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The Visual Input to the Retina during Natural Head-Free

Fixation
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Head and eye movements incessantly modulate the luminance signals impinging onto the retina during natural intersaccadic fixation.
Yet, little is known about how these fixational movements influence the statistics of retinal stimulation. Here, we provide the first detailed
characterization of the visual input to the human retina during normal head-free fixation. We used high-resolution recordings of head
and eye movements in a natural viewing task to examine how they jointly transform spatial information into temporal modulations. In
agreement with previous studies, we report that both the head and the eyes move considerably during fixation. However, we show that
fixational head and eye movements mostly compensate for each other, yielding a spatiotemporal redistribution of the input power to the
retina similar to that previously observed under head immobilization. The resulting retinal image motion counterbalances the spectral
distribution of natural scenes, giving temporal modulations that are equalized in power over a broad range of spatial frequencies. These
findings support the proposal that “ocular drift,” the smooth fixational motion of the eye, is under motor control, and indicate that the
spatiotemporal reformatting caused by fixational behavior is an important computational element in the encoding of visual information.
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Introduction

Sensory systems have evolved to operate efficiently in natural
environments. Therefore, linking the response characteristics of
sensory neurons to the statistical properties of natural stimula-
tion is an essential step toward understanding the computational
principles of sensory encoding (Simoncelli and Olshausen, 2001;
Hyvirinen et al., 2009). This step requires examination of the
characteristics of both the natural environment and the motor
behavior of the organism, as these two elements jointly contrib-
ute to shaping input sensory signals. In primates, small head and
eye movements continually occur during the intersaccadic peri-
ods in which visual information is acquired and processed. These
fixational movements directly impact the retinal stimulus and
may profoundly influence the statistics of the visual input.

In observers with their heads immobilized—a standard con-
dition for studying fixational eye movements—we recently
showed that incessant intersaccadic eye drifts alter the frequency
content of the stimulus on the retina; whereas low spatial fre-
quencies predominate in natural images (Field, 1987), fixational
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eye movements redistribute the input power on the retina to yield
temporal modulations with uniform spectral density over a wide
range of spatial frequencies (Kuang et al., 2012). This finding has
two critical implications for the encoding of visual information: it
challenges the traditional view that this power equalization—also
known as “whitening”—is accomplished by center—surround in-
teraction in the retina (Srinivasan et al., 1982; Atick and Redlich,
1992; van Hateren, 1992); and it supports the general idea that the
fixational motion of the retinal image acts as a mechanism for
encoding a spatial sensory domain in time (Marshall and Talbot,
1942; Ahissar and Arieli, 2001; Greschner et al., 2002; Rucci,
2008).

Under more natural conditions, “fixational head move-
ments,” the translations and rotations resulting from continual
adjustments in body posture and physiological head instability,
also contribute to retinal image motion (Skavenski et al., 1979;
Ferman et al., 1987; Demer and Viirre, 1996; Crane and Demer,
1997; Louw et al., 2007; Aytekin and Rucci, 2012), and it is un-
known whether an equalization of spatial power continues to
occur. On the one hand, the smooth fixational motion of the eye
is often assumed to be uncontrolled (Engbert and Kliegl, 2004;
Engbert, 2012), and the superposition of fixational head and eye
movements may decrease the precision of fixation and increase
the velocity of the retinal image. These effects would reduce the
extent of whitening resulting from fixational modulations and
change their information-processing contribution. On the other
hand, it has long been argued that ocular drift is also under visuo-
motor control (Steinman et al., 1973; Epelboim and Kowler,
1993; Kowler, 2011), and pioneering investigations have sug-
gested some degree of compensation between fixational head and
eye movements (Skavenski et al., 1979). Thus, in principle, ad-
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Figure 1. Reconstruction of the retinal input. A, Head rotations were expressed by the Fick angles (yaw &, pitch &, and roll ,) necessary to align a reference frame, H® = {h, hi, h}, established
during aninitial calibration procedure with a head-fixed frame, H = {h,, h,, h,}. Eye movements, defined as eye-in-the-head rotations, were measured by the horizontal and vertical rotations, v,
and v, necessary to align H with an eye-centered reference frame E, oriented so that its first basis vector e, coincided with the line of sight. B, Joint measurement of the orientation and position
of the head enabled localization of the centers of rotations of the two eyes (€) and their optical axes (e,). The retinal image was estimated by placing the eye model of Gullstrand (1924) at the current

eye location. N; and NV, optical nodal points, T target, P target’s projection on the retina.

justments in fixational eye movements could compensate for the
normal presence of fixational head movements and still give spa-
tial whitening of the stimulus on the retina. This issue has re-
mained unexplored, and the frequency characteristics of the
visual input to the retina under normal head-free fixation are as
yet unknown.

In this study, we used simultaneous recordings of head and
eye movements obtained by means of a custom device to ex-
amine the statistics of the retinal stimulus during normal
head-free fixation. We show that fixational head and eye
movements are coordinated in a very specific manner, result-
ing in a pattern of retinal image motion with frequency char-
acteristics similar to those observed in subjects with their head
immobilized. That is, with either head fixed or head free, tem-
poral modulations on the retina equalize the spatial power of
natural scenes.

Materials and Methods

Analysis of retinal motion under natural viewing conditions is challeng-
ing, as high-resolution measurements of eye movements typically require
immobilization of the head. Here, we used data previously collected with
the Maryland Revolving Field Monitor (MRFM), which, to our knowl-
edge, is the only device with demonstrated capability of precisely record-
ing microscopic eye movements during normal head-free viewing
(Steinman et al., 1990). In this section, we focus on the procedures for
reconstructing and analyzing retinal image motion. The apparatus, the
procedures for data collection, and the experimental task have been de-
scribed in previous publications (Epelboim et al., 1995, 1997; Epelboim,
1998) and are only briefly summarized.

