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Cell-Type-Specific Repression by Methyl-CpG-Binding
Protein 2 Is Biased toward Long Genes
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Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999).
MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice
using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al.,
2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene
expression, overcoming the “dilution problem” associated with assaying homogenates of complex tissues. The results reveal
misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of
MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long
genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell– cell signaling genes,
are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit
function in Rett syndrome.
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Introduction
Mutations in the gene MECP2 (methyl-CpG binding protein 2)
are the major cause of Rett syndrome (Amir et al., 1999), an
X-linked developmental disorder with features of intellectual dis-
ability and autism in females (Zoghbi, 2003). Mice lacking
MeCP2 function have phenotypes resembling human Rett syn-
drome (Chen et al., 2001; Guy et al., 2001; Shahbazian et al., 2002)
and restoring MeCP2 expression rescues many elements of the
disease (Luikenhuis et al., 2004; Giacometti et al., 2007; Guy et al.,
2007). Studies in mice and humans suggest that loss of MeCP2
function impairs the structure and function of synapses in mul-
tiple brain regions (Nielsen et al., 1992; Belichenko and Dahl-
ström, 1995; Viemari et al., 2005; Moretti et al., 2006; Chao et al.,
2007; Medrihan et al., 2008; Dani and Nelson, 2009). MeCP2
possesses a methyl-CpG binding domain and a transcriptional
repressor domain, and is thought to be a global transcriptional
repressor binding to methylated promoters (Nan et al., 1997) or
more broadly across the genome (Skene et al., 2010; Cohen et al.,

2011) but how mutations in MeCP2 lead to synaptic and circuit
deficits is still unclear.

Previous microarray studies of Mecp2-null mice revealed only
modest changes in gene expression measured from brain tissue
homogenates (Tudor et al., 2002; Nuber et al., 2005; Jordan et al.,
2007; Chahrour et al., 2008). This led to the suggestion that reg-
ulation of transcription by MeCP2 is subtle, or dependent on
activity (Francke, 2006; Zhou et al., 2006), or that MeCP2 is more
important in processes other than transcription, such as splicing
(Young et al., 2005). Alternatively, MeCP2’s main function may
be to dampen transcriptional noise caused by repetitive elements
rather than to act as a gene-specific transcriptional regulator (Skene
et al., 2010). Here, we test a different hypothesis, that MeCP2 regu-
lates different sets of genes in different neuronal cell types, causing
dilution of the signal when expression is profiled using tissue ho-
mogenates composed of heterogeneous cell types (Dougherty and
Geschwind, 2005). This “dilution problem” may be especially prob-
lematic in the CNS where the number of distinct cell types is enor-
mous, and where individual cell types can differ greatly in expression
profile (Sugino et al., 2006).

Using previously developed methods (Sugino et al., 2006;
Hempel et al., 2007), we profiled genome-wide effects of Mecp2
KO in four distinct neuronal cell types and found hundreds of
highly regulated (�1.5-fold, q � 0.005) genes that were largely
nonoverlapping across cell types. Surprisingly, these experiments
also revealed that MeCP2 regulated genes are biased toward long
genes. Moreover, this bias only existed in genes upregulated in
Mecp2 KO and, at least in one cell type, was present both before
and after the onset of symptoms. This implies that genes normally
repressed by MeCP2 are biased toward long genes. Long genes are
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enriched in genes contributing to cell ad-
hesion and intercellular communication.
Thus, our results suggest that loss of
MeCP2 mediated repression of long genes
may contribute to altered synaptic prop-
erties in Rett syndrome.

