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Abstract

Serial analysis of gene expression from aggressive mammary tumors derived from transplantable

p53 null mouse mammary outgrowth lines revealed significant up-regulation of Tfdp1

(transcription factor Dp1), Lamp1 (lysosomal membrane glycoprotein 1) and Gas6 (growth arrest

specific 6) transcripts. All of these genes belong to the same linkage cluster, mapping to mouse

chromosome band 8A1. BAC-array comparative genomic hybridization and fluorescence in situ

hybridization analyses revealed genomic amplification at mouse region ch8A1.1. The minimal

region of amplification contained genes Cul4a, Lamp1, Tfdp1, and Gas6, highly overexpressed in

the p53 null mammary outgrowth lines at preneoplastic stages, and in all its derived tumors. The

same amplification was also observed in spontaneous p53 null mammary tumors. Interestingly,

this region is homologous to human chromosome 13q34, and some of the same genes were

previously observed amplified in human carcinomas. Thus, we further investigated the occurrence

and frequency of gene amplification affecting genes mapping to ch13q34 in human breast cancer.

TFDP1 showed the highest frequency of amplification affecting 31% of 74 breast carcinomas

analyzed. Statistically significant positive correlation was observed for the amplification of

CUL4A, LAMP1, TFDP1, and GAS6 genes (P < 0.001). Meta-analysis of publicly available gene

expression data sets showed a strong association between the high expression of TFDP1 and

decreased overall survival (P = 0.00004), relapse-free survival (P = 0.0119), and metastasis-free

interval (P = 0.0064). In conclusion, our findings suggest that CUL4A, LAMP1, TFDP1, and
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GAS6 are targets for overexpression and amplification in breast cancers. Therefore,

overexpression of these genes and, in particular, TFDP1 might be of relevance in the development

and/or progression in a significant subset of human breast carcinomas.

Introduction

Genetically engineered mouse models of mammary cancer have been developed as tools to

study molecular pathways involved in human breast carcinogenesis. The p53 null model of

mammary carcinogenesis reproduces many of the critical features of human breast cancer (1,

2). In this model, BALB/c p53 null mammary epithelial cells are transplanted into cleared

mammary fat pads of p53 wild-type syngeneic hosts. More than 60% of these isogenic

orthotopic transplants develop invasive mammary adenocarcinomas and, upon hormonal

stimulation 100% of the grafts, are tumorigenic (1). Most of these tumors are intraductal in

origin, and premalignant lesions can be observed, closely mimicking human breast cancer.

Medina et al. derived serially transplantable ductal premalignant mammary outgrowth lines

from p53 null mammary epithelium. These premalignant outgrowth lines are mostly

aneuploid and estrogen/progesterone receptor positive. They are characterized by the in vivo

development of ductal hyperplasias that systematically progress to invasive mammary

tumors (3).

Two general patterns of stable growth were mostly observed. One predominantly ductal,

composed of small ducts, few lobules, and infrequent alveoli. This mildly aggressive

phenotype is represented by a mammary outgrowth line named PN1B. At various times after

transplantation, a progressive epithelial dysplasia and hyperplasia of various degrees of

aggressiveness could be observed. This line produced only 15% of tumors at 12 months after

transplantation. The second pattern observed is represented by the much more aggressive

mammary outgrowth line named PN1A, with predominantly ductal outgrowth by 8 weeks

post-transplantation; by 14–16 weeks, the ducts were organized as small lobules, and the

lumen of all alveolar units were filled by cells. The PN1A line is spontaneously highly

tumorigenic with a short latency period, 78% mammary adenocarcinomas developed within

6 months after transplantation in the host mammary fat pad (3).

Recently, we reported the results of human-mouse comparative global gene expression

studies on mammary tumors using the p53 null model and human breast carcinomas (4). In

the course of these studies, we noticed that some of the mouse p53 null tumors analyzed

showed dramatic overexpression of a cluster of genes located close to the centromere of

mouse chromosome 8 band A1, indicative of a potential gene amplification phenomenon. In

particular, this was first observed from a p53 null mammary tumor derived from the above-

described PN1A premalignant outgrowth line.