To maintain a terminology similar to the one used in head-
immobilized experiments, we will refer to the rotations of the eyes rela-
tive to a reference frame H fixed with the head (for the eye-in-the-head
rotations, see Fig. 1) as eye movements. We will use the term “head
movements” to denote the rotational and translational changes in the
pose of the head (defined here as a rigid body H) relative to a standard
reference position in an allocentric reference frame H’. Head movements
may be the consequence of neck rotations as well as movements of the

torso. In head-fixed experiments, the smooth eye movements occurring
during fixation on a stationary object are commonly referred to as “oc-
ular drifts.” Extending this terminology, we use the term “retinal drift”
(or simply “drift”) to indicate the intersaccadic retinal image motion
present during fixation on one of the LED targets. Since the head is free to
move in these experiments, retinal drift may result not only from eye-in-
head rotations, but also from head movements.

Subjects and task

Three human subjects participated in the experiments. Y.A. (a 63-
year-old male) was naive about the goals of the original experiments
and had only served in one prior oculomotor experiment. The other
two subjects (R.S., a 70-year-old male; and J.E., a 30-year-old female)
were the experimenters who collected the data. They were both expe-
rienced subjects and had participated in many previous oculomotor
experiments. For the purpose of this article, however, these two ex-
perienced subjects can, in a sense, also be considered naive, as the
analyses of retinal drift presented here were not part of the goals of the
original experiments.

Observers sat normally on a chair and were asked to look sequentially,
in a pre-established order, at four LEDs with different colors (the tar-
gets). The LEDs had diameter of 5 mm and were placed at fixed positions
on a table (58.5 X 45 c¢m) in front of the subject. The positions of the
targets were selected randomly and changed every five trials. Their dis-
tances from the observer’s eyes varied between 50 and 95 cm, and their
minimum separation was 4.5 cm. Subjects could move freely while re-
maining on the chair and were given ample time (6 s) to complete the task
in each trial. The room was normally illuminated, and the targets re-
mained clearly visible for the entire experimental session. Experiments
were conducted according to the ethical procedures approved by the
University of Maryland.

Apparatus

The orientation of the line of sight of each eye was recorded by means of
the scleral search coil technique. Subjects had eye-coil annuli placed in
their eyes [two-dimensional (2D) coils, eye torsion was not measured;
Skalar Medical BV| and were surrounded by a properly structured mag-
netic field. In the traditional version of this method, amplitude measure-
ments of the current induced in the eye coil enable estimation of the
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direction of gaze (Robinson, 1963; Collewijn et al., 1975). Amplitude
estimation, however, gives precise measurements of eye rotations only
with the head immobilized (Robinson, 1963; Houben et al., 2006); when
the head is not restrained, lack of homogeneity in the magnetic fields
causes measurement artifacts (Collewijn, 1977). To circumvent this
problem, the MREFM uses an ingenious combination of three magnetic
fields, which rotate at different frequencies in mutually orthogonal
planes. This method has been shown to give precision higher than 1
arcmin even in the presence of considerable head and body motion
(Rubens, 1945; Hartman and Klinke, 1976; Epelboim et al., 1995).

The measured eye coil angles give the gaze orientation in space. For
measuring eye movements relative to the head, two additional coils were
placed on the head of the observer. The angles given by these coils were
converted into yaw, pitch, and roll angles—®,, ® , and P, respectively—
according to Fick’s convention (Haslwanter, 1995). The orientation of
each coil was sampled at 488 Hz and digitally recorded with 12 bit preci-
sion. Because the objects were not at an infinite distance from the ob-
server, retinal image motion was also influenced by head translations.
Translations were measured by means of an acoustic localization system
based on four microphones. This system estimated the position of a
marker (a sparker on the subject’s head) from the differences in the time
of arrival of the sound at the microphones, an approach with an accuracy
of ~1 mm. Head position data were sampled at 61 Hz—a bandwidth
sufficient for measuring the typically slow head translations of fixation—
and interpolated at 488 Hz.

Preliminary calibration procedures conducted in each experimental
session defined the room-centered reference frame H° = {hJ, h‘y’, h}
(Fig. 1A) with origin at the head marker and determined possible offsets
in the placement of the coils. These initial calibrations also enabled esti-
mation of the two vectors, 1’ and r¥, which determined the positions of
the centers of rotations of the two eyes relative to the position of the
head-mounted sparker, s,. The eye centers were assumed to be located 14
mm behind the surfaces of the cornea (Ditchburn, 1973).

Estimation of retinal image motion

For a given LED target, its instantaneous projection in the retinal image is
determined by the position of the eye in space and the orientation of the
line of sight. Therefore, to reconstruct the trajectories followed by the
targets on the observer’s retinas during a trial, we performed three suc-
cessive computational steps at each time sample #. First, we estimated the
position of each eye’s center of rotation, cE(1) and cR(t), where L and R
indicate the left and right eye, respectively. Second, we computed the
coordinates of every LED target with respect to an eye-centered reference
frame aligned with the line of sight. Third, we projected all the targets
onto the retinal surface by means of a geometrical and optical model of
the eye.

Step 1: eye positions in three-dimensional space. This first step of the
procedure is similar in concept, but different in implementation, to the
method described by Epelboim et al. (1995). The trajectories followed by
the centers of rotations of the two eyes (the eye displacements in Fig. 2C)
were reconstructed on the basis of the three-dimensional (3D) position
of the head marker s(#) and the instantaneous yaw, pitch, and roll head
angles, ®_(t), @ (t), and P (¢). That is, at any time ¢ during a trial, the eye
displacements (i.e., the instantaneous 3D positions of each eye’s center of
rotation, c/(¢) and c*(t)) were estimated by means of rigid body trans-
formations of the subject’s head relative to the room-centered reference
frame H°, as follows:

R0 = Ry () t5% + (). (1)

HereRg, (P,, @, D) represents the Fick’s angle rotation matrix defining
the current head orientation relative to the reference orientation mea-
sured during the preliminary calibration procedure.