Materials and Methods
Mice. GFP/YFP labeled transgenic mouse lines
[designated YFPH (line YFP-H from Feng et
al., 2000); G42 (line G42 from Chattopadhyaya
et al., 2004); and TH (line TH-GFP/21–31
from Matsushita et al., 2002] were crossed
with mice lacking a functional MeCP2
(Mecp2tm1.1.Jae/ allele; Chen et al., 2001). All
mouse lines were backcrossed to C57BL/6J for
at least 10 generations. The mice used were
hemizygous null (Mecp2�/Y) and wild-type
(X/Y ) with respect to Mecp2, and hemizygous
with respect to the fluorescent protein trans-
gene. Experiments were performed on male
mice aged 37–55 d except for one set of KO and
control mice examined at the younger age of
22–25 d. All experiments were conducted in
accordance with the requirements of our Insti-
tutional Animal Care and Use Committee.

Tissue preparation and cell sorting. Tissue
preparation and cell sorting were performed as
previously described (Sugino et al., 2006;
Hempel et al., 2007). Briefly, animals were
anesthetized with isoflurane and decapitated.
Coronal slices (400 �m) were prepared using a
Leica vibrating blade microtome (VT1000S;
Leica). Slices were incubated in artificial CSF
(ACSF) with protease (1 mg/ml Pronase E;
Sigma-Aldrich) at room temperature. ACSF con-
tained 6,7-dinitroquinoxaline-2,3-dione (20 �M;
Sigma-Aldrich), D-(-)-2-amino-5-phosphono-
valeric acid (50 �M; Sigma-Aldrich), and tetro-
dotoxin (0.1 �M; Alomone Labs). The desired
brain regions were micro-dissected from each
slice under a fluorescent stereomicroscope
(MZFLIII, Leica) guided by reference to a brain
atlas (Paxinos and Franklin, 2001) using
boundaries made apparent by fluorescent pro-
tein expression. Microdissected tissue was
placed in a 1.5 ml Eppendorf tube and tritu-
rated in ACSF with a series of three Pasteur
pipettes of decreasing tip diameter. The ACSF
contained fetal bovine serum (1%; HyClone)
after this step. The resulting cell suspension
was diluted 2- to 20-fold with ACSF and
poured over a 35 or 100 mm Petri dish coated
with Sylgard (Dow Corning) for manual cell
sorting. Fluorescent neurons were aspirated
into a micropipette with the tip broken to a
diameter of 30 –50 �m under visual control on
a fluorescent stereomicroscope. They were
then transferred to a clean 35 mm Petri dish
containing fresh ACSF. The fluorescent neu-
rons were then transferred to a third and then
fourth dish to increase sample purity. The cells
were then aspirated and expelled in a small drop onto a glass-bottom dish
for inspection under a fluorescent compound microscope. Pure samples
were lysed in 50 �l XB lysis buffer (Picopure Kit; Arcturus) transferred to
a 200 �l PCR tube, incubated for 30 min at 42°C on a thermal cycler and
then kept at �80°C before amplification.

Cell types profiled. Genome-wide gene expression was profiled in four
widely divergent neuronal cell types isolated from Mecp2 KO and WT
mice mated to reporter strains expressing fluorescent transgenes in: (1)
layer 5 thick tufted pyramidal neurons in motor cortex labeled in the
YFPH line (L5), (2) fast-spiking parvalbumin-positive interneurons in
motor cortex labeled in the G42 line (FS), (3) noradrenergic locus ce-
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Figure 1. A, Schematic of cell-type-specific expression profiling. M1, Primary motor cortex. B, Genes dysregulated in Mecp2 KO
mice. Log2 transformed fold-change relative to WT mean is shown for each KO sample. Columns correspond to samples and rows
correspond to genes. Red and blue indicate upregulation and downregulation in KO respectively. Genes are first sorted by whether
it is upregulated in all cell types affected, mixed (upregulated in some but downregulated in others) or downregulated in all cell
types affected, then by the number of affected cell types. C, Venn diagram showing the number of genes affected. D, Magnification
of B where �3 groups are affected.
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ruleus neurons labeled in the TH line (LC), and (4) cerebellar Purkinje
cells labeled in the G42 line (PK; Fig. 1A). In addition, for one cell type
(LC), we also profiled samples at a younger age (P22–P25; LC.Y). L5 and
FS were chosen to represent cortical excitatory and inhibitory neurons.
LC and PK were chosen as the main output neurons of locus ceruleus and
cerebellar cortex, respectively. LC.Y neurons were studied to try to iden-
tify genes affected early in the disease process. All regions are known to be
physiologically and/or anatomically affected in Mecp2-null mice or Rett
patients (Oldfors et al., 1990; Chen et al., 2001; Dani et al., 2005; Dani and
Nelson, 2009; Taneja et al., 2009). Three pairs of samples (each isolated
from a separate animal) were profiled for all conditions. Sample cell
numbers ranged from 27 to 173.

