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Abstract

There has been a considerable interest in sparse representation and compressive sensing in applied

mathematics and signal processing in recent years but with limited success to medical image

processing. In this paper we developed a sparse representation-based classification (SRC)

algorithm based on L1-norm minimization for classifying chromosomes from multicolor

fluorescence in situ hybridization (M-FISH) images. The algorithm has been tested on a

comprehensive M-FISH database that we established, demonstrating improved performance in

classification. When compared with other pixel-wise M-FISH image classifiers such as fuzzy c-

means (FCM) clustering algorithms and adaptive fuzzy c-means (AFCM) clustering algorithms

that we proposed earlier the current method gave the lowest classification error. In order to

evaluate the performance of different SRC for M-FISH imaging analysis, three different sparse

representation methods, namely, Homotopy method, Orthogonal Matching Pursuit (OMP), and

Least Angle Regression (LARS), were tested and compared. Results from our statistical analysis

have shown that Homotopy based method is significantly better than the other two methods. Our

work indicates that sparse representations based classifiers with proper models can outperform

many existing classifiers for M-FISH classification including those that we proposed before,

which can significantly improve the multicolor imaging system for chromosome analysis in cancer

and genetic disease diagnosis.
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I. Introduction

Multicolor fluorescence in situ hybridization (M-FISH) is a combinatorial labeling

technique developed for the analysis of human chromosomes [1], [2]. The technique has

been used for the characterization of chromosomal translocations, the identification of

cryptic rearrangements, and the study of mutagenesis, tumors, and radiobiology [3]. In this

technology chromosomes are labeled with fluorescent dyes of different combinations and

concentrations, which allows for the differentiation of each pair of chromosomes. A

fluorescent microscope, equipped with a filter wheel is used to capture the chromosome

images at different spectral channels or wavelengths. Each dye is visible in a particular

wavelength and can be captured using a specific filter. Therefore, M-FISH signals can be

obtained as multi-spectral or multi-channel images, in which a chromosome was stained to

be visible (signed as “1”) or not visible (signed as “0”). For a number n, the number of

Boolean combination is 2n. Hence, five spectrums are sufficient to distinguish the 24 classes

of chromosomes in human genome. In addition to that, DAPI is used to counter stain each

chromosome such that all of the chromosomes are visible in DAPI channel. By

simultaneously viewing six different channel images, pixel-wise classification of

chromosome is possible. This technique is also known as color karyotyping in cytogenetics

[1]. Fig. 1 shows an example of M-FISH images of a male cell, where 22 autosomes and 2

sex chromosomes are classified from a 5-channel spectral image data and are displayed

using 24 pseudocolors. For a normal cell, each chromosome should be painted with the same

color. Otherwise, it indicates the presence of chromosomal abnormalities, which are often

associated with certain genetic diseases or cancers.

The successful detection of chromosomal abnormalities depends on accurate pixel-wise

classification techniques. Even though many attempts have been made to automate image

analysis procedure [4]–[9], the reliability of the technique has not yet reached the level for

clinical application [8]–[11]. The sizes of the misclassified regions are often larger than the

actual chromosomal rearrangements and chromosomal gain or lost, which may leads to

incorrect interpretation by cytogeneticists. To improve the detection of chromosomal

abnormalities for clinical diagnosis, accurate segmentation and classification algorithms

have to be developed.

The algorithms for classification of M-FISH images can be categorized into two groups: the

pixel-by-pixel classification [5], [7], [12]–[15] and the region-based classification [8], [16]–

[20]. In the pixel-by-pixel classification algorithms, even with pre-processing and post-

processing, the classification accuracy is still not high enough for clinical use (less than

90%) [4], [7], [9], [15], [20]. It was shown in [7] that the average accuracy of the pixel-by-

pixel classification was only 68% with a standard deviation of 17.5%.
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We have developed a number of classifiers for M-FISH classification. In [6] we developed

Bayesian classifiers. Recently, we proposed the fuzzy c-means (FCM) [12], [13] and

adaptive fuzzy c-means (AFCM) based methods [21]. We have tested these algorithms on

M-FISH images from M-FISH data base [22] that we built, which have shown that they are

promising for M-Fish image classification [12], [13]. However, those classifiers still cannot

guarantee sufficient accuracy (classification is lower than 90%) that cannot be reliable for

clinical use.

