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Background: Esophageal, stomach, and colorectal cancers are commonly lethal gastrointestinal tract (GIT) neoplasms, causing almost 
two million deaths worldwide each year. some environmental risk factors are acknowledged; however, genetic defects can significantly 
contribute to predisposition to GIT cancers. Accordingly, recent works have shown that single-nucleotide polymorphisms (SNPs) within 
miRNAs coding sequence (miR-SNPs) and miRNA target sites (target-SNPs) may further contribute to increased risk of developing cancer.
Objectives: In this study, we comprehensively identified miRNA-target gene pairs implicated in GIT cancers and catalogued the presence 
of potentially functional miR-SNPs and target-SNPs that impair the correct functional recognition.
Materials and Methods: Using bioinformatics tools, manual literature review, and a highly accurate dataset of experimentally validated 
miRNA-target gene interactions, we compiled a list of miRNA-target genes pairs related to GIT cancers and prioritized them into different 
groups based on the levels of experimental support. Functional annotations (gene ontology) were applied to these pairs in each group to 
gain further information.
Results: We identified 97 pairs in which both miRNAs and target genes were implicated in GIT cancers. Several pairs, denoted as highly 
polymorphic pairs, had both miR-SNPs and target-SNPs. In addition, more than 5000 miRNA-target gene pairs were identified in which, 
according to the previous reports, either the miRNAs or the target genes had a direct involvement in GIT cancers. More than 800 target-
SNPs are located in regulatory regions that were extracted from the ENCODE project through the RegulomeDB database. Of these, 20 were 
classified as expression quantitative trait loci (eQTLs).
Conclusions: Our work provided a comprehensive source of prioritized and annotated candidate polymorphisms inside miRNAs 
and their target sites in GIT cancers, which would facilitate the process of choosing right candidate miRNA-target genes and related 
polymorphisms for future association or functional studies.
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1. Background
Esophageal, stomach, and colorectal cancers are com-

monly lethal gastrointestinal tract (GIT) malignancies, 
causing annually more than 1753000 deaths worldwide 
(1). Esophageal cancer (EC) is the eighth most common 
cancer and the sixth leading cause of cancer mortal-
ity, with a five-year overall survival rate of 10% to 16% (2, 
3). Gastric cancer (GC), the fourth most common tumor 
and the second leading cause of mortality, is often diag-
nosed in advanced ages and has an average survival rate 
of only seven to nine months (4-6). Colorectal cancer 
(CRC), the third most common cancer in men and the 

second one in women, is responsible for approximately 
8% of all cancer deaths (7). Despite some well acknowl-
edged environmental risk factors, genetic defects can 
significantly contribute to predisposition to GIT cancers. 
MicroRNAs (miRNAs) are a class of small noncoding RNAs 
that are evolutionary conserved and involved in post-
transcriptional regulation of gene expression (8). They 
modulate gene expression by binding to 3' UTR target 
sites of mRNAs and repress their translation or promote 
cleavage and degradation (9). MiRNAs regulate nearly all 
cellular processes that are altered during tumorigenesis; 
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their widespread contribution to cancer has been inves-
tigated (10). Researchers have obtained an overwhelming 
amount of data suggesting that single-nucleotide poly-
morphisms (SNPs) in miRNAs (miR-SNPs) and their target 
sites (target-SNPs) may be associated with an altered risk 
of developing cancer (9).

2. Objectives
In this work, we comprehensively identified and cata-

logued miRNA-target gene pairs in GIT cancers and anno-
tated relevant candidate miR-SNPs and their target-SNPs 
in order to study the potential implications of SNPs in the 
developing GIT cancers.