Step 2: locating targets relative to eyes. To compute the target positions
with respect to an eye-centered reference frame, we first obtained the
instantaneous head-centered reference frame H(t) = {h,, hy, h,}. This
coordinate system was computed by rotating the allocentric frame, H’,
by the measured Fick’s angles (Fig. 1A), as follows:

[h.h, h.] = R(®) [h{ hy h7].
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Eye movements, defined as rotations of the eyes in the head, were given
by the horizontal and vertical angles, a® and %, of each eye’s line of
sight relative to H (see example in Fig. 2D). Rotating H by these two
angles around h, and hy, respectively, brought h, parallel to the line of
sight and enabled the definition of an eye-centered reference frame E =
{e, e, .}, as follows:

[ex ey ez:l = [hx hy hz] R(ah> ay, 0)>

where R(a, a,, 0) represents the corresponding rotation matrix (left/
right indices omitted for simplicity of notation here and below). E was
placed so that its origin coincided with the eye’s center of rotation and
was oriented so that its first vector, e,, was aligned with the line of sight
(Fig. 1A).

We then expressed the position of each target with respect to E. Given
a target T at room-centered coordinates t, its position in eye-centered
coordinates was given by the following:

t(1) = [e. e, e]'(t — c(1). (2)

Step 3: reconstructing the retinal image. Given the instantaneous position
of the eye center of rotation, ¢, and the eye-centered reference frame, it
was possible to estimate the projection of each target on the retina. This
was achieved by means of the eye model of Gullstrand (1924) with ac-
commodation. In the schematic eye models of Gullstrand (1924), the
retina as a spherical surface (radius, 11.75 mm) was centered at the center
of rotation. It simulates the process of image formation as a two-nodal
point optical system, so that a ray of light going through the first nodal
point (N, ) exits the second nodal point (N,) with a parallel path. The two
optical nodal points are located on the line of sight at distances of 5.7 mm
(N,) and 5.4 mm (N,) from the eye center.

The eye model was positioned so that its center of rotation C coincided

with c() and its optic axis was aligned with the estimated line of sight (the
—>
basis vector e,; see Fig. 1B). This enabled estimation of the vector N, T

—
and the angle B between N, T'and the direction of gaze e, in Figure 1B. We
then identified the position P of the retinal projection of the target rela-

—>
tive to the eye center by means of the vector CP. This vector is given by the
sum of CN, and N,P. Since N,P is parallel to and in the opposite direc-

—
tion of N, T, we obtain the following:

—_—> _—> —_—> _—
CP =CN, — <||CN2Hcos(B) + \JR? — ||CN2||ZsinZ(B)>u.

(3)

where R is the radius of the eye, andu = is the unit vector in the

—
N T |

—

direction of N, T.

—
Once CP = [p, p, p.]" was estimated, the instantaneous retinal po-

sition of the target was expressed in spherical coordinates by means of the

horizontal and vertical angles ¥, and ¥, in Figure 1B, as follows:

v,= — arctan(%)

V¥, = arctan B
) PL+ )

In this way, the position marked by zero angles (i.e., ¥, = 0, ¥, = 0)
corresponds to the center of the preferred retinal fixation locus measured
during the calibration procedure (the center of gaze; the 07 point in Fig.
1B at which the line of sight intersected the retinal surface). The retinal
trace of a given target in a trial consisted of the 2D trajectories
[W,(¢), W,(t)] evaluated over the course of the entire trial. The distribu-
tions in Figure 5 were evaluated by translating each fixation trace along
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Figure2. Examplesofhead and eye movements and resulting image motion on the retina during an experimental trial. A, Head translations. B, Head rotations. Head movements were measured
relative to a room-fixed Cartesian reference system, as shown in Figure 1. C, Eye displacements, defined as the translational motion of the eye resulting from head movements. Traces represent the
spatial trajectories followed by the center of rotation of each eye. D, Rotational eye movements, defined as horizontal and vertical rotations of the eye within the head. E, Retinal image motion.
Trajectory of the retinal projection of one LED target. F, Enlargement of a portion of the trace in E (shaded region). For comparison, the trajectory obtained by artificially eliminating head movements
(i.e., by holding head position and orientation signals constant for the entire fixation interval) is also shown. In all panels, angles are expressed in degrees, and translations in millimeters.
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the retinal geodesic so that its first point coincided with the center of gaze.
Note that because of the offset between the center of rotation C and the
nodal point N in the eye model of Gullstrand (1924), the use of a refer-
ence system centered at C implies a magnification in the velocity of the
target in the retinal image relative to that measured in external visual
angles. For small movements, like the ones occurring during fixation, this
magnification is ~50%.

Retinal input analysis

In every trial, we estimated the trajectories of all targets on both retinas.
For all the targets, the reconstructed retinal trajectories in a trial were
jointly segmented into separate periods of fixation (the retinal drift pe-
riods) and saccades on the basis of the retinal velocity of the currently
fixated target. The fixated target was selected binocularly as the target
closer to cyclopean gaze, which we defined as the virtual line of sight
going through the midpoint between the two eyes and the point of inter-
section of the lines of sight of the two eyes (or the point at minimum
distance from these lines, if they did not intersect). This method ensured
consistency between the fixation periods in the two eyes. Movements
were categorized on the basis of the velocity of the fixated target because
the various targets were located at slightly different distances from the
observer and their instantaneous speeds on the retina were not identical
during normal head movements.