The primary goal of this study was to better characterize the chromosomal basis and

frequency for the observed overexpression of genes mapping to mouse ch8A1.1. We present

data supporting the occurrence of genomic amplification affecting the ch8A1.1 region in

mouse mammary tumors. Furthermore, we show that amplification of the homologous

syntenic cluster mapping to human ch 13q34 also affects subsets of human breast cancers.

This interspecies similarity suggests that amplification of gene targets mapping to this
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homologous genomic region, both in human and mouse, might be of much significance in

breast carcinogenesis.

Materials and Methods

Serial analysis of gene expression of mouse mammary samples

Serial analysis of gene expression (SAGE) libraries from p53 null mammary tumors was

done as previously described (5). Additional p53 null mammary tumors were dissected and

snapped frozen for RNA isolation and validation studies. As normal control for SAGE and

Northern analyses, enriched normal mammary epithelium from p53 null transplants was

used (5). We employed the mSAGE Digital Expression Displayer algorithm available at the

Cancer Genome Anatomy Project4 to identify statistically significant different expressed

genes between SAGE libraries (P ≤ 0.01).

Northern blot analyses

We did Northern analysis of the genes Ing1 (inhibitor of growth family 1), Cul4a (Cullin

4a), Lamp1 (lysosomal membrane glycoprotein 1), Tfdp1 (transcription factor Dp1), and

Gas6 (growth arrest specific 6) in the two premalignant p53 null mammary outgrowth lines

PN1A and PN1B in various mammary tumors derived from the PN1A line and in various

spontaneously generated p53 null tumors not derived from the outgrowth lines. Total RNA

was isolated from mouse samples, gene probes generated, and hybridization done as

previously described using standard procedures (6).

Whole-genome mouse bacterial artificial chromosome microarray comparative genomic
hybridization

The whole-genome bacterial artificial chromosome (BAC) array used contained 19,000

unique BAC clones from mouse genomic libraries spaced at 0.5-Mb interval. Comparative

genomic hybridization was done on DNA isolated from two p53 null mouse mammary

tumors. One of the tumors was derived from the PN1A outgrowth line (2860R), and the

other was a spontaneously generated tumor (8813R). CGH analyses were done as previously

described with minor modifications (7).

Fluorescence in situ hybridization analysis

Chromosomal amplification of mouse chromosome 8A1 region was further studied by

interphase and cytogenetics fluorescence in situ hybridization (FISH). We did FISH

analyses with eight BACs (RP23-434M17, RP23-270K21, RP23-368G24, RP23-478E13,

RP23-167K11, RP23-133J23, RP23-470N10, and RP23-172L10). BACs were labeled by

random priming using biotin-16-dUTP and hybridized to interphase nuclei or metaphase

chromosomes. Fluorescent signals were detected with FITC-avidin, and the nuclei were

counterstained with 4′,6-diamidino-2-phenylindole (DAPI).

4http://cgap.ncb.nih.gov/SAGE/
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Real-time quantitative PCR analyses on DNA from human breast carcinomas

Snapped frozen human breast carcinoma samples were obtained from the M.D. Anderson

Breast Cancer Tumor Bank. DNA from 74 human invasive breast carcinomas was extracted

using the DNAeasy Tissue Kit (Qiagen Sciences). DNA duplex real-time PCR was done

using the TaqMan Fast Universal PCR Master Mix (Applied Biosystems) and the 7900 HT

Fast Real-Time PCR System (Applied Biosystems). The ΔΔCT method was applied, and the

ΔCT value of a human normal skin fibroblast cell strain (SK50, from the American Type

Culture Collection, cells not immortal) run in parallel with each assay was used for

normalization to get the relative quantification for each tumor or cell line sample versus a

normal chr13 gene copy number control (SK50). In the duplex PCR reactions, paraspeckle

protein 1 (PSPC1), located at 13q12.11, was used as the internal reference control gene.