3. Materials and Methods
We considered esophageal, stomach, and colorec-

tal cancers as representative GIT tumors. Using an in 
silico approach, we extracted information on SNPs in 
GIT cancer-related miRNA-target mRNAs. First, we com-
piled information on the miRNA-target mRNA duplexes 
with some evidence of contribution into GIT cancers by 
searching relevant papers in the literature. To this aim, 

we assembled two lists: one for coding genes and anoth-
er for miRNAs implicated in GIT cancers; we called them 
GI-genes (GIT cancers-related genes) and GI-miRNAs lists, 
respectively. Then, we employed a data set of experimen-
tally validated miRNA-target gene pairs to retain all of 
the GIT cancer-relevant pairs. Furthermore, we catego-
rized the identified miRNA-target gene pairs into three 
groups (A, B, and C). Whenever a miRNA-target gene pair 
was included in GI-miRNAs or GI-genes lists, we assigned 
the pair to the group-A. Group-B included hosts pairs in 
which only miRNAs were retrieved from GI-miRNAs list, 
i.e. target genes were not from GI-gene list. Group-C con-
sisted of pairs in which miRNAs were not from GI-miR-
NAs list but their target genes belonged to the GI-gene 
list. Next, we annotated miRNAs-target gene pairs in all 
of these groups and extracted information about the 
presence of SNPs in miRNA sequence (miR-SNPs) and in 
the 3' UTR mRNA sequence (target-SNPs) by using differ-
ent bioinformatics resources (Table 1). What follows in 
the remaining of this section is a more detailed descrip-
tion of data sets, resources, and procedures employed in 
this study.

Table 1.  URLs of Bioinformatics Tools Employed in This Study a

Tools URLs Brief Description

miRBase http://www.mirbase.org/ A searchable database of published miRNA sequences and annota-
tion

TUMIR http://www.ncrnalab.com/
TUMIR/

An experimentally supported database of miRNA deregulation in 
various cancers

CAMi-Finder http://www.isical.
ac.in/~bioinfo_miu/web_isi.

html

A Cancer Associated MicroRNA Mining Tool

miR2Disease http://www.mir2disease.org/ A comprehensive resource of miRNA deregulation in various hu-
man diseases

HuGE Navigator http://hugenavigator.net/Hu-
GENavigator/home.do

A knowledge base in human genome epidemiology, including 
genetic association

CancerGAMAdb http://www.hugenavigator.
net/CancerGEMKB/caIntegra-

torStartPage.do

A continually updated database of genetic association studies in 
cancer

Cancer Gene Census http://cancer.sanger.ac.uk/can-
cergenome/projects/census/

A catalog of those genes for which mutations have been causally 
implicated in cancer

Network of Cancer Genes 
(NCG4)

http://bio.ieo.eu/ncg/ Reports annotation on 2000 protein-coding cancer genes

DAVID http://david.abcc.ncifcrf.gov/ A comprehensive set of functional annotation tools

Gene Expression Atlas http://www.ebi.ac.uk/gxa/ Provides information on gene expression patterns under different 
biological conditions

dbGaP http://www.ncbi.nlm.nih.gov/
sites/entrez?db=gap

An archive of the results of studies investigating interaction of 
genotypes and phenotypes

NHGRI GWAS catalog www.genome.gov/gwastudies A Catalog of Published Genome-Wide Association Studies

RegulomeDB http://www.regulomedb.org/ A database that annotates SNPs with known and predicted regula-
tory elements

PolymiRTS 3.0 http://www.regulomedb.org/ A database of SNPs in microRNAs and their target sites
a Abbreviations: SNP, single-nucleotide polymorphisms; and mi RNA, microRNA.
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3.1. Gastrointestinal Tract Cancers-Related Genes 
This list contained GI-genes extracted from the Cancer 

Gene Census (11), candidate genes extracted from the Can-
cer Gene Network (version 4) (12), which is a collection of 
manually curated genes from 77 whole genome or whole 
exome cancer resequencing experiments, and candidate 
genes from Cancer Genome-wide Association and Meta-
analysis Database (CancerGAMAdb), which is a database 
of Genome-wide Association Studies (GWAS) and meta-
analysis data in cancer (13).