Microarray profiling. Biotinylated target RNA for array hybridization
was prepared as described previously (Sugino et al., 2006). Briefly,
mRNA was extracted using a Picopure Kit (Arcturus) and amplified with
two rounds of in vitro transcription (IVT) using T7 RNA polymerase.
Resulting yields ranged from �40 to 90 �g of biotinylated cRNA. Favor-
able size distribution of labeled cRNA was confirmed by agarose
gel. Fifteen or 20 �g of biotinylated target cRNA was used for hybridiza-
tion to Affymetrix Mouse Genome 430 2.0 oligonucleotide arrays
(MOE430v2). The target cRNA generated from each sample was pro-
cessed for hybridization according to the manufacturer’s recommenda-
tion using an Affymetrix GeneChip Instrument System. The hybridized
arrays were washed and stained with streptavidin-phycoerythrin according
to the manufacturer’s protocol and scanned on an Affymetrix GeneChip
Scanner 3000. The scanned array images were assessed by eye to confirm grid
alignment and the absence of significant bubbles or scratches on the chip
surface. The 3�/5� ratios measured for glyceraldehyde-3-phosphate dehydro-
genase and �-actin, ranged from 1.77 to 14.62. BioB spike controls were
found to be present on all chips, with BioC, BioD, and CreX also present in
increasing intensity. The fraction of probe sets with a positive present call
ranged from 36.20% to 45.20%.

Microarray data availability. All microarray data are available from the
NCBI Gene Expression Omnibus repository under accession number
GSE8720.

Real time PCR. To confirm MeCP2-dependent changes in gene expres-
sion identified by the microarray experiments, qPCR was performed
using a Rotorgene 3000 (Corbett Research) on independent samples
from additional animals. qPCR runs were always done in duplicates.
Primers were selected from within or near the Affymetrix target se-
quence. Primers were not used if they did not reliably produce single
products as indicated by melting curves and gel electrophoresis. In addi-
tion to assessing unamplified cDNA (designated as cDNA1), IVT ampli-
fied cDNAs (designated as cDNA2) were used to increase the number of
assays that could be run on each sample. Actin-gamma was used to
normalize the initial template amount. Standard curves using dilution
series of homogenate samples were used to obtain primer efficiencies for
the calculation of relative transcript abundance between samples. Base 2
log fold-change (LFC) calculated from qPCR and the microarray were
compared. We defined LFC as log(KO/WT; i.e., KO � WT if LFC � 0 and
KO � WT if LFC � 0).

Microarray data analysis. Raw image files (.DAT) from scanned data
were converted to probe signal value files (.CEL) using Affymetrix GCOS
software. Probe signal values were then converted to probe summary
values using the frozen RMA algorithm (McCall et al., 2010) imple-
mented in Bioconductor (http://www.bioconductor.org). Data were
then analyzed using in house programs implemented in R (http://www.
r-project.org) and Python (http://www.python.org). Analysis software
library and scripts are available upon request. Bioconductor annotation
package mouse4302.db (v2.10.1) was used to assign Affymetrix probe
sets to genes.

To select MeCP2 affected genes, each KO-WT comparison was first
filtered with fold-change �1.5. Then, t test p values were calculated be-
tween WT and KO. In cases in which multiple probe sets targeted differ-
ent sequences within a same gene, Fisher’s combined P (Fisher, 1948) was
used to summarize the multiple p values from these probe sets. Then,
these p values were adjusted for multiple comparisons using the Benja-
mini and Hochberg (1995) method. Significant genes were selected as
having adjusted p value (q value) �0.005.