Four genes located at 13q34, CUL4A, LAMP1, TFDP1, and GAS6, were assessed. The

primers and probes for each of the genes tested are TFDP1 (forward primer, 5′-

cgcaacaggaaaggagagaaga-3′; reverse primer, 5′-accttctcgcagaccttcatg-3′; and probe, FAM-

agaaatgccgtaggcccttgcca-TAMRA); CUL4A (forward primer, 5′-agggctcgac-cacttactggat-3′;

reverse primer, 5′-cctcacccggctgaacag-3′; and probe, FAM-agaacagagtgccggacctcgca-

TAMRA); GAS6 (forward primer, 5′-gagcgaggactg-4 tatcatctgaac-3′ reverse primer, 5′-

caggctgcacgaggtcctt-3′; and probe, FAM-tgaccgtgggaggtattcccttccat-TAMRA); and LAMP1

(forward primer, 5′-gccacagtcggcaattccta-3′; reverse primer, 5′-ctgaaaacgccttcgtgaca-3′; and

probe, FAM-cgtgctcctccgcgttgcactt-TAMRA); for the control gene PSPC1, forward primer

is 5′-caactatacctggcccaccaat-3′, reverse primer is 5′-actgctccattatctggcatca-3′, and probe is

VIC-atatttgcggctccttctggtcccatg-TAMRA After amplification, the obtained real-time PCR

values of each tested gene is compared relative to the amplification of the internal control

gene (from each duplex reaction) and represented as ΔCT, whereas the ΔΔCT ΔΔCT value

represents the value of each tested sample normalized in turn to amplification on DNA from

the normal human skin fibroblast cell strain (SK50). Samples were considered to be affected

by genomic amplification for each of the genes assayed when the ΔΔCT was greater than +3

SD [99% confidence interval (99% CI); P < 0.001] with respect to the values observed for

the SK50 (ΔCT) reference normal control sample. All samples were analyzed in triplicate to

confirm the obtained values.

Additional statistical analyses

Multivariate analysis was done by principal component analysis (PCA). Variables were

codified and transformed as follows: negative staining (0) and positive staining (1) for

ER/PR, Ki67 expression; lymph node negative (0) and lymph node positive (1) status; low

(1), moderate (2), and high (3) tumor grade, nonrecurrent (0) and recurrent (1) tumors. To

enable visualization of the factorial analysis, we employed a three-dimensional

representation of the component plot in rotated space. The basic significance level was fixed

at P < 0.05, and all data were analyzed using SPSS statistical software (SPSS Inc.).

Explorative gene expression profiling and clinical data analysis

To further investigate correlations and frequency of transcriptional up-modulation of

CUL4A, LAMP1, TFDP1, and GAS6 gene expression profiles and clinicopathologic

parameters on larger breast carcinoma sets, data were obtained from publicly available
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breast cancer microarray sets (8–13). The Oncomine cancer microarray database (14) and

the Integrated Tumor Transcriptome Array and Clinical Data Analysis (ITTACA; ref. 15)

resources were employed for data analysis. The Oncomine database is an integrated

bioinformatic resource providing data collection, processing, and storage of all publicly

available cancer microarray studies. All data are log transformed, median centered per array,

and SD normalized to one per array. The gene module application lists all differential

expression analyses in which the target genes were included, and allows the user to select

studies of interest providing comparative statistical analyses. The Oncomine gene module

application was employed for differential expression analysis (two-sided t test). We used a

meta-analysis approach to determine the overall summary of expression patterns on genes of

interest from seven independent studies. We computed summary estimates (effect size) of

gene expression changes by the standardized mean difference method using the exact t

values and sample size for each groups. To calculate the pooled effects of the selected gene

profiles, each study was weighted by the inverse of the individual and between-study

variance according to a random-effects model. Meta-analysis was carried out using

Comprehensive Meta-analysis software (Biostat, Inc.). All effect sizes were presented with

95% CI based on the estimated variances. Kaplan-Meier analysis was assessed using the

Van de Vijver et al. (10) data by means of ITTACA web interface. Two patient's groups

were generated based on the median expression value of the overall distribution for each

gene analyzed (e.g., TFDP1 median, −0.022; high expression, greater than −0.022; and low

expression, less than −0.022).