3.2. Gastrointestinal Tract Cancers-Related Mi-
croRNAs 

In the GI-miRNAs list, we included miRNA with at least 
one of the following essential characteristics: 

- Altered expression in GIT cancers.
- Evidence for association of a miRNA-hosted-SNP with 

GIT cancers or their outcome.
Data for altered expression of miRNAs were retrieved 

from TUMIR (14), CAMi-Finder, miR2 disease (15), and 
from the literature (2, 4, 7, 16, 17). For associations, we 
used HuGE Navigator (last updated on November 29, 
2013), an integrated database of genetic associations 
(13). MiRNA coordinates were retrieved from miRBase 
(release 20) (18, 19).

3.3. MicroRNA-Target Gene Interactions
Recently, a technique, named CLASH (crosslinking, liga-

tion, and sequencing of hybrids), has been developed for 
ligation and sequencing of miRNA-target RNA duplexes 
associated with human AGO1 (20). Using CLASH, Helwak 
et al. have reported a data set of more than 18000 high-
confidence miRNA-mRNA interactions, which represents 
a breakthrough in the field (20). Therefore, we took ad-
vantage of CLASH datasets as a source of experimentally 
validated miRNA-target interactions. The coordinates of 
SNPs in binding sites where retrieved from PolymiRTS 3.0 
database (21).

3.4. Functional Annotation Analysis
Gene list functional analysis was performed by the Da-

tabase for Annotation, Visualization and Integrated Dis-
covery (DAVID v. 6.7) with the EASE score threshold, i.e. 
P Value, being 0.05 and count threshold, i.e. minimum 
number of genes for corresponding term being set at two 
(22, 23).

3.5. Differential Gene Expression Data Sets
Gene Expression Atlas was searched for upregulated or 

downregulated genes in GIT tumors by searching terms 
such as colon cancer, colorectal cancer, gastric cancer, 
and esophageal cancers (24). The differential expression 
of genes reported in four previous studies (experiment 
accession IDs: E-GEOD-13471, E-GEOD-1420, E-GEOD-19249, 
E-GEOD-19826, E-GEOD-23878, E-GEOD-2685, E-MTAB-57, 

E-MTAB-62, and E-MTAB-145) were downloaded and em-
ployed in this work (25-33).

3.6. The Encyclopedia of DNA Elements and Expres-
sion Quantitative Trait Loci Data

RegulomeDB is a database that annotates SNPs with 
known and predicted regulatory elements in the inter-
genic regions of the Homo sapiens genome. These ele-
ments include regions of DNAase hypersensitivity, bind-
ing sites of transcription factors, and promoter regions. 
The source of these data includes public datasets from 
GEO, the Encyclopedia of DNA Elements (ENCODE) proj-
ect, and published literature (34). We employed this da-
tabase to find target-SNPs located in annotated regions 
and test their function as expression quantitative trait 
loci (eQTLs).

4. Results

4.1. Group-A (GI-miRNA:GI-Gene Pairs)
We identified a total of 36 GI-miRNAs, altogether regu-

lating 66 GI-genes in the form of 97 unique miRNA-target 
duplexes. Searching for SNPs inside miRNAs sequences 
and mRNA-binding sites in this group, we identified 29 
miR-SNPs (25 with frequency information) and 150 tar-
get-SNPs (61 with frequency information). Among these, 
we looked for "highly polymorphic pairs", which bore 
both miR-SNP and target-SNP. We found several notable 
examples, including hsa-miR-93-5p:BIRC5 and hsa-miR-149-
5p:BIRC5. Survivin gene (BIRC5) belongs to inhibitor of 
apoptosis gene family and is implicated in GIT cancers. 
On the other hand, both regulators of survivin (hsa-miR-
93-5p and hsa-miR-149-5p) are also involved in GC. In the 
highly polymorphic pairs we identified hsa-miR-196a-5p 
and hsa-miR-92-3p. The first one seems to be involved in all 
GIT cancer types, and the second has a crucial role in CRC 
and GC, by regulating 20 GI-genes, 14 of which had SNPs 
in binding sites (Table 2). In addition, hsa-miR-222-3p and 
hsa-miR-100-5p were involved in two GIT cancers (CRC/GC 
and CRC/EC respectively).

