the early effect of different VT on biomarkers in patients with healthy lungs. Accordingly,

we excluded patients with any respiratory or immune disease, or with a BMI ≥35 kg/m2

because of the increased likelihood of obesity-related respiratory impairment. The effect of

obesity or age on the lung production of nitrite and other biomarkers is unknown. We also

excluded any surgery involving a nonsupine body position or restricted lung excursion, to

avoid confounders as positioning or external thoracic restraints. Finally, the understanding

of the influence of minute ventilation, alveolar ventilation or other ventilatory settings on the

studied lung injury biomarkers during intraoperative ventilation is limited. Although we

attempted to control for as many potential variables (PEEP, FiO2) to focus on the VT, there

are still several factors that may have affected our findings. For practical reasons, the effects

of minute ventilation or respiratory rate need to be addressed separately.

In conclusion, we studied the early changes of selected lung injury biomarkers after 60-min

ventilation with VT 6 or 10 mL/kg PBW in patients with healthy lungs. No significant

changes in EBC nitrite or nitrate levels were observed. The variability of EBC nitrite and

nitrate decreased in the VT6 but increased in the VT10 group after 60-min ventilation. We

observed a significant increase in plasma levels of NE in the VT6 group and CC16 in the VT

10 group, which may represent the effect of atelectrauma and increased alveolar distention,

respectively. Future studies in patients with higher risk for postoperative pulmonary

complications may confirm if EBC nitric oxide metabolites, plasma NE or CC16 constitute

early diagnostic or predictive biomarkers of lung inflammation.
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Figure 1. Nitrite, nitrate and Total nitric oxide (Total NOx = nitrite + nitrate) concentrations in
exhaled breath condensate (EBC) and plasma
No statistical differences were found between the tidal volume (VT) groups at any time point

in either EBC or plasma concentrations of nitrite (A), nitrate (B) or Total NOx (C). Note the

similar scale of nitrite in EBC and plasma and the approximately 20-fold concentrations of

nitrate and Total NOx in plasma compared to EBC concentrations. Graphs represent mean

and standard deviation (SD). Values from different time points within each group were

compared with a paired t-test. The change scores of continuous variables from 0min to

60min time points were compared between the two VT groups using an independent t-test.

Significant p value was accepted as p<0.05.
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Figure 2. Nitrite and nitrate concentrations in exhaled breath condensate (EBC): Individual
values
The range of values at the 0min time point for nitrite (A), nitrate (B) and total nitric oxide

(Total NOx = nitrite + nitrate)(C) were comparable in both groups. At the 60min time point

the variability of nitrite and nitrate concentrations, and therefore of Total NOx, measured as

the coefficient of variation (standard deviation/mean) was greater in the tidal volume 10

(VT10) group compared to the VT6 group. The increased variability in Total NOx in the

VT10 group was due to the increase in 3 patients that presented a raise predominantly in

nitrate concentration, with 1 of these patients showing a simultaneous 2.5-fold increase in

nitrite concentration (note the different scales for nitrite and nitrate concentrations).

Fernandez-Bustamante et al. Page 18

Anesthesiology. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fernandez-Bustamante et al. Page 19

Anesthesiology. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Plasma concentrations of cytokines, neutrophil elastase and Clara cell protein-16
(CC16)
The plasma concentrations of cytokines (A), neutrophil elastase (B) and CC16 (C) were

plotted at 0min and 60min time points in both tidal volume (VT) groups. No significant

differences were observed in cytokine concentrations at any time point and between the VT

groups. The mean level of neutrophil elastase significantly increased from 0min to 60min in

the VT6 group. The mean concentration of CC16 increased from 0min to 60min in the VT10

but not in the VT6 group. Graphs represent mean and standard deviation (SD). Comparisons

between different time points were performed with a paired t-test. The change scores of

continuous variables from 0min to 60min time points were compared between the two VT

groups using an independent t-test. No significant difference was observed between the VT

groups. *P < 0.05. (TNFα = Tumor Necrosis Factor α; IL= Interleukin).
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Figure 4. Correlation between lung injury biomarkers and ventilatory physiology parameters
Exhaled breath condensate (EBC) nitrite concentration measurements from all samples

pooled together showed a significant and positive logarithmic correlation with the airway

plateau pressure (A) and plasma neutrophil elastase levels (B). Plasma Clara Cell protein 16

(CC16) concentrations showed a positive correlation with compliance (C). r represents the

Pearson correlation coefficient.
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Table 1

Demographic Details and Clinical Outcomes of Study Patients

All VT6 VT10 P

Number 28 14 14

Age (years) 61.7 ± 7.0 61.1 ± 5.5 62.2 ± 8.3 0.691

Gender distribution

0.678 Male 8(26.7%) 3(21.4%) 5(35.7%)

 Female 20(66.7%) 11(78.6%) 9(64.3%)

Height (cm) 168.4 ± 8.9 166.8 ± 10.9 170.0 ± 6.4 0.354

Weight (kg) 79.7 ± 13.1 78.0 ± 11.6 81.4 ± 14.8 0.495

Body Mass Index (kg/m2) 28.0 ± 3.3 27.9 ± 2.6 28.0 ± 4.0 0.934

Predicted Body Weight (kg) 61.3 ± 9.7 59.6 ± 11.6 63.0 ± 7.3 0.368

ASA classification

0.171
 1 1(3.3%) 0(0%) 1(7.1%)

 2 22(73.3%) 13(92.9%) 9(64.3%)

 3 5(16.7%) 1(7.1%) 4(28.6%)

Common comorbidities

 Mild/Moderate obesity (BMI 25–34.9) 22(73.3%) 12(85.7%) 10(71.4%) 0.648

 Hypertension 11(36.7%) 5(35.7%) 6(42.9%) 1.000

 Gastroesophageal reflux disease 7(23.2%) 3(21.4%) 4(28.6%) 1.000

 Diabetes Mellitus 4(13.3%) 2(15.4%) 2(14.3%) 1.000

Clinical outcomes

 Respiratory complications 0(0%) 0(0%) 0(0%) a

 Hospital LOS (days) 2.7 ± 0.7 2.9 ± 0.9 2.6 ± 0.5 0.297

There were no significant differences between both study groups in any parameter. Data is expressed as Mean ± SD or n(%), and compared by two-
tailed independent t-test or Pearson’s chi-square (or Fischer’s exact) test, where appropriate. P represents the statistical significance of the
differences between the VT6 and VT10 groups.

ASA = American Society of Anesthesiologists classification; BMI = body mass index; LOS = length of stay; VT = tidal volume).

a
no statistics computed because all values in both groups were zero).
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