Results

Serial analysis of gene expression

Inspection of the most highly differentially expressed transcripts between p53 null

mammary tumor (TG7) versus enriched normal mammary epithelium from p53 null

transplants showed that the TG7 tumor displayed dramatic overexpression of Tfdp1 (P =

0.0001), Lamp1 (P = 0.0001), Gas6 (P = 0.0001), and Ing1 (P = 0.0001; Table 1). These

transcripts all belong to the same linkage cluster, located at mouse chromosome 8 band

A1.1. The TG7 p53 null mammary tumor was derived from a highly tumorigenic mammary

outgrowth line (PN1A; ref. 3). Furthermore, SAGE results were independently confirmed by

using Affymetrix oligonucleotide microarrays, where Ing1 (fold change, 3), Cul4a (gene

also mapping to the same linkage group; fold change, 5), Lamp1 (fold change, 6), Tfdp1

(fold change, 8.5), and Gas6 (fold change, 11) were detected overexpressed in the PN1A

premalignant mammary outgrowth line. Thus, overexpression of the aforementioned genes

was already observed at premalignant stages of the mammary outgrowth line PN1A before

the generation of tumors.

Northern blot analysis

To validate the described findings, we did Northern analysis of the genes Ing1, Lamp1,

Tfdp1, Cul4a, and Gas6 in two premalignant p53 null mammary outgrowth lines, PN1A

(highly tumorigenic) and PN1B (mildly tumorigenic; ref. 3), in various mammary tumors

derived from the PN1A line and in p53 null normal mammary epithelium (Fig. 1A). Cul4a,

Lamp1, and Tfdp1 were overexpressed in the more aggressive line (PN1A) and all its
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derived tumors, whereas Ing1 and Gas6 were increased in the PN1A line and in some of the

tumors. None of the five genes were significantly overexpressed in the less aggressive PN1B

outgrowth line or in normal mammary epithelium (Fig. 1A).

We also tested whether this observation extended beyond the PN1A line and its derived

tumors; thus, we did Northern blot analysis of genes Cul4a, Tfdp1, and Lamp1 in

spontaneously generated p53 null mammary tumors (i.e., not derived from outgrowth lines;

Fig. 1B). We observed that indeed, the three genes were overexpressed in 9 out of 10 tumors

when compared with normal mammary epithelium and highly overexpressed in some tumors

(e.g., T4033, Fig. 1B).

BAC array CGH analysis

To determine whether genomic amplification was the reason for overexpression of the

aforementioned genes, we used CGH on high-density mouse BAC arrays. BAC-CGH was

done on DNA isolated from two p53 null mouse mammary tumors. One of the tumors was

derived from the p53 null PN1A mammary outgrowth line (2860R, see Fig. 1A, first tumor

on right), and the other was a spontaneously generated p53 null tumor (8813R).

Notably, the single consistent genomic change affecting both tumors throughout the genome

was that affecting mouse chromosome 8. A minor peak of potential overrepresentation was

also observed affecting chromosome 15 but only in one of the tumors (2860R), followed by

an apparent copy number loss affecting the proximal portion of chromosome 7 in both

tumors (Fig. 2A).

Chromosome 8 presented a region of BAC clones, hybridizing with very high intensity

ratios, indicative of a gene amplification phenomenon (Fig. 2A). This region of

chromosomal gain was located close to the centromere of chromosome 8 band A1.1. The

amplified sequences affecting both tumors were located between 3 and 14 Mb from the

centromere. Two subregions of amplification could be identified; one located at 3 to 3.4 Mb

and the other at 12 to 14 Mb. This confirmed the gene expression studies. The amplified

genes at the 12- to 14-Mb region included Cul4a, Lamp1, Tfdp1, and Gas6, all within the

same amplicon (Fig. 2B).

FISH analysis

The amplified region, relatively close to the centromeric portion of mouse chromosome 8,

was also studied by means of interphase FISH. We used selected BAC clones as probes

based on the BAC-CGH results (Fig. 3A). We did FISH on touch imprint preparations of

p53 null mammary tumors. A high level of amplification was observed for BAC clones,

RP23-478E13 (Lamp1 gene), and RP23-167K11 (Tfdp1 gene). Clones RP23-133J23 (Gas6

gene) and RP23-434M17 (closer to the centromere) displayed moderate amplification,

whereas clones RP23-470N10 and RP23-270K21 were not amplified in this tumor, thus

defining boundaries to the amplicon (Fig. 3B). Clone RP23-172L10, located at chromosome

band 8C1, was used as control of a region without amplification (data not shown).