4.2. Group-B (GI-miRNA:Non-GI-Genes)
This group comprises 7763 interactions including 

83 unique GI-miRNAs and 4549 unique non-GI-target 
genes. We tested the hypothesis that some target genes 
in group-B might have functional relevance to GIT can-
cers. By performing functional annotation analysis to 
the GI-genes list and group-B target genes, we found 
that about 64% of targets in group-B were involved in the 
same biological processes as GI-genes. These genes were 
kept in the list of potential candidate genes. The five most 
enriched processes in GI-genes list were positive regula-
tion of cell differentiation (GO: 0045597), enzyme linked 
receptor protein signaling pathway (GO: 0007167), regu-
lation of programmed cell death (GO: 0043067), phos-
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phate metabolic process (GO: 0006796), and cell surface 
receptor-linked signal transduction (GO: 0007166). To 
further support these evidences, we explored differen-
tial gene expression data sets of Gene Expression Atlas 
to identify upregulated or downregulated genes in GIT 

tumor in comparison with normal tissues. Intersection 
analysis of differentially expressed genes and potential 
candidate genes indicated that more than 94% (2745 of 
2904) of them were differentially expressed in at least 
one GIT tumor.

Table 2.  MicroRNAs in Highly Polymorphic Pairs a,b

MiRNA MiRNA Alteration 
in GIT Cancers

MiR-SNP Number of Targets 
With Target-SNPs

Number of 
Target-SNPs

GIT Cancer

hsa-miR-148b-3p CRC (down) rs74878365 2 2 CRC

hsa-miR-149-5p GC (association) rs2292832; rs71428439 2 3 GC, EC, and CRC

hsa-miR-15b-5p GC (up) rs146020563; rs192595529 1 1 GC

hsa-miR-16-5p CRC (up) rs72631826 3 4 CRC

hsa-miR-182-5p CRC (up) rs76481776; rs77586312; rs80041074 1 1 CRC

hsa-miR-194-5p CRC (down) rs11231898 1 2 CRC

hsa-miR-196a-5p GC and EC (up); CRC, 
GC, and EC (associa-

tion)

rs11614913; rs185070757; rs186449583; 
rs190478598;

2 4 GC, EC, and CRC

hsa-miR-20a-5p CRC (up) rs185831554 1 2 CRC

hsa-miR-222-3p CRC and GC (up) rs187612279; rs191727254; rs72631825 3 9 CRC and GC

hsa-miR-26a-5p CRC (association) rs182070256; rs190898565 3 4 CRC and GC

hsa-miR-30a-3p CRC (down) rs149150037; rs190842689 1 2 CRC

hsa-miR-30b-5p GC (up) rs111424617 1 2 GC

hsa-miR-605-5p CRC (association) rs113212828; rs2043556 1 3 CRC

hsa-miR-92a-3p CRC (up/down) and 
GC (up)

rs9589207 14 42 CRC and GC

hsa-miR-93-5p GC (up) rs72631824 1 2 GC, EC, and CRC
a Abbreviations: CRC, colorectal cancer; Down, downregulated; EC, esophageal cancer; GC, gastric cancer; and Up, upregulated.
b The table shows miRNA of each highly polymorphic pair, its alteration in cancer and relevant pre-miRNA SNPs, the number of its target with SNPs 
in their binding sites, and the total number of SNPs in these binding sites. The last column shows involvement of target genes bearing target-SNPs in 
GIT cancers.