Gene ontology analysis. Python scripts developed in house were used
for Gene Ontology (GO) over-representation analysis (Ashburner et al.,
2000) based on GO database version 2013-12-06 and the MGI gene an-
notation for gene ontology (version 11-21-2013). To aid visualization,
we used the GO Slim categories (http://www.geneontology.org/GO.
slims.shtml). Mapping to GOSlim was based on MGI assignment
(http://www.informatics.jax.org/gotools/data/input/map2MGIslim.txt)
To calculate enrichment p values, the hypergeometric distribution was
used. p values from each cell type were summarized into single p value
using Fisher’s combined p.

Gene length bias analysis. Gene lengths were assigned to each Affymetrix
probe set based on Affymetrix alignment data (Mouse430_2.mm10.bed)
and the GENCODE Genes VM2 annotation track (UCSC Genome Browser;
wgEncodeGencodeBasicVM2). Only probe sets mapping to exons were
used. When a probe set maps to multiple genes, the gene with the largest
overlap was chosen. For genes with multiple isoforms, the average length
was used. To calculate the gene length dependence of a parameter, genes
were first sorted by length into consecutive bins of 500 genes, and then for
each bin, the averaged parameter value was plotted against the average
gene length. For genes represented by multiple Affymetrix probe sets, we
calculated the average fold-change across probe sets since this avoided
automatically favoring the fold-change of long genes (which tend to be
represented by more probe sets).

Results
Genes affected by Mecp2 KO differ markedly between
cell types
We measured the cell-type-specific transcriptional effects of
Mecp2 KO by manually sorting four discrete populations of ge-
netically labeled neurons in P37–P55 animals and hybridizing the
harvested mRNA to whole genome microarrays. The cell types
included cerebellar PK neurons, L5 pyramidal neurons, cortical FS
neurons, and LC neurons (Fig. 1A). In one cell type (LC), we also
profiled younger animals (P22–P25; LC.Y). Loss of MeCP2 resulted
in large, reproducible changes in gene expression in each cell type
assayed. Using a fold-change threshold of 1.5 and a q value threshold
of 0.005, there were 71 genes whose expression level was altered by
loss of MeCP2 in PK neurons, 102 in FS, 182 in L5, 357 in LC, and
345 in LC.Y, resulting (after removing overlaps) in a total of 822
genes (Fig. 1B–D). Most genes were selectively misregulated in only
one of the cell types studied here, suggesting they would have been
more difficult to detect by studying tissue homogenates. Only two
genes, Cd99l2 and Rab39b, were misregulated in all conditions (0.2%
of the total). Four-hundred sixty-two of 822 (56.2%) were upregu-
lated and 350 (42.6%) were downregulated in the Mecp2 KO. The
rest (10; 0.12%) were either upregulated or downregulated depend-
ing on the cell type.

Real time PCR confirms the array results and the
dilution effect
We performed qPCR on three types of independent samples to
validate our microarray results. First, we prepared six indepen-
dent amplified WT/KO sample pairs (cDNA2) from sorted cells
to test 51 genes in 100 gene/sample-pair combinations. Of these
100 combinations, 98 showed expression changes in the same
direction indicated by the microarray. The overall Pearson’s cor-
relation between microarray average log fold-change and qPCR
log fold-change was 0.83 (p � 1.3e–26) and the slope for the
linear fit was 0.69. (Fig. 2A; cDNA2). Next, we prepared four
independent un-amplified WT/KO sample pairs (cDNA1) from
sorted cells to test 20 genes in 43 gene/sample-pair combinations.
Of these, 33 showed the same direction of expression changes as
microarray (Fig. 2A, cDNA1). The Pearson correlation between
qPCR log fold-change and array log fold-change was 0.63 (p �
5.2e– 6) and the slope for the linear fit was 0.48. We also per-
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formed qPCR on 3 pairs of total RNA extracted from tissue ho-
mogenate obtained from cortex (Ctx) and brainstem (BSt; Fig.
2B). Twenty-three genes were tested on 30 gene/sample combi-
nations. As can be seen from Figure 2B, most of the homogenate
log fold-changes were much smaller than array log fold-change.
Pearson’s correlation coefficient was 0.51 (p � 0.004) and slope
for the linear fit was 0.19. Without the two outliers (Cd99l1 and
Cbln1), the correlation coefficient was 0.43 (p � 0.02) and the
slope was 0.08.