We also did FISH analyses on metaphases obtained from the PN1A outgrowth line growing

in vitro. The PN1A cell line presented a hypertriploid-hypotetraploid karyotype. Metaphases
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displayed three to six copies of chromosome 8. All metaphases displayed two or three

marker chromosomes, a metacentric chromosome with a homogenously staining region

(HSR) in the centromeric portion of one of the arms (Fig. 3C, M1), and a small acrocentric

chromosome with an HSR in the terminal portion of the chromosome (Fig. 3C, M2). A large

acrocentric chromosome with a bright DAPI banding pattern (Fig. 3C, M3) was also

observed. The sequences located at 3 to 3.4 Mb (RP23-434M17) and at 12 to 14 Mb from

the centromere of mouse chromosome 8 (Fig. 3C) hybridized to the HSRs of the markers,

suggesting the presence of numerous copies in tandem of both chromosomal regions. For

this analysis, we included BAC clone RP23-368G24 (near the Cul4a gene), and as observed,

it was also shown to be amplified.

Real-time quantitative PCR analysis on DNA from human breast carcinomas

The homologous region to mouse chromosome 8A maps in Homo sapiens to chromosome

band 13q34. To investigate whether any of the target genes observed amplified in mouse

mammary tumors was also amplified in human breast carcinomas, we analyzed DNA

obtained from 74 primary breast cancer samples. Real-time quantitative PCR (Q-PCR) for

the human homologous genes CUL4A, LAMP1, TFDP1, and GAS6 was done. Interestingly,

genomic amplification was detected for CUL4A in 25.7% (19 out of 74), LAMP1 in 13.5%

(10 out of 74), TFDP1 in 31.1% (23 out of 74), and GAS6 in 13.5% (10 out of 74).

Simultaneous amplification of all four genes was observed in only 11% (8 out of 74) of

tumors (Fig. 4A). Data in Fig. 4A is represented as a heat map of amplified human breast

carcinomas based on using the quantitative DNA real-time PCR method described in

Materials and Methods. Experiments were done in triplicate for each data point. Results are

expressed as log 2 transformation of the mean difference between tumor versus normal

control (P < 0.01). Red intensity is a representative of mean difference for each breast tumor

(Fig. 4A). It is worth noting that these values do not represent specific copy number

increases, but are directly proportional to the level of amplification. PCA identified

statistically significant positive correlations between amplification of CUL4A, LAMP1,

TFDP1, and GAS6 genes (P < 0.001; Fig. 4B). The strongest correlation was detected

between TFDP1 and CUL4A gene amplification (τ -b = 0.920; P < 0.0001; Fig. 4C). It is

worth noting that the amplification of genes CUL4A (τ -b = 0.375; P = 0.01) and TFDP1 (τ -

b = 0.311; P = 0.029) correlated with positive lymph node (N) status (Fig. 4C).

Gene expression profiling analysis in human breast carcinoma

To further explore the clinical relevance of CUL4A, LAMP1, TFDP1, and GAS6 expression

in human breast carcinomas, we evaluated information on publicly available breast cancer

gene expression (microarrays) data sets. Clinicopathologic and gene expression data from

breast carcinomas from various studies were collected and analyzed using Oncomine and

ITTACA database resources (see Materials and Methods). Because the estrogen receptor

(ER) plays a critical role in breast cancer, we first analyzed gene expression profiles of these

genes relative to ER status and tumor grade. Oncomine analysis showed that TFDP1

overexpression is associated with ER-negative (P = 0.0001) and high-grade (P = 0.009)

breast carcinomas (Fig. 5A). Nonstatistically significant correlations were detected for

CUL4A, LAMP1, and GAS6 expression for ER and tumor grade (P > 0.05). Next, we

analyzed CUL4A, LAMP1, TFDP1, and GAS6 expression profiles with patient outcome
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using the microarray data set of Van de Vijver et al. (10) by means of the ITTACA resource.