Table 3.  Clinically Important Target-SNPs With Evidence of Disease Association a

Target Target-SNP Disease MiRNA MiRNA Alteration 
in GIT Cancers; 

"Expression or Asso-
ciation"

Reference

BID rs8190315 Breast cancer hsa-miR-92a-3p CRC (down), GC (up) (35)

ERCC1 rs3212986 Multiple cancers hsa-miR-92a-3p CRC (down), GC (up) (36)

ITPA rs1127354 Ribavirin-induced anemia and out-
comes of therapy in patients infected 

with HCV

hsa-miR-93-5p GC (up) (37, 38)

ZIC2 rs13542 Orofacial clefts hsa-miR-320a CRC (up), GC (up) (39)

BET1L rs2280543 Intracranial aneurysm, uterine fibroids hsa-miR-320a CRC (up), GC (up) (40, 41)

MAPRE1 rs7270085 Attention deficit hyperactivity disorder 
(combined symptoms)

hsa-miR-92a-3p CRC (up/down), GC 
(up)

(42)

HDAC7 rs75365750 Obesity-related traits hsa-miR-149-5p GC (association) (43)

ESPL1 rs1318648 Chronic lymphocytic leukemia hsa-miR-149-5p GC (association) (44)

WWP2 rs3748386 Myocardial infarction hsa-let-7a-5p CRC (up) Genetic Association 
Database

DLD rs4518 Cardiovascular diseases, P-selectin hsa-miR-99a-5p EC (down) (45)
a Abbreviations: CRC, colorectal cancer; Down: downregulated; EC, esophageal cancer; GC, gastric cancer; and Up, upregulated. 
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Table 4.  Annotation of Twenty Target-SNPs as Expression Quantitative Trait Loci a,b

Target Gene Target-SNP miRNA Group eQTL TF a Binding TF Motif DNase Footprint DNase Peak

HIST1H2AL rs200981 hsa-miR-10b-5p B + + + + +

HIST1H2AL rs41448545 hsa-miR-10b-5p B + + + + +

ARCN1 rs17742 hsa-miR-92a-3p B + + + + +

RPS16 rs17626 hsa-miR-17-3p B + + + + +

H1F0 rs6000898 hsa-let-7a-5p B + + + - +

MCM7 rs2307355 hsa-miR-503-5p B + + - - +

RPL27A rs6735 hsa-miR-342-3p B + + - - +

GAPDH rs1803621 hsa-miR-149-5p B + + - - +

TUBA1B rs2753 hsa-miR-320a B + + - - +

GCN1L1 rs2286050 hsa-miR-423-3p B + + - - +

KIF23 rs11852675 hsa-miR-25-3p B + + - - +

MYO1D rs2285428 hsa-miR-320a B + + - - +

ACTG1 rs11549223 hsa-miR-221-3p B + + - - +

NR2F6 rs2288539 hsa-miR-196a-5p B + + - - +

XPO4 rs4617691 hsa-miR-18a-3p B + + - - -

PEX6 rs1129187 hsa-miR-149-5p B + - - - +

SOD2 rs7855 hsa-miR-769-3p C + - - - +

PDHX rs497582 hsa-miR-181b-5p B + - - - +

WWP2 rs3748386 hsa-let-7a-5p B + - - - +

MYO19 rs2306590 hsa-miR-615-3p C + - - - +
a Abbreviations: eQTL, expression quantitative trait loci; and TF, transcription factor.
b The overlap of target-SNPs with different genomic features has been indicated with the “+” symbol, whereas “-” indicates no overlap. Note that some 
SNPs are located in coding region or 5' UTR.

Consequently, the primary list of 7763 pairs were re-
duced to 4856 pairs (78 miRNAs and 2745 target genes), 
which totally hosted 55 miR-SNPs (45 with frequency in-
formation) and 6562 target-SNPs (2857 with frequency 
information).

To gain further insights into the potential functional 
relevance of target-SNPs, we searched the dbGaP (46), NH-
GRI GWAS catalog (47), and Genetic Association Database 
(GAD) (48) to extract information on their association 
with diseases. Interestingly, association of eleven SNPs 
with diseases were previously reported (Table 3) (37-45). 
Among these SNPs, rs8190315 and rs3212986 are located in 
BID and ERCC1, respectively. These two regions are recog-
nized by hsa-miR-92a-3p, a miRNA that is downregulated 
in CRC and upregulated in GC.