Cell adhesion genes are commonly affected
To assess the functional categories of genes affected by MeCP2
loss of function, we performed GO over-representation analysis
(Fig. 3). For each category, we calculated the odds ratio (a mea-
sure of the magnitude of the over-representation) and the prob-
ability of observing over-representation by chance. To visualize
both parameters as a single value across cell types we also com-
puted an over-representation index as the product of mean odds
and mean �log10(p), averaged across cell types and used it to
rank the categories. The top four categories, cell adhesion, devel-

opmental processes, cell– cell signaling, and signal transduction,
mostly represent categories of genes involved in interactions be-
tween cells, whereas the remaining categories which were not
overrepresented mostly represent categories of genes involved in
metabolism and other shared features of cell function. The top
category, cell adhesion, was significantly enriched (p � 0.05) for
all conditions except LC.Y, whereas the other three top categories
were more overrepresented in LC and LC.Y than in other samples
profiled. MeCP2 affected genes were also mostly localized to the
cell membrane or extracellular matrix.

Upregulated genes are biased toward long genes
Because overrepresented GO categories such as cell adhesion,
developmental processes, and cell– cell signaling are biased to-
ward long genes, whereas non-over-represented categories, such
as protein, DNA, and RNA metabolism are not biased (Fig.
4A,B), we explored whether there is any length bias in genes
misregulated in the Mecp2 KO. Plotted in Figure 4C is the per-
centage of genes affected in Mecp2 KO calculated in bins of 500
genes sorted by their length revealing that there is in fact a bias
toward long genes. When average gene lengths were calculated
separately for upregulated and downregulated genes, it turned
out that this bias is only present in the upregulated genes (Fig.
4D). To ensure that the bias is not the artifact of the process of
selecting significant genes, we calculated average log fold-change
in bins of 500 genes sorted by length using the entire (i.e., unse-
lected) set of gene expression values for each cell type. Plots for
downregulated genes for all cell types are shown in Figure 4 E, and
for upregulated genes in Figure 4 F. For each cell type, genes
upregulated in the KO are biased toward long genes, whereas
genes downregulated in KO are not. This long gene bias may
underlie the over-representation of the above GO categories.
However, it is also possible that selective repression of genes in

A

B

−4 0 4
array

−4

0

4

cD
N

A
1,

cD
N

A
2

−4 0 4
array

−4

0

4

h
o

m
o

g
en

at
e

Cbln1(BSt)

Cd99l2(Ctx)

Figure 2. qPCR confirmation. A, Log2 fold-changes (WT/KO) calculated from microarray
(x-axis) versus qPCR experiments ( y-axis). Values from individual qPCR experiments are plotted
against averaged microarray data (across 3 samples per cell type). Black circles, qPCR data from
amplified cDNA (cDNA2); gray circles, unamplified cDNA (cDNA1). B, Similar plot to A but un-
amplified cDNA from tissue homogenates from BSt and Ctx were used for qPCR instead of sorted
samples. Dotted lines indicate linear fits. For Ctx samples, a subset of genes affected in L5 were
assayed and compared with L5 array data. For BSt samples, a subset of genes affected in LC were
assayed and compared with LC array data.