Kaplan-Meier analysis revealed that TFDP1 overexpression was significantly associated

with shorter overall survival (P = 0.00004), relapse-free survival (P = 0.0119), and

metastasis-free interval (P = 0.0064; Fig. 5B). Nonstatistically significant associations were

detected for CUL4A, LAMP1, and GAS6 transcripts (P > 0.05).

Discussion

DNA amplification is a common mechanism used by cancer cells to up-regulate the activity

of critical genes, associated with tumor development and progression. Genes involved in

amplification are usually known to be oncogenes, growth or transcription factors,

coactivators of transcription, and positive regulators of the cell cycle in general. Several

genes were observed amplified in human breast cancer, the most prominent being ERBB2

(17q12), MYC (8q24), and CCND1 (11q13). Usually, genomic amplification is associated

with poor prognosis, e.g., ERBB2 amplification and overexpression in breast cancers. The

identification of specific genomic amplification events is of much importance because it

could allow the development of targeted therapeutic approaches to specific breast cancer

subsets. This is best illustrated by the success story of therapeutic approaches geared at

neutralizing the effects of ERBB2 overexpression in breast cancer (16).

We detected a dramatic co–up-regulation of Ing1, Cul4a, Lamp1, Tfdp1, and Gas6 genes in

p53 null mammary tumors, pointing to a possible gene amplification phenomenon. Whole-

genome mouse BAC array CGH identified the chromosome 8 band A1.1 as a primary target

of gene amplification in p53 null mammary tumors. Northern blot analyses showed that

these genes were observed overexpressed in many spontaneously originating p53 null mouse

mammary tumors.

Because the observed amplification of the ch8A1 region occurred in a p53 null background,

the possibility exists that such phenomenon could be linked to the lack of an active p53

protein. Lack of a functional p53 protein has been associated with genomic instability and

specifically with facilitating the occurrence of genomic amplification (17, 18). The

amplification and over-expression of genes mapping to the mouse ch8A1 represent an early

event in mammary gland malignant transformation as overexpression of these genes

occurred in the premalignant outgrowth line PN1A. The overexpression of these genes could

facilitate progression to an invasive phenotype because this overexpression was not detected

in the weakly tumorigenic PN1B mammary outgrowth line.

Interestingly, some of the genes belonging to the homologous syntenic gene cluster mapping

to human ch13q34 were reported to be amplified and overexpressed in a wide variety of

carcinoma types including breast cancer. A high level of chromosomal gain was detected

affecting ch13q34 by CGH in primary hepatocellular carcinoma and tumor cell lines (19).

Similar observations were reported affecting esophageal squamous cell carcinoma (20).

Furthermore, in both types of tumors, the target gene for amplification and overexpression

was reported to be the TFDP1 gene. The CUL4A and CDC16 genes, located in the same

region at ch13q34, in another report were also found amplified and overexpressed in

hepatocellular carcinoma (21). Up-regulation of TFDP1 was also detected in lung
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adenocarcinoma (22). Notably, several years ago, amplification of CUL4A was reported in

16% of primary breast tumors, and 47% showed overexpression of CUL4A (23).

To determine recurrent genetics alterations affecting ch13q34, we analyzed DNA samples

from a set of human breast cancers by real-time Q-PCR. TFDP1 showed the highest

frequency of amplification with 31% of cases followed by CUL4A gene with ˜26% of the

breast carcinoma analyzed. All four genes were amplified in only 11% invasive of breast

carcinomas. PCA identified statistically significant positive correlations among the

amplification of CUL4A, LAMP1, TFDP1, and GAS6 genes (P < 0.001). To further

investigate the clinical significance of CUL4A, LAMP1, TFDP1, and GAS6 overexpression

in human breast carcinoma, we search for significant correlations on publicly available

breast cancer gene expression data sets. Kaplan-Meier analysis revealed that TFDP1

overexpression was significantly associated with shorter overall survival, relapse-free

survival, and metastasis-free interval. In addition, TFDP1 overexpression correlated with the

loss of ER status and high-grade breast carcinomas (Fig. 5A). These data are in line with a

number of studies showing that most ER-positive tumors are of low grade, and high-grade

tumors are mainly ER negative. It has been proposed that tumor breast cancer progression is

characterized by a shift from the well-differentiated (low-grade) to the poorly differentiated

(high-grade) state (perhaps by loss of ER-positive status). In this sense, Tfdp1

overexpression could play an important role in early mouse or human breast tumorigenesis,

accelerating tumor progression toward more aggressive stages. Furthermore, these data

showed that at least TFDP1 overexpression behaves as a poor prognostic indicator in human

breast cancer.