In recent years, sparse representations of signals/images have received a great deal of

attentions in applied mathematics and signal processing community [23]–[26]. The sparse

representation models are to search for the most compact representation of a signal in terms

of linear combination of atoms in an over-complete dictionary. In general case, it is

extremely difficult to compute the optimal representation [27]. However, when the optimal

representation is sufficiently sparse, it can be efficiently computed by convex optimization

[23]. Similar to the regularized version of the least squares solution (Lasso) in statistics [26],

[28], the optimization process penalizes the L1-norm of the coefficients in the linear

combination, rather than the directly penalizing the number of nonzero coefficients (i.e., the

L0-norm).

Although the sparse representations have been used in many fields, to our knowledge, little

work exists on their use for solving biological image classification. In this work, we applied

the sparse representation model to chromosome classification with M-FISH imaging. The

sparse representation based classification (SRC) algorithm was obtained by L1-minimization

using Homotopy method [29]. The Homotopy method was originally proposed by Osborne

et al. for solving noisy overdetermined L1-penalized least square problem [30]. Donoho et

al. [29] applied it to solve the noiseless underdetermined L1-minimization problem

(1)

and showed that Homotopy runs much more rapidly than general-purpose linear programs

(LP) solvers when sufficient sparsity is present.

In this work, we applied the sparse representation based on Homotopy method to the pixel-

wise classification of M-FISH images. Our results showed that sparse representation-based

classification (SRC) method gave the best classification ratio (CR) among those three

methods. In addition, results from using other sparse representation methods such as the

Orthogonal Matching Pursuit (OMP) method [31], Least Angle Regression (LARS) method

[32], were also compared. Statistical analysis showed that Homotopy method gave

significantly better CR than that of OMP method and LARS method. This suggests that

when using sparse representation based classifiers, the proper selection of computation

methods of the sparse representations is important. Different computation methods can

result in different accuracy.
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II. Methods

A complete chromosome image classification process includes fluorescence image pre-

processing, feature acquisition/selection, classification, and post-processing. In this work,

our focus is to test the effectiveness of the proposed classifiers and compare their

performances with other existing classifiers. To this end, no pre-processing (color

compensation, background correction, noise filtering, etc.) or post-process (morphology

process, joint segmentation-classification, etc.) were performed, which would otherwise

further improve the overall classification accuracy.

A. Segmentation of Chromosome Images for Region of Interest

The AFCM method [34], [35] was applied to generate a mask from the DAPI channel. Only

pixels within the mask were classified using the proposed sparse representation-based

classification (SRC) methods.

B. Feature Normalization

Since each channel of the color images was acquired independently, normalization of these

images should be favorable to remove the grayscale intensity differences caused by different

fluorescence. FCM method was applied to find the intensity centers of chromosome region

(upper center) and background (lower center). Then the images were stretched and

normalized such that the intensities below the lower center are assigned to be 0; intensities

that are higher than upper center are assigned to be 1; and intensities between the two

centers were stretched to be between 0 and 1. After the normalization, each pixel has a

feature as yi = [yi1, yi2, yi3, yi4, yi5]T ∈ R5, where yij ∈ [0, 1]; i = 1, 2, … N; j = 1, …, 5; and

N is the number of pixels in the image.

C. Sparse Representation-Based Classification (SRC) Algorithm

The basic problem in SRC is to use labeled training samples from c distinct object classes to

correctly determine the class to which a new test sample belongs. We arrange the given ni

training samples from the i-th class as columns of a matrix Ai = [y1, y2, …, yni] ∈ Rm×ni. In

the context of M-FISH image classification, we have a set of grayscale images (5 channel/

images for each set), corresponding to a vector vj ∈ Rm, where j = 1, …, ni, m = 5, and ni is

number of pixels to be used as training samples for the ith class. For the total c classes (c =

24 for the male and 23 for the female cell), A = [A1, A2, …, Ac] ∈ Rm×n will be the matrix

of training samples, where  and m = 5.