Saccadic gaze shifts were defined as the periods in which (1) the in-
stantaneous retinal speed of the target fixated at the beginning of the
movement exceeded 12°/s; and (2) its instantaneous acceleration exhib-
ited a biphasic temporal profile with one peak before and one after the
time of peak velocity. Retinal velocity and acceleration were estimated by
temporal differentiation of the original traces. Saccade onset and offset
were defined as the times at which the speed of the retinal projection of
the presaccadic target became greater (saccade onset) and lower (saccade
offset) than 4°/s. Saccade amplitude was measured by the modulus of the
angular displacement on the retina of this target. Consecutive saccades
closer than 50 ms were merged together, a method that automatically
excluded possible postsaccadic overshoots.

In this study, we focused on the characteristics of the head and eye
movements occurring in the fixation intervals between saccades. To limit
the impact of measurement noise in estimating the low velocities of
fixational movements, intersaccadic segments in head and eye traces
were filtered by means of a low-pass third-order Savitzky—Golay filter
(Savitzky and Golay, 1964) before numerical differentiation. This local
polynomial regression filter was designed to give a conservative cutoff
frequency of ~30 Hz. It was preferred over more traditional linear filters
because of its higher stability during the initial and final intervals of each
fixation segment, which enabled the use of larger portions of data. This
approach also enabled direct comparison of the data presented here with the
velocities previously measured in experiments with head immobilization.
Head-fixed data were acquired by means of Generation 6 Dual Purkinje
Image Eyetracker (Fourward Technologies) with the head immobilized by a
dental imprint bite bar and a head rest, while subjects either maintained strict
fixation on a dot or freely examined natural images.

To examine the characteristics of retinal drift and to allow for a direct
comparison with our previous analysis under head-fixed conditions,
we estimated the probability of retinal displacement, q(x,t) (i.e., the
probability that the projection of the fixated target shifted on the retina
by an amount x in an interval £ see Fig. 7). We summarized the overall
shape of g(x, t) by means of the diffusion constant D, which defines how
rapidly the dispersion of the displacement probability grows with time
(D = <x"x>/4t). Since in the considered experimental task the lines
of sight in the two eyes did not always exactly converge on the same
target, estimation of g(x,t) was conducted over the intersaccadic inter-
vals in which, in both eyes, a target was closer than 3° to the center of gaze,
and its trajectory remained within a circular area as large as the fovea
(1° diameter). This method ensured the selection of an identical fixation
periods in the two eyes.

The reconstructed retinal trajectories of the targets enabled estimation
of the impact of head and eye movements on the frequency content of the
visual input during natural fixation. In the absence of retinal image mo-
tion, the input to the retina would be an image of the external scene.
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However, fixational head and eye movements temporally modulate the
input signals received by retinal receptors. These modulations transform
the spatial power of the external stimulus into temporal power. The
power redistribution of a small light source, like the LED targets used in
this study, is well approximated by the Fourier transform Q(k, w) of the
displacement probability q(x, ) (see Fig. 8; k and w represent spatial and
temporal frequencies, respectively).

More generally, Q(k, w) also enables the estimation of how head and
eye movements redistribute the spatial power of an arbitrary scene with
spatially homogeneous statistics and spectral density distribution I(k).
We have recently shown that, under the assumption that fixational drift
is statistically independent from the retinal image, the power spectrum of
the spatiotemporal stimulus on the retina, S, can be estimated as follows:

Sk, 0) = Ik)Q(k, ), (4)

(see Kuang et al., 2012, their supplementary information). While the
assumption of independence may not be strictly valid in restricted re-
gions of the visual field—retinal image motion might be influenced by
the stimulus in the fovea—it is a plausible assumption when considered
across the entire visual field, as the estimation of the power spectrum
entails.

The model in Equation 4 provides excellent approximations of the
power spectra of visual input signals measured in head-fixed experiments
(Kuangetal., 2012). We computed Q(k, w) using the Welch method over
periods of fixation >525 ms for subjects Y.A. and J.E. and >262 m:s for
subject R.S., who exhibited significantly shorter fixations. To summarize
our results in two dimensions (space and time), probability distributions
and power spectra are presented after taking radial averages across space
(x = |x|land k = ||K||). As a consequence of the shorter time series for
subject R.S., the 4 Hz section of Q is corrupted by leakage in this subject
and is omitted in Figure 8. Estimation of how the fixational head and eye
movements recorded in this study transform the spatial power of natural
scenes was obtained by multiplying Q by the ideal power spectrum of
natural images as in Equation 4 (i.e., by scaling Q(k, w) by k ~ ?; Field,
1987; see Fig. 9).

Results

We reconstructed the spatiotemporal signals impinging onto the
retina in a task in which observers looked naturally at a sequence
of targets (a set of colored LEDs). Observers sat on a chair facing
the targets but were otherwise free to move. The following sec-
tions summarize the characteristics of eye-in-the-head rotations
(fixational eye movements) and head translations and rotations
(fixational head movements) during fixation on the targets and the
resulting image motion on the retina. Figure 2, to which we will
periodically refer through the presentation of the materials, shows
example traces of the head and eye movements recorded in the ex-
periments and explains the approach followed by this study.

