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Linear regression analysis is one of the most common techniques applied in developmental research, but only
allows for an estimate of the average relations between the predictor(s) and the outcome. This study describes
quantile regression, which provides estimates of the relations between the predictor(s) and outcome, but
across multiple points of the outcome’s distribution. Using data from the High School and Beyond and U.S.
Sustained Effects Study databases, quantile regression is demonstrated and contrasted with linear regression
when considering models with: (a) one continuous predictor, (b) one dichotomous predictor, (c) a continuous
and a dichotomous predictor, and (d) a longitudinal application. Results from each example exhibited the
differential inferences which may be drawn using linear or quantile regression.

In developmental research we use data analyses to
make sense of data to support or refute a theory.
Through data analysis, we can determine if predic-
tors are related to outcomes, and how strongly they
are related. One advanced approach to data analy-
sis called quantile regression has become popular in
economics (e.g., Chernozhukov & Hansen, 2005).
Quantile regression allows for the possibility that
how important predictors are may be different
depending on the quantile (a term that closely cor-
responds to percentile) of the outcome variable (i.e.,
whether they are low, average, or high on the out-
come; Koenker & Bassett, 1978). Developmental sci-
ence has also begun to see how useful quantile
regression can be. For example, Reeves and Lowe
(2009) studied the achievement gap in math skills,
testing whether ethnicity and gender were predic-
tive of math achievement. Using quantile regres-
sion, they were able to demonstrate that both
ethnicity and gender were stronger predictors of
math achievement for students low on math
achievement. In other words, the achievement gap
was larger, more present, for students at the low
end of math achievement, and smaller for students
with higher math ability scores.
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To conceptualize the utility of quantile regres-
sion, consider the example of the relations between
girls” age and height (Centers for Disease Control
growth charts are presented in Figure 1). If you
wanted to guess the relative ages of a group of
young children that you have just met, a good
strategy would be to look at how tall they are. The
shortest child will probably also be the youngest
child because younger children tend to be shorter
than older children. This strategy will not work as
well when you meet a group of teenagers or adults,
because by this time, the strong correlation between
age and height is not as strong as it is for children.
The predicted height for a 6-year-old child is higher
than that of a 5-year-old, and as such the slope is
of the relation between age and height is large, but
that slope is zero (no increase in height when age
increases). In other words, the ability to predict a
girl’s age from their height is dependent on the
girl’s age.

Statistically modeling the relation between age
and height could be done a number of ways depen-
dent on the question of interest. If one were inter-
ested in testing at what age and below that age
might have a different relation with height than
above a certain age level a segmented or piecewise
regression could be used. In this instance, a cut-
point on age (X) is selected (e.g., age 15), and then
a series of models could be fit to test the extent to
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which different slopes exist for the relation between
age and height when age > 15 versus age < 15.
Conversely, suppose the question was changed
such that height was used to predict age. According
to Figure 1, the piecewise regression would not be
as useful because the cut point for the height (Y) is
not as reliable as the one for age; all children stop
growing around age 15, but children stop growing
at a wide range of different heights. Using a quan-
tile regression allows you to predict age from
height, but conditional on the outcome of height.

For a question such as the relation between age
and height, age has a very clear and well under-
stood point where height is no longer predictive.
Also, the designation of whether age or height is
predictor or outcome is more readily interchange-
able, and thus, the uniqueness of quantile regres-
sion may seem trivial; however, consider the
aforementioned example of the gender-based
achievement gap in math (Reeves & Lowe, 2009). It
is fairly clear that math achievement should be pre-
dicted from gender rather than the reverse. The
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Figure 1. U.S. normative growth chart for height (stature) with age.
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hypothesis tested by the authors” study was that
the differences between males and females on math
achievement may vary depending on how good the
students are at math. Because females often choose
not to take higher level math courses, the gender
gap may be wider at higher levels of math achieve-
ment; however, the cut point that will correspond
to “high levels” of math achievement is unknown.
For this question, a piecewise regression would not
apply because only the outcome is continuous, and
the predictor is dichotomous (male-female). The
authors chose to use quantile regression because it
allows for the estimation of the achievement gap
between males and females at multiple points in
the distribution of math achievement with no
selected cut points and no constraints on the func-
tional form of the relation across the distribution of
math achievement. Using this method, the authors
identified that the achievement gap was near zero
for low levels of math achievement, but was much
larger at the higher end.

Other recent applications of quantile regression
have been used to study the relation between
alphabet knowledge and home literacy (Petrill
et al., in press), the relation between oral reading
fluency and reading comprehension (Petscher &
Kim, 2011), and effect of nonnormally distributed
data on predictions of oral reading fluency (Catts,
Petscher, Schatschneider, Bridges, & Mendoza,
2009). Petrill et al. (in press) hypothesized that a
child’s alphabet knowledge can be considered a
function of the home literacy environment because
parents or caregivers who provide more opportuni-
ties to read books tend to have children who know
more letters of the alphabet, but by definition,
alphabet knowledge is a count variable, so the con-
struct often demonstrates strong floor -effects.
Because the outcome in the Petrill et al. study was
a skewed variable, the researchers chose to use
quantile regression, and identified that the predic-
tion of alphabet knowledge was near zero when
the children knew only a few letters, but was much
stronger once the children knew more than five
letters. In a regression or conditional means model,
the estimated relation would have been weaker due
to the influence of the floor effect. Other studies in
education and psychology found similar results.
Petscher and Kim (2011) studied the relation
between oral reading fluency and reading compre-
hension, and found that the correlation was near
zero for those with low fluency (r < .10), but was
strong for students with high oral reading fluency
rates (r > .70). Similarly, Catts et al. (2009) found
that quantile regression was useful for understand-
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ing associations between measures of oral reading
fluency used for early identification in first grade
with third-grade performance in oral reading flu-
ency. The authors found much lower correlations
for individuals with low third-grade oral reading
fluency (r <.30) compared to individuals with
stronger fluency skills (r > .60).