For each class i, let δi: Rn → Rn be the characteristic function which selects the coefficients

associated with the i-th class. For x ∈ Rn, δi(x) ∈ Rn is a new vector whose only nonzero

entries are the entries in x associated with class i. Using only the coefficients associated with

the i-th class, one can approximate the given test sample y as . We can then

classify y based on these approximations by assigning it to the object class that minimizes

the residual between y and :

(2)
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where ri(y) is the residual between y and , and ||*||2 represents the L2-norm.

Sparse Representation-based Classification (SRC) algorithm:

1 Inputs: a matrix of training samples A = [A1, A2, …, Ac] ∈ Rm×n for c classes; and a test sample y ∈ Rm

2 Normalize the columns of A to have unit L2-norm.

3 Solve the L1 norm minimization problem (P1) defined by (1).

4 Calculate the residuals ri(y) = ||y − Aδi(x)||2;

5 Identity (y) = arg mini ri(y)

D. Homotopy Algorithm for Solving (P1)

From the SRC algorithm given in Section C, it can be seen that it is critical to correctly solve

the L1-norm minimization problem (P1) defined by (1). Several methods have been

developed [29], [31], [32] to find the optimal sparse representation for (P1), among which

Homotopy method has been proven to have computational advantage in terms of speed [29].

Specifically, if the underlying solution has only k nonzeros, the Homotopy method reaches

that solution in only k iterative steps. Donoho et al. proved that for coherent matrices A,

where off-diagonal entries of the Gram matrix ATA are all smaller than a positive M, and if

k ≤ (M−1 + 1) * Nc/2, where Nc is the number of columns of A, then Homotopy method has

the k-step solution property [29]. In the case of M-FISH image classification, k = 5, Nc = 24

* 5 = 120; for any positive M, it will satisfy the condition given above, and consequently

Homotopy has the k-step solution property. In addition to that, Homotopy based SRC also

gave best classification accuracy for M-FISH image classification as tested in our work,

which can be seen in Results section.

For the L1-minimization problem (P1), it is convenient to consider the unconstrained

optimization problem instead:

(3)

where λ is a non-negative coefficient. Homotopy method tries to find a pathway, which

starts at large λ and xλ = 0, and terminates when λ = 0 and xλ converge to the solution of

(P1).

Let fλ(x) denote the objective function of (P2). By classical ideas in convex analysis, a

necessary condition for xλ to be a minimizer of fλ(x) is that 0 ∈ ∂xfλ(xλ), i.e., the zero vector

is an element of the subdifferential of fλ at xλ. We calculate

(4)

where ∂||xλ||1 is the subgradient
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(5)

Let I = {i : xλ(i) ≠ 0} denote the support of xλ, and call c = AT(y − Axλ) the vector of residual

correlations. Then the condition on the gradient expressed in (4) being zeros can be written

equivalently as the two conditions:

(6)

and

(7)

In other words, residual correlations on the support of I must all have magnitude equal to λ,

and signs that match the corresponding elements of xλ, whereas residual correlations off the

support must have magnitude less than or equal to λ. The Homotopy algorithm now follows

from these two conditions, by tracing the optimal path xλ that maintains (6) and (7) for all λ

≥ 0. The key to the successful implementation is that the path xλ is a piecewise linear path,

with a discrete number of vertices [32].

Homotopy algorithm:

1 Initial solution x0 = 0.

2 For the l-th stage (l = 1, 2, …), compute an update direction dl by solving

AI
T AI dl(I ) = sgn (cl(I )), (8)

with dl set to zero in coordinates not in I, where

I = { j : ∣ cl( j) ∣ = cl ∞
= λ} (9)

3
Calculate the residual 

γl
+ = min

i∈I c { λ - cl(i)

1 - ai
T vl

,
λ + cl(i)

1 + ai
T vl

} (10)

where vl = AIdl(I), and the minimum is taken only over positive arguments. Call the minimizing index i+.