Fixational head and eye movements
Head movements, both translations and rotations, were measured
relative to a room-centered reference frame defined during an initial
calibration (see Materials and Methods). In the example trial con-
sidered in Figure 2, the head translated by ~7 mm on the naso-
occipital x-axis and by 8 mm on the intra-aural y-axis (Fig. 2A). As
expected, given that the subject remained on the chair for the entire
duration of the trial, movements in the vertical direction (the z-axis)
were minimal. Because the targets covered a relatively wide angular
field on the horizontal plane, head rotations occurred primarily
around the vertical axis (yaw rotations) and were performed to shift
gaze from one target to the next. Yaw rotations in this trial spanned
arange of ~13° (Fig. 2B). Rotations around the other two axes (pitch
and roll) were also present, each covering a range of ~2°.
Measurements like the ones in Figure 2, A and B, were used to
estimate the characteristics of head movements while subjects
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fixated on the targets (Fig. 3). Fixational head movements oc-
curred in all 6 degrees of freedom. In agreement with previous
reports (Crane and Demer, 1997; Aytekin and Rucci, 2012), the
velocity of fixational head translations was for all subjects highest
on the x-axis, intermediate on the y-axis, and minimal on the
z-axis (Fig. 3A), probably reflecting the physiologically larger
postural instability of the anterior—posterior axis (Paulus et al.,
1984). Across subjects, the mean speed for head translations was
10 = 8 mm/s. Conspicuous fixational head rotations also oc-
curred on each degree of freedom (Fig. 3B). They were fastest
around the yaw axis, intermediate around the pitch axis, and
slowest around the roll axis, giving an average angular speed of
~2°/s (average = SD across subjects: 112 * 143 arcmin/s). Sub-
jects differed in the velocity of head movements, but exhibited
very similar motion patterns. Most notably, subject R.S. main-
tained a more stable fixation, moving his head significantly less
than the other two subjects (p < 0.001, Kolmogorov—Smirnov
test). His average translational and rotational speeds were >40%
lower than those of subject Y.A. Still, even in this more stable
observer, fixational head movements were significant, with aver-
age translational and angular speed equal to 5 mm/s and 56 arc-
min/s, respectively.

Under normal head-free viewing conditions, the eyes move in
the following two ways: (1) they translate in space with the head
because of head movements (eye displacements); and (2) they
rotate within the head to redirect the line of sight (eye move-
ments). We quantified linear displacements by reconstructing
the 3D trajectory followed by the center of rotation of each eye. In
the example of Figure 2C, the eye centers covered a distance of ~2

cm, with a significant portion of the displacement taking place
during fixation on the first two targets, in the interval between 1
and 2 s after trial onset. This change in position would, by itself,
cause a large amount of motion in the retinal image, moving the
retinal projection of a target at 50 cm from the observer by >2°.
On average across trials, fixational head movements translated
the two eyes in space by several millimeters during fixation (av-
erage displacement across subjects, 2.4 mm). The resulting aver-
age speed of eye displacement was 10.5 = 5 mm/s (Fig. 4A). As
expected because of the predominant yaw rotations, eye transla-
tions were more pronounced along the interaural y-axis, where
they reached instantaneous velocities of many millimeters per
second. But non-negligible linear velocities also occurred on the
other two axes, particularly the x-axis.

Eye movements (i.e., eye-in-head rotations; Fig. 2D, example
traces) were estimated on the basis of the signals given by the head
and eye coils, which were both necessary to determine changes in
the instantaneous directions of gaze relative to the head-fixed
reference frame. Saccades were frequent in this experiment. Across
observers, they occurred at an average rate of 2.4 saccades/s, rang-
ing from 2 saccades/s for subject Y.A. to 2.7 saccades/s for subject
R.S. Whereas saccades were frequent, microsaccades— defined as
saccades with amplitudes of <<30 arcmin—were extremely rare, a
result that is in line with previous reports of both head-free (Ma-
linov et al., 2000) and head-fixed studies (Collewijn and Kowler,
2008; Kuang et al., 2012) with tasks in which attention to fine
spatial detail is not critical (but for examples of microsaccades in
high-acuity tasks, see Ko et al., 2010; Poletti et al., 2013). A mic-
rosaccade occurred on average once every 4.4 s in subject J.E., and
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once every 10.4 s in subject Y.A. Microsaccades were virtually
absent in subject R.S.

Even in the absence of microsaccades, the eyes moved consid-
erably during fixation because of ocular drift, the smooth motion
always present in the intervals between saccades. In all subjects,
ocular drift reached velocities of several degrees per second on
both the horizontal and vertical axes, with averages >1°/s (Fig.
4B). Across the six eyes considered in this study, the resulting 2D
drift speed was on average 201 arcmin/s, a value approximately
four times larger than the ocular drift speed we previously mea-
sured in a large pool of subjects during sustained fixation with the
head immobilized (52 arcmin/s; p < 0.003; Mann—Whitney-
Wilcoxon test; Cherici et al., 2012). This comparison should ob-
viously be taken with caution, as the two sets of data were
collected with different instruments and in different tasks. But
the result is in agreement with those of previous studies suggest-
ing that the fixational smooth motion of the eye is considerably
faster when the head is free to move (Skavenski et al., 1979).

Retinal image motion

The results of Figures 3 and 4 show that considerable head and
eye movements occur during the intersaccadic periods of fixa-
tion. What are the consequences of these movements on the in-
put signal normally experienced by the visual system during
natural head-free fixation?

To answer this question, we reconstructed the trajectories fol-
lowed by the projections of the LED targets on the retina during
the course of each trial (see example in Fig. 2E). These traces were
obtained by means of a standard geometric/optical model of the
eye (Gullstrand, 1924) properly placed at the estimated eye-

center position in 3D space and oriented according to the esti-
mated direction of gaze (Fig. 1B). The reconstructed retinal
trajectories were the outcome of both head and eye movements.
An example is given in Figure 2F, which compares the trajectory
of the target fixated in a segment of the trace in Figure 2E to the
one that would have resulted by artificially eliminating head
movements (i.e., by maintaining head signals fixed for the entire
fixation interval). In this example, as is typical, fixation was less
stable in the absence of head movements, resulting in a consider-
ably different trajectory of the stimulus on the retina.