TFDP1 encodes the transcription factor DP1 that forms heterodimers with E2F protein

family members. The transcriptional activator complex E2F/DP is known to be critical for

cell cycle progression. E2F1/DP1 are implicated in cell cycle progression by regulating the

genes in which products are required for DNA synthesis (DNA polymerase α, thymidine

kinase); those that encode nuclear oncoproteins (C-MYC, N-MYC, and B-MYB); and those

that encode cell cycle regulators (cyclin A, cyclin E, CDC2, and RB; refs. 24, 25). DP

proteins are endowed with proto-oncogenic activity (26, 27). Overexpression of DP1 or

DP2, together with activated HA-RAS, causes a transformation of rat embryo fibroblasts in

the absence of a cotransfected E2F family member (26). Transgenic mouse lines expressing

DP1 under the control of a keratin-5 promoter displayed hyperplasia and hyperproliferation

of the epidermis (28). Although mice did not develop spontaneous tumors, when exposed to

a two-stage chemical carcinogenesis protocol, more and larger skin tumors developed in

K5/DP1 transgenic mice than in nontransgenic mice (28). Coexpression of DP1 and E2F

increases proliferation and enhances carcinogenesis.

CUL4A (Cullin 4a) belongs to the family of cullin proteins that are essential components of

a multifunctional ubiquitin-protein ligase E3 complex. Recent studies showed that CUL4A

is associated with damaged DNA binding protein, which stimulates E2F1-activated

transcription. In addition, it was shown that CUL4A physically associated with MDM2 and

participates in the proteolysis of p53 (29). As mentioned, CUL4A was observed amplified in

human breast cancer and hepatocellular carcinoma (19, 23). Overexpression of CUL4A in

MCF10A resulted in anchorage-independent growth and the disruption of the G2-M cell
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cycle checkpoint after ionizing radiation (30). These results suggest a role for CUL4A in

tumorigenesis and/or tumor progression, possibly through disruption of cell cycle control.

LAMP1 is a lysosomal membrane glycoprotein expressed in the cell surface. Interestingly,

an increase in expression of cell surface of LAMPs was found associated with the metastatic

potential of human colon cancer cell lines (31). This glycoprotein is able to bind E- and P-

selectins that are expressed on vascular endothelium and could facilitate the adhesion of

tumoral cells to the endothelium and promote the metastatic process (32).

GAS6 is a secreted protein with structural homology to members of a superfamily of

basement membrane proteins implicated in the growth and differentiation of many cells.

GAS6 was found over-expressed in human endometrial and ovarian cancer (33). GAS6 is,

thus far, the single activating ligand for AXL (34). AXL is a receptor tyrosine kinase that

has been reported to induce cell proliferation and transformation (35). In mice, Axl is

expressed in the normal mammary gland and overexpressed in aggressive mammary tumors.

Several studies suggested that the GAS6/AXL signaling regulates processes vital for both

neovascularization and tumorigenesis (36). GAS6/AXL interactions that may be involved in

directed cell migration has been suggested for vascular smooth muscle cells in the context of

remodeling of the vessel wall after vascular injury and for endothelial cells during tumor

angiogenesis (37).

Taken together, these findings suggest that the amplification and overexpression of specific

gene(s) located in mouse ch8A1 or comparatively the homologous syntenic gene cluster on

human ch13q34 could play an important role in early mouse or human breast

carcinogenesis, respectively. The fact that the observation is common to both species

highlights the relevance and potential significant implications of the identified genomic

amplification. Furthermore, the striking similarity between mouse and human breast

carcinogenesis on the occurrence of this particular genomic aberration validates the use of

this mouse system as an excellent surrogate model for understanding the mechanistic

implications and in vivo consequences of this phenomenon. We speculate that the key genes

driving the amplification phenomenon are likely TFDP1 and perhaps CUL4A. Further

studies are needed to confirm this speculation and to clarify the functional significance of

overexpression of each member of the identified amplicon. However, it is also possible that

the coactivation of more than one target from the identified amplicon may contribute in a

synergistic manner to breast cancer development and progression.
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Figure 1.
A, Northern blot analysis of deregulated genes in two p53 null mammary epithelial

outgrowth lines: PN1B, mildly aggressive low tumorigenic; PN1A, highly aggressive and

tumorigenic, and five mammary tumors derived from the PN1A outgrowth line (Tg5, Tg6,