4 Calculate the residual 

γl
- = min

i∈I
{ - xl(i) / dl(i)}, (11)

Again the minimum is taken only over positive arguments. Call the minimizing index i−.

5 Calculate the residual rl

rl = min {γl
+, γl

-}, (12)

6 Update xl
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xl = xl-1 + rldl (13)

7 If ||cl||∞ = 0, terminate and xl is the solution of (P1); Otherwise, go back to step (2).

E. Classifier Training

Sparse representation based classifier was trained using randomly chosen samples from each

of the 24 classes of the images (here we use male cell as an example; for female cell, it

should be 23 classes).

First, an untrained classifier was built: twenty pixels were randomly selected from each class

and fitted into the linear system Ax = y of sparse representation based classifier given by (2).

In this work, y ∈ R5 is the sample vector, A ∈ R5×480 is the untrained model matrix (the

selected sample vectors will be columns of coefficient matrix A; for 24 classes with 20

samples from each class, A has the number of columns of 24*20 = 480). x ∈ R480 is the

sparse solution of the linear system that is to be determined, which is sparse.

Each training sample vector yi, i = 1, …, 480, was then classified by this classifier they built.

Those that were not correctly identified were removed from the classifier model. Since the

feature vector y ∈ R5, linear combination of five feature vectors (bases of R5 vector space)

is sufficient to represent the vector in a given class. In other words, only five uncorrelated

vectors are needed to build the final classifier. Therefore, the number of rows of Ai should

be reduced to be 5, and |Ai| > 0, i = 1, …, 24.

When justifying if a sample vector is correctly identified or not, one could also take into

consideration of sparsity concentration index (SCI) that was introduced in the following:

For the sparse representation based classifier, a valid training vector should have a sparse

representation whose nonzero entries concentrate mostly on one subject, whereas an invalid

vector has sparse coefficients spread widely among multiple subjects. To quantify this

observation, we use the sparsity concentration index (SCI) that was proposed in [33] to

measure how concentrated the feature vectors are on a single class in the dataset [33]:

(14)

where c is the number of classes. For a solution x̂ found by the SRC algorithm, if SCI(x ̂) =

1, the feature vector y is represented using only vectors from a single class, and if SCI(x̂) =

0, the sparse coefficients are spread evenly over all classes. We choose a threshold τ ∈ [0, 1]

and accept a test vector as valid if

(15)

and otherwise reject as invalid.
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To summarize, for the class i, the selected sample vectors vij j = 1, …, 5, must satisfy the

following three conditions to be valid sample vectors to fit into the model: 1. They can be

correctly classified by the training model; 2. They satisfy SCI requirement given by (15);

and 3. Let Ai = [vi1, vi2, …, vi5], then its determinant |Ai| > 0.

F. Classification Using SRC Algorithm and ANOVA Analysis

After the classifier training, the coefficient matrix A of the sparse representation method

given by (2) changed into A ∈ R5×120 (24 classes * 5 basis vectors/class = 120), and the

sparse solution changed into x ∈ R120 correspondingly. Then a test vector yj ∈ R5 is

classified using the trained classifier, where j = 1, …, N and N is the number of pixels in the

image. Only pixels within the region of interest were classified using the proposed SRC

method. Results were given for each data set with mean and standard deviation for each

method (see “Results” section).

In order to compare the performance of these different algorithms, one way ANOVA

statistical analysis [36] was performed on the classification ratio (CR) obtained from SRC

using different sparse representation computations: Homotopy, OMP, LARS. One way

ANOVA analysis was also performed to compare classification ratio (CR) between

Homotopy based SRC and the two existing methods: AFCM method and FCM method. P-

values of the statistical analysis were given.