Following the approach of Figure 2, we reconstructed the ret-
inal trajectories of all the fixated targets and examined the preci-
sion of fixation by means of the resulting 2D distributions of
displacement (Fig. 5). These distributions were obtained by
aligning all the fixation segments by their initial point by means
of parallel transport on the spherical surface of the retina (Shen-
itzer, 2002), so that they all started from the origin in Figure 5.
These data show that subjects maintained accurate fixation in the
intersaccadic intervals. All subjects exhibited approximately cir-
cular distributions with a tendency for drifting downward (Fig. 5,
insets), a bias which was slightly more pronounced in observer
R.S., possibly explaining the shorter fixation durations exhibited
by this observer. Across observers, the average fixational area—
defined as the area in which the gaze remained 95% of the time—
was 4193 arcmin®. As shown later, this area is much smaller (i.e., the
precision of fixation was greater) than would be expected from the
separate consequences of fixational head and eye movements.

To understand how observers could maintain precise fixation
despite continually occurring head and eye movements, we ex-
amined the velocity of retinal drift. The fixated target moved
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relatively fast on the retina. Two-dimensional velocity distribu-
tions were approximately circular (i.e., the projection of the tar-
get moved in all directions; Fig. 6B) with a slight preference for
drifting downward. Speed distributions were broad in all observ-
ers, with an average speed across subjects of ~119 arcmin/s (Fig.
6A). This value was significantly larger than the average speed of
retinal drift that we previously observed under head immobiliza-
tion (76 arcmin/s, taking into account the retinal amplification

given by the Gullstrand, 1924, eye model; Cherici et al., 2012), a
finding that confirms previous observations (Skavenski et al.,
1979). But whereas the eye drifted approximately four times
faster during normal head-free fixation, on the retina, the result-
ing speed of the fixated target was <60% higher than with the
head immobilized. These comparisons suggest that, in head-free
conditions, eye and head movements have largely canceling ef-
fects on retinal image motion.
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With the speed distributions of Figure 6, the retinal projection
of an initially fixated target would quickly leave the high-acuity
region of the fovea if moving with uniform motion. This did not
happen because drift changed direction frequently. To quantify
this, we characterized the statistics of the retinal trajectory by
means of g(x, t), the probability that the retinal projection of the
fixated target shifted by a distance x in an interval f (Fig. 7A). In all
six eyes, the variance of the spatial distribution increased approx-
imately linearly with time (R® = 0.97), a behavior that is charac-
teristic of Brownian motion. Consequently, the SD of the eye

position increased only as \;Z and the projection of the target
remained within a narrow retinal region during the naturally
brief periods of intersaccadic fixation.

For every observer, the diffusion constants of the equivalent
Brownian motions (i.e., the proportionality between spatial vari-
ance and time) were similar in the two retinas and ranged from
115 arcmin?/s (subject J.E., left retina) to 383 arcmin*/s (subject
R.S., right retina), which is in keeping with the slightly different
mean retinal velocities of different observers. These values are
much smaller than those expected from the independent effects
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of head and eye movements (Fig. 7B, C). Thus, despite the rela-
tively high speed of fixational head and eye movements, the re-
sulting distributions of retinal displacement were qualitatively
similar to and only moderately broader than those previously
measured when observers freely viewed natural images with their
head immobilized (D = 63 arcmin?/s; note that D measures the
rate of change in area).

It is important to observe that the displacement probabilities
in Figure 7A resulted from a mutual compensation between fixa-
tional head and eye movements. To illustrate the importance of
this compensation, Figure 7, Band C, shows the same probability
density functions obtained when either head movements (Fig.
7B) or eye movements (Fig. 7C) were eliminated during the pro-
cess of reconstructing retinal image motion. In these analyses, for
each considered intersaccadic period, the recorded head or eye
movement signals were substituted by equivalent periods of im-
mobility (i.e., artificial traces with fixed position equal to those
measured at the beginning of the considered fixation period). If
fixational head and eye movements were independent, the diffu-
sion constants in these two conditions should add up to give the
diffusion constant measured when both head and eye movements
contributed to image motion. In contrast, as is shown in Figure
7A, the diffusion constant of normal retinal motion was not only
lower than this sum, but also lower than the diffusion constant
for either head or eye movement alone.

In sum, these data extend the previous findings by Skavenski
et al. (1979). They show that, during normal viewing of nearby
objects, fixational head and eye movements partially compensate
for each other to give a distribution of retinal displacements that

resembles the one observed under head immobilization, a condi-
tion in which the eye drifts at much slower speeds. In the next
section, we examine how the resulting motion transforms spatial
patterns into temporal modulations.

Spectral characteristics of retinal input

If the observer did not move during fixation, the input signal
impinging onto the retina would simply be an image of the exter-
nal scene. Its spectral distribution would only depend on the
frequency content of the scene, and its energy would be largely
confined to the zero temporal frequency axis, as most of the scene
is static. However, because of fixational head and eye movements,
even a static scene yields a dynamic stimulus on the retina, a
spatiotemporal input that also contains substantial energy at
nonzero temporal frequencies. In other words, the observer’s
motor activity during the acquisition of visual information redis-
tributes the power of the input stimulus across the spatiotempo-
ral frequency plane away from the zero temporal frequency axis.
This transformation is linear in space but not in time, since it is
corresponds to sampling the scene through a moving window
(effectively, a multiplication). It maintains the energy of the ex-
ternal stimulus at any given spatial frequency, but generates en-
ergy at temporal frequencies not present in the scene.

How did fixational head and eye movements redistribute the
spatial power of the visual stimulus in the experiments? Consid-
ering, for simplicity, the LED targets as point-light sources, this
space—time conversion can be directly estimated by means of the
probability distributions of retinal displacement, the functions
q(x, t) in Figure 7A. Specifically, the power that retinal drift makes
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available at any temporal frequency w and spatial frequency k is
proportional to the Fourier transform, Q(k, w), of the drift prob-
ability distribution. Figure 8 shows that these redistributions
were highly similar in the six retinas considered in this study. At
all the examined nonzero temporal frequencies, temporal power
increased by an amount approximately proportional to the
square of the spatial frequency (Fig. 8, dashed lines). That is,
normal fixational head and eye movements yielded temporal
modulations on the retina, which enhanced high spatial frequen-
cies with a square power law over a range larger than two orders of
magnitude.