F
S L
5

P
K

L
C

L
C

.Y F
S L
5

P
K

L
C

L
C

.Y

translational apparatus
nucleus

mitochondrion
other cellular component

cytosol
other cytoplasmic organelle

cytoskeleton
ER/Golgi

non-structural extracellular
extracellular matrix
plasma membrane
other membranes

0 10 20

RNA metabolism
DNA metabolism

protein metabolism
other biological processes

death
stress response

cell cycle and proliferation
other metabolic processes

transport
cell organization and biogenesis

signal transduction
cell-cell signaling

developmental processes
cell adhesion

0 3

odds

0 3

-log10(p)
Overrep.

Index

Figure 3. GO over-representation. For each GO Slim category and cell group, we calculated the
degree of over-representation among MeCP2 affected genes. The odds ratio (actual number over
expected number) and p values (from hypergemetric distribution, represented as �log10 trans-
formed values) are plotted using grayscales. GO Slim categories are sorted by over-representation
index (right column; see text). Top, Biological processes; bottom, cellular components.

12880 • J. Neurosci., September 17, 2014 • 34(38):12877–12883 Sugino et al. • MeCP2 Represses Long Genes



these categories caused the bias toward longer genes. To assess
which is more likely, we removed long genes (�20 kbp) from the
GO enrichment analysis and reanalyzed for over-representation.
After removing long genes, the maximum over-representation
index fell from 20.3 to 3.6. The category “cell adhesion,” which
was previously the top category, now ranked sixth, and had an
index of only 0.6. So removing long genes strongly reduced the
over-representation of cell adhesion genes. However, removing
long genes also reduced the number of genes analyzed (from
18727 to 8233), which reduces statistical power of the analysis. To
control for this, we randomly sampled the same reduced number
of genes (8233). The top five categories still ranked highest. Cell
adhesion was still the top category and had an index of 9.3, indi-
cating that the effect of removing long genes was not mediated by
reduced statistical power. We also performed the converse anal-

ysis to determine how the length bias depends on the categories of
overrepresented genes. Removing genes in the top five GO cate-
gories blunted, but did not eliminate the observed length bias.
The percentage affected genes in the top length bin dropped from
17% (Fig. 4C) to 12.5% (data not shown) and the normalized
average log(FC) in the top length bin dropped from 1.66 � 0.33
(Fig. 4F) to 1.43 � 0.25 (mean � SD).

Discussion
Cell-type-specific expression profiling overcomes the
dilution problem
This is the first study to apply cell-type-specific global expression
profiling to identifying differences between normal and disease
states in multiple neuronal cell types. By assaying cell types indi-
vidually, we observed much larger changes in gene expression
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following loss of MeCP2 function than previously identified in
studies probing tissue homogenates. It appears that MeCP2 af-
fects largely different sets of genes in different cell types (598/651;
92% affected in only one of four adult cell types tested; Fig. 1C).
This may explain the smaller effects seen profiling tissue homog-
enates. Summing transcripts across cell types dilutes signals aris-
ing from genes affected in only one or a subset of cell types. Even
worse, genes may be affected in opposite directions in different
cell types, leading to stronger dilution. Using real-time PCR, we
confirmed that much smaller signals (fold-changes) were appar-
ent in tissue homogenates, except in rare cases where genes were
affected in multiple (and perhaps many) cell types (Fig. 2B). Al-
though it was necessary to amplify the small starting material
obtained from manual sorting for the microarray study, we also
confirmed that changes of similar magnitude can be observed
from unamplified material (Fig. 2A; cDNA1), arguing that the
larger effects seen are not simply artifacts of amplification. For
diseases that affect processes shared across the majority of brain
cell types, tissue homogenates should work well. However, many
neuropsychiatric diseases affect specific cell types, or affect differ-
ent cell types differently. Therefore, the approach taken here may
be broadly applicable for increasing the sensitivity with which
transcriptional changes contributing to disease can be detected.