III. Results

A. M-FISH Database

A database consisting of 200 M-FISH-labeled human chromosome spread images has been

established by Advanced Digital Imaging Research (ADIR) (Database website) to support

this research. The database contains six-channel image sets recorded at different

wavelengths. The specimens were prepared with probe sets from Applied Spectral Imaging

(Migdal HaEmek, Israel), Advanced Digital Imaging Research (ADIR; League City, TX),

Cytocell Technologies (Cambridge, U.K.), and Vysis (Downers Grove, IL). The database

contains 200 spreads from 33 slides from five different laboratories. The specimens include

74 normal male spreads, 8 normal female spreads, 99 abnormal spreads, and 17 more that

are of low specimen quality. There are 50 different chromosomal aberrations represented,

including numerical abnormalities and structural arrangements. Spread quality ranges from

excellent to very difficult. This comprehensive image database is a valuable source for M-

FISH studies. In addition, the database includes a classification map, stored as an image file

that was established by experienced cytogeneticists. This image is labeled so that the gray

level of each pixel represents its class number (chromosome type). In addition, background

pixels are 0, and pixels in a region of overlap are 1. This data file serves as ground truth to

test the accuracy of M-FISH image classification algorithms.

B. Mask Generation

Adaptive Fuzzy C-means clustering methods (AFCM) have shown improved image

segmentation results [34], [35], [37]–[40] when applying to MRI images. In this work, an

AFCM was applied to DAPI channel to generate a mask, which was used for all other image
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channels. Only pixels within the mask were processed for the classification because they

correspond to the chromosomes of interest. Fig. 2 gives an example of the DAPI channel

image and the mask generated using AFCM. All the pixels outside the mask are in the

background and can be considered to be in a separate class.

C. Classification Results Using Different Methods

M-FISH images of 20 cells (10 male, 10 female) from the data base that we established [22]

were tested. The proposed SRC algorithms using three different sparse representations (e.g.,

Homotopy, OMP, and LARS) were studied and compared. In addition, results of these SRC

methods were compared with two other existing pixel-wise classification methods: FCM and

AFCM method. Because we are testing the performance of the classifiers, there are no pre-

preprocessing (color compensation, background correction, noise filtering, etc.) or post-

process (morphology process, joint segmentation-classification, etc.) for those results, which

would otherwise further improve the overall classification accuracy. Table I gives the CRs

of SRC using different sparse representation computations: Homotopy, OMP, LARS, as

well as the CRs of AFCM and FCM methods. Mean values and standard deviations were

also provided. As an example, Fig. 3 shows the classification results using different methods

(in the form of pseudocolor) on one set of M-FISH images.

D. Statistical Analysis to Compare CRs From Different Methods

In order to compare the classification results of these different methods, one way ANOVA

statistical analysis [36] was performed. P-values were given for each contrast. The smaller

the p-value, the more significant the difference would be. P-value between Homotopy

method and OMP method is 0.023, and the p-value between Homotopy method and LARS

methods is 0.007. Thus, for the data we tested, we can conclude that Homotopy is better

than OMP and LARS in M-FISH image classification with a confidence level over 95%.

The p-values between Homotopy based classifier and AFCM method is 0.067, and is 0.065

when compared with FCM method. In other words, with a confidence level over 90%,

Homotopy based classifier gives better classification ratio than AFCM and FCM for the data

tested in this work.

Fig. 4 shows the box plot of results from each method, in which five most important sample

percentiles were given: the sample minimum (smallest observation), the lower quartile or

first quartile, the median (middle value), the upper quartile or third quartile, and the sample

maximum (largest observation).

IV. Discussion and Conclusion

In this paper, we proposed a sparse representation based M-FISH image classification

algorithm. Three different optimal sparse representation methods, Homotopy, OMP and