We then examined the consequences of the head and eye
movements recorded in the experiments on the stimulus that
would be present on the retina during fixation in the natural
world. To this end, we used an analytical model of the power
spectrum (Kuang et al., 2012, supplementary information). Ac-
cording to this model, under the reasonable assumption that ret-
inal drift is statistically independent from the optical image of the
external scene, the function Q can be regarded as an operator that
transforms the spatial power of the external scene into spatiotem-
poral power on the retina. The spectral density of the retinal
stimulus can then be estimated by direct multiplication of the
power spectrum of the image with Q.

Natural scenes are characterized by a very specific distribution
of spectral density, with power that declines proportionally to the
square of the spatial frequency (Field, 1987). Note that the spa-
tiotemporal transformation resulting from fixational drift (Fig.
8) tends to counterbalance this input distribution, as the amount
of spatial power that retinal drift converts into temporal modu-

lations increases inversely proportionally to the power available
in natural scenes. The net result of this interaction is shown in
Figure 9. In all six retinas, the spatial frequency enhancement
given by fixational drift counterbalanced the scale-invariant
power distribution of natural scenes, yielding temporal modula-
tions with approximately equal power within a broad range of
spatial frequencies. This power equalization (whitening) oc-
curred at all nonzero temporal frequencies.

Figure 10 shows that the power equalization is a consequence
of the way fixational eye movements compensate for head trans-
lations and rotations. These data represent the total temporal
power present on the retina when we artificially eliminated head
or eye movements. As in the analyses of Figure 7, Band C, for each
considered fixation, we replaced head or eye movement traces by
equivalent periods of immobility (i.e., artificial traces with fixed
position equal to that measured at the beginning of the consid-
ered fixation period). In two of the subjects (J.E. and Y.A.), whit-
ening was lost completely when head or eye movements were
omitted from the reconstruction; in the third subject (R.S., the
subject with the smallest amount of head instability), the range of
whitening was reduced. Thus, during normal fixation in the nat-
ural world, incessant head and eye movements combine to
whiten the visual input to the retina within the spatiotemporal
frequency range at which humans are most sensitive.

Discussion

Microscopic head and eye movements are incessant sources of
modulation during the brief intersaccadic intervals in which vi-
sual information is acquired and processed. This motor activity
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redistributes the spatial power of the external scene into the spa-
tiotemporal domain on the retina. Our results show that the
redistribution present under natural head-free fixation counter-
balances the average spatial spectral density of natural scenes in a
manner similar to what we had previously observed under head-
fixed conditions (Kuang et al., 2012): the redistribution removes
predictable spatial correlations by equalizing power across spatial
frequencies. Therefore, retinal drift whitens the visual input un-
der both head-fixed and head-free viewing despite the large dif-
ferences in eye movements present in the two conditions. These
findings suggest that ocular drift is normally controlled to par-
tially compensate for head movements to achieve a specific
information-processing transformation.

Much research has been dedicated to unveiling the function of
the fixational motion of the retinal image. It is well known that
stabilized images—images that move together with the eyes—
tend to lose contrast with time and possibly fade altogether
(Ditchburn and Ginsborg, 1952; Riggs et al., 1953; Pritchard,
1961; Yarbus, 1967), a phenomenon commonly held as the stan-
dard explanation for the existence of microscopic eye move-
ments. According to this traditional view, the physiological
instability of fixation is necessary to refresh neuronal responses
and prevent the disappearance of a stationary scene. However, it
has long been questioned whether fixational jitter might play a
much more fundamental role than preventing neural adaptation.
Several theories have argued for a contribution of this motion to
the processing of fine spatial detail (Averill and Weymouth, 1925;
Marshall and Talbot, 1942; Arend, 1973; Ahissar and Arieli, 2001,
2012; Rucci, 2008). These theories differ in their specifics, but
share the common hypothesis that the fixational motion of the
retinal image is necessary for encoding spatial information in the

temporal domain (i.e., for structuring, rather than just refresh-
ing, neural activity).

Support for a contribution of fixational retinal image motion
to temporal encoding comes from multiple experimental and
theoretical observations on the perceptual consequences of fixa-
tional eye movements (Greschner et al., 2002; Rucci et al., 2007;
Kagan et al., 2008; Ahissar and Arieli, 2012; Baudot et al., 2013).
These movements are the sole contributor to retinal image
motion when the head is immobilized, the standard laboratory
condition for investigating small eye rotations. Under these con-
ditions, experiments that eliminated retinal image motion have
shown that fixational eye movements improve high spatial fre-
quency vision (Rucci et al., 2007), an effect consistent with the
way fixational modulations convert spatial energy into temporal
energy in the retinal input. Furthermore, in observers with their
head immobilized, a form of matching similar to that reported
here for head/eye movements and natural images exists between
ocular drift and the statistics of natural scenes (Kuang et al.,
2012), showing, as discussed later, that fixational eye movements
reformat natural scenes into a computationally advantageous
spatiotemporal signal.