Age comparison indicates observed changes include
primary deficits
To begin to identify early, and presumably more direct and cell
autonomous effects of Mecp2 deletion, we profiled one cell type
(LC.Y) at an age (3 weeks) before the onset of most overt symp-
toms (5 weeks; Chen et al., 2001; Guy et al., 2001; Shahbazian et
al., 2002). Although there were substantial differences in the list
of significantly affected genes, approximately half were common
(163/357-LC; 163/345-LC.Y). Importantly, affected genes were
nearly always affected in the same direction at both ages (95% of
genes affected in either LC or LC.Y changed in the same direction
in both). This enhances confidence that we have identified an
early “primary” deficit in this complex brain-wide disease, but
this could be further tested in the future by profiling neurons in
cell type-specific knock-outs of Mecp2.

MeCP2 affects cell adhesion and signaling genes
It has been proposed that defects in synaptic function are a causal
factor in both Rett syndrome and autism (Zoghbi, 2003; Pardo
and Eberhart, 2007). These hypotheses were originally based on
the similarity of observed changes in dendritic morphology in
these forms of intellectual disability, and the fact that the devel-
opmental increase in MeCP2 expression coincides with synaptic
maturation. More recently, several physiological studies have
identified abnormalities at neocortical, hippocampal and brain-
stem synapses (Nelson et al., 2006, 2008; Chao et al., 2007; Dani
and Nelson, 2009; Taneja et al., 2009). A common theme in these
studies is a failure to make or maintain synaptic connections over
development. Several large-scale genetic studies of autism (Gless-
ner et al., 2009; Wang et al., 2009) have identified synaptic cell
adhesion molecules as important in the pathogenesis of autism
spectrum disorders (Betancur et al., 2009; Ye et al., 2010; Yang et
al., 2014). In the current study, we identified cell adhesion as the
top category of genes affected in all cell types studied, along with
other categories important in synaptic function, such as cell– cell
signaling. Thus, this finding provides one of the missing links
between MeCP2 and synaptic function.

Repression by MeCP2 is biased toward longer genes
Perhaps the most striking finding in the current study is that the
effect of MeCP2 mediated repression is length dependent (Fig. 4).
We observed that upregulation in the Mecp2 KO was biased toward
longer genes, while no length-bias was present in downregulated
genes. Selectively removing long genes had a large effect on the over-
representation of categories like cell adhesion, whereas removing
genes in these top categories had a more modest effect on the ob-
served length bias. This is consistent with the hypothesis that a bias
toward long genes gives rise to over-representation of categories en-
riched in long genes, rather than vice versa.

Recently, defects in topoisomerase function were shown to
reduce expression of long genes and thus affect categories of
genes involved in autism spectrum disorders, including cell ad-
hesion and intercellular signaling (King et al., 2013). The topo-
isomerase reduces torsion of DNA to permit elongation and
procession of RNA polymerase II without hindrance. The longer
the gene, the greater the obstacle, hence longer genes are more
affected. Here, we find a similar, but opposite effect of loss of
MeCP2 function leading to increased expression of long genes.
Because MeCP2 is known to bind not only to promoters, but also
along gene bodies (Skene et al., 2010; Cohen et al., 2011), we
hypothesize that the ability of MeCP2 and associated proteins,
such as NCoR/SMRT (Lyst et al., 2013), to repress gene expres-
sion are cumulative, and that summation of these events along
the gene body are required to exert substantial repression.

During the final stages of revision we became aware of a study
from H. Gabel, B. Kinde, and M. Greenberg (their unpublished
observations) that describes similar length-dependent gene mis-
regulation in mouse models and human Rett syndrome brain.
Their findings further support up-regulation of long genes as a
potential contributor to pathology in Rett syndrome.

Conclusion
By using cell-type-specific profiling methods, we overcame the
dilution problem, enhancing sensitivity for resolving affected
functional pathways. We found that loss of MeCP2 results in
misregulation of cell adhesion genes, connecting a missing link
between MeCP2 and synaptic properties. Most importantly, we
found that longer genes are more likely to be repressed by
MeCP2, which may serve as a basis for mechanistic studies of the
role played by MeCP2 in regulating neuronal transcription.
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