Tg7, 5155, and 2860). Lane wt, p53 wild-type normal mammary epithelium. B, Northern

blot analysis of Cul4a, Lamp1, and Tfdp1 in spontaneously generated p53 null mammary

tumors (lanes 2–11) compared with p53 wild-type normal mammary epithelium (lane 1).
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Figure 2.
A, whole-genome mouse BAC microarray CGH of two p53 null mammary tumors. Tumor

2860R (blue) was derived from the outgrowth cell line PN1A, and tumor 8813R (red) was

spontaneously generated. Note the increased in hybridization intensity ratios for the DNA in

the area close to the centromere. The amplified region corresponding to band 8A1 is shown

on the chromosomal ideogram (red line). B, detail of the amplified region on the proximal

portion of mouse chromosome 8, band A1. Cul4a, Lamp1, Tfdp1, and Gas6 map to the

indicated RP23 BAC clones with high-intensity hybridization ratios, indicative of a gene

amplification phenomenon. X-axis, relative chromosomal position in kilobases.
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Figure 3.
FISH analyses of p53 null mouse mammary model. A, relative position of the BAC clones

used as probes in the FISH analyses. TEL, telomere. The loci for Lamp1, Tfdp1, and Gas6

are indicated. B, FISH on touch imprint preparations from a p53 null mouse mammary

tumor. Biotin-labeled BAC clones were used as probes. The label was detected with FITC-

avidin (green), and the nuclei were counterstained with DAPI (blue). Note that the genomic

regions recognized by RP23 BAC probes 270K21 and 470N10 are not amplified and define

the boundaries of the amplicon. Yellow, name of genes contained within specific BACs. C,

cytogenetic and FISH analysis of the PN1A mammary outgrowth line. At least three

distinctive chromosomal markers (identified as M1, M2, and M3) displaying homogenously

staining regions (HSR) were identified on these p53 null mouse mammary premalignant

cells. BACs identifying the amplified ch8A1 sequences are shown. Yellow, name of genes

contained within specific BACs.
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Figure 4.
A, heat map visualization of amplified human breast carcinomas based on quantitative DNA

real-time PCR data. Results of 74 primary breast carcinoma analyzed for amplification of

CUL4A, LAMP1, TFDP1, and GAS6 genes. Experiments were done in triplicate for each

data point. Results are expressed as log 2 transformation of the mean difference between

tumor versus normal control (P < 0.01). Red intensity is a representative of mean difference

for each breast tumor. Note that these values do not represent specific copy number

increases, but are directly proportional to the level of amplification. Note that eight breast

carcinomas showed simultaneous amplification for CUL4A, LAMP1, TFDP1, and GAS6

(black arrows). B, PCA of 74 breast carcinomas analyzed showing a strong association

between the amplification of CUL4A, LAMP1, TFDP1, and GAS6 genes (P < 0.001). C,

component matrix showing correlation (Kendal's τ -b) and statistical significances (P values)

of PCA analysis.
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Figure 5.
TFDP1 expression profile of human breast carcinoma using publicly available DNA

microarray data sets. A, oncomine data output and meta-analysis showing TFDP1 expression

patterns positively associated with ERα(–) breast carcinoma (left). Oncomine data output of

TFDP1 expression patterns correlated with high-grade breast carcinoma (right). TFDP1

transcripts are represented in normalized expression units (log 2 data transformed, array

media set to 0 and array SD to 1). B, Kaplan-Meier curves of overall survival, relapse-free

survival, and metastasis-free interval based on high or low expression levels of TFDP1 gene.

Kaplan-Meier analysis was assessed using the Van de Vijver et al. (10) data set by means of

ITTACA online resources.
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