LARS, were compared for the classification of M-FISH images. The experimental results

tested on the M-FISH datasets have shown that Homotopy based classifier is significantly

better than the other two methods for the data sets we tested (p-values are 0.023 and 0.007

respectively). This suggests that proper selection of optimal sparse representation is essential

to the classification result. Donoho et al.’s work also showed that Homotopy approach runs
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faster than general-purpose LP solvers [29]. Therefore, Homotopy based sparse

representation classifier is a better choice for M-FISH image classification. In addition, SRC

with Homotopy method was compared with two other existing pixel-wise M-FISH image

classification methods, AFCM method and FCM method. Under the same processing

sequence, (no preprocessing or post processing), SRC can give better classification ratio

than AFCM and FCM methods can, although AFCM and FCM methods were proven to be

effective in M-FISH image classification in our earlier work [12], [13]. Chromosome

classification can be well formulated as the sparse representation; each sample in a

chromosome class can be optimally represented by a five dimensional vector. We anticipate

that this improved classification technique can be used to better characterize chromosomal

abnormalities for cancer and genetic disease diagnosis.

Wright et al. proved that exploiting sparsity is critical for the classification of high-

dimensional data [33]. In this paper, five channel images were employed for the

classification tasks, which indicate that sparse representation is also effective for low-

dimensional data.

Although the proposed Homotopy based sparse representation method gave the relatively

highest classification accuracy, it hasn’t employed any pre- and/or post-processing steps.

Some post processing methods such as the joint segmentation-classification proposed by

Schwartzkopf et al. [7], and pre-processing methods such as the color compensation

proposed by Choi et al. [9] can be incorporated to further increase the accuracy of

classification. In addition, image segmentation to generate the mask was performed only on

the DAPI channel; image segmentation method using multi-channel information such as

proposed by Petros et al. [8], [19] can be used to further improve classification tasks.

Finally, the use of more image features may also lead to an improved classification. For

example, feature vectors including the neighboring information, such as first and second

derivatives, central moment, etc., may help improve the classification accuracy.
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Fig. 1.
The 24 classes of chromosomes are classified from the 5-channel spectral images; each class

of chromosome is displayed with a different pseudocolor. This pixel-wise classification

technique is called color karyotyping.
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Fig. 2.
An example of a DAPI channel and the mask generated. (a) DAPI channel. (b) Mask for

chromosome region.
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Fig. 3.
M-FISH classification results of using different methods, which are displayed with

pseudocolor. (a) Ground truth. (b) Result from SRC with Homotopy. (c) Result from SRC

with OMP. (d) Result from SRC with LARS. (e) Result from FCM. (f) Result from AFCM.

Cao et al. Page 17

IEEE Trans Nanobioscience. Author manuscript; available in PMC 2014 September 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
The box plots of M-FISH image classification ratios (CRs) using different methods (a) with

different sparse representation methods: Homotopy, OMP, and LARS; (b) with Homotopy,

AFCM and FCM.
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TABLE I

The CR of SRC Using Different Sparse Representation Computations: Homotopy, OMP, and LARS, and the

Two Existing Methods Including AFCM and FCM

CR of SRC using Homotopy
(%)

CR of SRC using OMP (%) CR of SRC using LARS (%) CR of AFCM (%) CR of FCM (%)

82.01 76.86 71.97 74.83 79.16

72.41 69.76 58.00 61.18 69.89

81.87 50.28 77.23 77.68 43.26

78.38 52.46 69.53 72.73 55.73

58.15 59.66 59.47 61.69 52.04

78.38 58.23 61.32 61.67 60.89

85.84 62.02 66.81 67.79 64.63

71.77 69.03 63.32 65.24 70.41

56.23 70.17 57.26 60.62 72.47

76.88 91.85 64.29 67.67 92.45

64.28 56.08 61.46 62.02 58.56

63.58 64.44 67.64 71.04 64.56

78.88 74.88 74.39 77.75 75.85

79.24 74.31 75.15 76.85 74.48

74.38 71.52 69.92 72.73 71.86

70.88 67.32 66.94 67.44 70.21

73.93 64.15 68.50 69.98 66.59

69.29 62.34 67.11 70.32 63.45

72.54 66.02 65.97 68.75 69.35

86.74 82.20 76.75 80.11 82.33

Mean+std: Mean+std: Mean±std: Mean±std: Mean+std:

73.78 ± 8.39 67.18 ± 10.12 67.15 ± 5.98 69.40 ± 6.11 67.91 ± 10.97
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