At first glance, the proposal that fixational eye movements are
part of an active spatiotemporal coding process may appear chal-
lenged by the presence of fixational head movements, and by the
changes in the characteristics of eye-in-head movements when
the head is free to move. Involuntary head movements continu-
ally translate the eye in space during normal head-free fixation
(Fig. 3), and ocular drift is much faster when the head is not
restrained (Fig. 4). Both movements would, by themselves, alter
the statistics of retinal stimulation, attenuating or even com-
pletely eliminating the equalization of input power (Fig. 7; for an
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analysis of the consequences of artificially enlarging eye move-
ments, see also Kuang et al., 2012, their Fig. 3). The results of this
study resolve these concerns. They show that the characteristics
of the retinal input resulting from fixational head and eye move-
ments are functionally similar to those of the signal given by
ocular drift alone when the head is immobilized. In either condi-
tion, the ensemble of retinal drift trajectories resembles Brownian
motion with a diffusion constant small enough to counterbalance
the spectral density of natural scenes over the range of peak sen-
sitivity of retinal ganglion cells. This outcome occurs because the
more rapid eye movements in the head-free condition are anti-
correlated with the fixational head movements, so that they
largely neutralize the effects of the latter, maintaining the proba-
bility distribution of retinal displacements relatively unaltered.

In other words, our study shows that ocular drift (1) normally
compensates for the fixational instability of the head, but (2) does
so only in part, yielding residual motion with approximately
Brownian characteristics on the retina. Both findings are in
agreement with previous observations. Studies of the vestibulo-
ocular reflex (VOR) have traditionally focused on much larger
head movements than those on the microscopic scale that are
considered here (but see Steinman and Collewijn, 1980; Raphan
and Cohen, 2002; Angelaki and Cullen, 2008; Goldberg et al.,
2012). However, it is known that reliable smooth pursuit in hu-
mans can be elicited with stimuli moving at much lower velocities
than those resulting from fixational head movements (Mack et
al., 1979). Indeed, partial oculomotor compensation of head in-
stability has been previously observed in experiments in which
subjects maintained strict fixation on targets at optical infinity
while attempting to move as little as possible (Skavenski et al.,
1979). In our study, observers looked at nearby objects, a fre-
quent everyday condition in which head translations also matter.
They did not attempt to remain immobile, and looked normally
with frequent saccades separating brief periods of fixation. Our
results show that partial fixational head/eye compensation ex-
tends to these natural conditions.

It is well known that oculomotor compensation is incomplete
in the presence of both head translations and low-frequency ro-
tations (Barr et al., 1976; Skavenski et al., 1979; Tweed et al., 1994;
Paige et al., 1998; Medendorp et al., 2002), and various observa-
tions indicate that partial compensation is not just caused by
limitations in motor control, suggesting that preservation of a
certain amount of retinal image motion is a desired feature
(Steinman, 1995; Liao et al., 2008). For example, the VOR gain
varies with the distance of the fixation point (Paige, 1989; Schwarz
and Miles, 1991; Crane and Demer, 1997; Paige et al., 1998; Wei and
Angelaki, 2004). In addition, optical adaptation experiments found
that subjects converge on their own idiosyncratic degree of compen-
sation, even though, in doing this, they progressively modify the
VOR gain so that the stimulus on the retina is stationary at some
point during the course of adaptation (Collewijn et al., 1981). In
keeping with these previous findings, our results strongly support
the proposal that the function of ocular drift is the maintenance of a
specific range of retinal image motion that facilitates the acquisition
and processing of visual information.

While multiple factors, including pupil size and optical
aberrations, contribute to the frequency content of the retinal
stimulus, the transformation resulting from retinal drift is dis-
tinguished by its profound effects over a broad frequency range.
Furthermore, the resulting spatially whitened temporal input to
the retina has important implications for the understanding of
visual and oculomotor functions. Equalization of power is equiv-
alent to decorrelating in space. Thus, our results show that, dur-
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ing normal fixational motor activity, any pair of retinal receptors
experiences uncorrelated luminance fluctuations over a broad
spatiotemporal frequency range. It has long been argued that, in
the early stages of the visual system, a fundamental goal of neural
processing is reduction of the redundancy inherent in natural
scenes (Attneave, 1954; Barlow, 1961). Lateral inhibition has
been implicated in this process (Srinivasan et al., 1982; van Hat-
eren, 1992) and has been proposed to be responsible for decorre-
lating responses (Atick and Redlich, 1992). However, these
proposals rely on the traditional view of equating the retinal input
to an image of the external scene. The results of our study show
that, during normal fixation, the spatiotemporal signals imping-
ing on retinal receptors are already whitened within the range of
temporal frequencies at which ganglion cells respond best. This
whitening occurs before any neural processing takes place. Thus,
neural decorrelation, is not a viable theory to explain the filtering
characteristics of receptive fields.

The results presented here suggest instead an alternative pic-
ture of early visual processing. Fixational head and eye move-
ments, together, transform a static spatial input to the retina into
the temporal frequency range in which neurons are most sensi-
tive. This transformation treats spatial frequencies unevenly,
equalizing power across space. With such a decorrelated input,
the typical contrast sensitivity functions of retinal ganglion cells
further enhance high spatial frequencies above and beyond what
is required for redundancy removal, leading to an enhancement
of the luminance discontinuities in the scene. Critically, this edge
enhancement happens in the temporal domain: it occurs in the
synchronous firing of retinal ganglion cells, yielding a temporal
code that takes advantage of the notion that synchronous re-
sponses tend to propagate more reliably than asynchronous ones
(Dan et al., 1998; Bruno and Sakmann, 2006).

This view has further consequences regarding the mecha-
nisms of sensory encoding. It argues that information about fine
spatial detail is stored not only in spatial maps of neural activity,
as is commonly assumed, but also in the temporal structure of the
responses of neuronal ensembles—whose dynamics are critically
shaped by the fixational motion of the retinal image. Further-
more, it suggests that the process of edge detection, currently
believed to occur in the cortex, begins in the spatiotemporal
structure of neural activity in the normally active retina. More
generally, it replaces the traditional view of the early visual system
as a passive encoding stage designed to optimize the average
transmission of information with the idea that neurons in the
early pathway are part of an active strategy of feature extraction,
whose function can only be understood in conjunction with mo-
tor behavior.
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