4.3. Group-C (Non-GI-miRNA:GI-Gene Pairs)
MiRNAs that regulate GI-genes were assigned to this 

group, which contains 214 unique pairs (68 miRNAs and 
107 target genes). We identified 45 miR-SNPs (37 with fre-
quency information) and 294 target-SNPs (133 with fre-
quency information).

4.4. Annotation of Target-SNPs
Using RegulomeDB, we annotated target-SNPs in 

groups A, B, and C. A total of 815 target-SNPs overlap 
with transcription factor binding sites and DNase I hy-
persensitive regions. Out of these 815 target-SNPs, 24 
reside in transcription factor motifs and/or footprints. 
Furthermore, we found 20 target-SNPs that function as 
eQTLs (Table 4).

5. Discussion
Increasing evidences propose that SNPs within miR-

NAs and their 3' UTR binding sites may play active roles 
in a variety of human diseases, especially GIT cancers. 
Here, we catalogued miRNA-target gene pairs with 
varying levels of implications for esophageal, gastric 
and colorectal tumors, and annotated the presence of 
potentially functional SNPs. We obtained a list of more 
than 5100 GIT cancers-related miRNA-target gene pairs, 
hosting 91 miR-SNPs and 7006 target-SNPs, and priori-
tized them according to experimental findings. 

In group-A, we demonstrated several novel GIT can-
cers-related interactions and made a list of highly poly-
morphic pairs. MiR-SNP can alter the expression level of 
the wild-type miRNA, whereas the presence of a func-
tional SNP in the 3' UTR target site may potentially affect 
the binding with a specific miRNAs and alter the post-
transcriptional regulation by miRNAs. Therefore, we 
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concluded that it would be a good practice to examine 
the effects generated by the presence of miR-SNPs and 
target-SNPs in highly polymorphic pairs when study-
ing their contribution to the cancers development or 
evaluating the predisposition to it. Overall, 97 miRNA-
target pairs and their 86 SNPs identified in this group 
represent prioritized candidate pairs to be considered 
in further experimental studies for their high probabil-
ity of involvement in an impaired modulation of gene 
expression. 

Regarding pairs in group-B, we showed that a consid-
erable proportion of target genes are involved in the 
biological processes altered in GIT cancers and are dif-
ferentially expressed in these tumors. Incidentally, we 
further explored the functional roles of some of these 
variants by indicating that 11 SNPs with strong evidence 
of association with a variety of diseases ranging from 
breast cancer to orofacial cleft actually are located in-
side binding sites of clinically important miRNAs. The 
most noteworthy SNP may be rs3212986 in ERCC1 gene 
with reported association with multiple cancer types 
including, but not limited to, estrogen-related cancers 
(breast, cervical, and ovarian), smoking-related cancers 
(lung, esophageal, bladder, head and neck, and pan-
creatic cancer), and brain tumors. Therefore, a large 
number of pairs and polymorphisms found in group-B, 
which were not explored in this work, could represent a 
further line of research in a near future. 

Regarding group-C, our results showed that several 
miRNAs regulating GI-genes could be potentially rel-
evant and could offer the opportunity to detect other 
novel candidate miRNAs. Since variations in genomic 
regulatory regions have crucial functional effects, we ex-
ploited the information of the ENCODE project to classi-
fy the target-SNPs obtained in our work. Table 4 presents 
twenty target-SNPs in the context of ENCODE.

In summary, our data provided a comprehensive 
source of prioritized and annotated candidate poly-
morphisms within miRNAs sequences and their 3' UTR 
target sites in GIT cancers, which could facilitate the 
process of selecting the right candidate miRNA-target 
genes for functional studies and focusing on potentially 
relevant polymorphisms for further association studies.
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