Given the potential ability of quantile regression
to contribute to the field of developmental science
research, the goals of this study are fourfold. First,
we provide the reader with a conceptual and practi-
cal introduction to the technique of quantile regres-
sion by comparing it to multiple regression.
Second, we discuss fundamentals of how quantile
regression is estimated and compare it to multiple
regression so that the reader can see the similarities
and differences. Third, we demonstrate quantile
regression using four illustrations of a simple quan-
tile regression with a continuous predictor, a simple
quantile regression with a dichotomous predictor, a
multiple quantile regression, and a developmental
quantile regression example. In each demonstration,
comparisons to simple and multiple regression
analyses are included, along with interpretations of
the relevant parameters. Finally, we conclude with
some considerations for best practice, with the hope
that readers will begin to use this extension to
address questions in developmental research.

Contrasting Linear and Quantile Regression

An implicit tenet of evaluating the relations among
variables in developmental research is that the
mean best summarizes the associations germane to
specified research question. To this end, researchers
in developmental psychology have relied statistical
analyses rooted in providing average effects. Sam-
ple means, Pearson correlation coefficients, multiple
regression coefficients, and estimates from longitu-
dinal and structural equation models are always
interpreted as the average effect from a substantive
viewpoint. Although focusing on this particular sta-
tistical moment is useful and relevant to virtually
all research studies, it is possible to conceptualize
that, under many circumstances, the mean effect
may not adequately characterize the underlying
relations among variables.

Developmental psychology research includes the
study of language, cognitive, social, and emotional
development, among other things, all of which may
frequently encounter data distributional issues such
as normality violations. When skills such as early
language development are studied, measures may
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yield skewed data distributions as a result of floor
effects. Subsequently, statistical models that pro-
duce an average effect may mask other associations
in the data which cannot be understood by a mean-
based analysis. From a conceptual perspective, the
scope of a research question regarding associations
becomes broadened via quantile regression. While
linear regression posits the question, “What is the
relation between X and Y?” quantile regression
extends this to, “For whom does a relation between
X and Y exist?” as well as testing for whom a
relation is stronger or weaker. Each of the stud-
ies and examples from the previous section
highlighted how quantile regression yielded a more
comprehensive evaluation of the relations between
a predictor and the outcome at various points
at the higher and lower end of what was being
predicted.

It is worth noting a few specific distinctions
between traditional linear regression and quantile
regression. We alluded to the notion that quantile
regression maintains a modeling advantage over
linear regression as it pertains to non-normally dis-
tributed data. Variables in a linear regression are
assumed to be normally distributed, and any viola-
tion of these assumptions may impact the associ-
ated statistical tests. Violations of normality are
often of concern in linear regression, and are of par-
ticular concern in educational and developmental
research. Studies in these fields often examine abili-
ties or skills as they are first coming online or as
they are approaching mastery. When studying skills
that are first developing, such as language or play
behavior in young children with autism (Charman
et al., 2003) or word identification skills for kinder-
garten students (Wagner, Torgesen, & Rashotte,
1994), the scores will often show a floor effect in
the sample, and demonstrate strong, positive skew.
The opposite is true of examining mastery skills, as
these will show ceiling effects. To correct for the
problem of measurement, researchers may apply
square root or logarithmic transformations to the
data, dichotomize data to represent mastery or
nonmastery, use a zero-inflated Poisson or negative
binomial regression models, or ignore the potential
violations of assumptions.

By contrast, quantile regression was designed, in
part, to specifically model data where unequal vari-
ance exists (Koenker, 2005). Quantile regression is
semiparametric in nature as it makes no assump-
tions about the distribution of the errors; thus, it is
more robust to non-normal errors and outliers. It is
also invariant to a monotonic transformation, such
as logarithmic transformations, which is not possi-

ble for linear regression (Koenker, 2005). Most
importantly, a particular benefit of quantile regres-
sion is that uses the full data set for estimating the
relation between X and Y when fitting quantiles
across the range of the dependent variables. Linear
regression may achieve the goal of evaluating
between variables by creating groups based on Y.
This often occurs by the way of creating groups of
4 (quartiles), 5 (quintiles), 10 (deciles), or other
numbers of groups based on the distribution of
scores. Such procedures are often criticized (e.g.,
Heckman, 1979) for truncating the range of the out-
come and resulting in parameter bias due to sample
selection effects. Quantile regression overcomes
such complications as the estimation of its model
coefficients uses a weight matrix (see the next
section) to include all of the sample data. Moreover,
the standard errors for the coefficients at each quan-
tile are estimated using bootstrapping the next
(Gould, 1997).

Estimation

Given such prospective advantages of using quan-
tile regression, we now turn our attention to ele-
ments of how multiple regression and quantile
regression are estimated to show the similarities in
process as well as the distinct elements of quantile
regression. In linear regression, estimated values for
an outcome, Y, is calculated based on the corre-
sponding value for a predictor, X, and are found
with

Yi =By + B Xi + &, (1)

where By is the intercept, B, is the slope, X; is the
score for individual i on independent variable X,
and ¢g; is the error term, which is assumed to be
identically, independently and normally distributed
with a mean of 0 and variance of > The relation
of X with Y is estimated by minimizing the squared
difference between the predicted value of Y and the
observed value of Y (the sum of the squared error),
and the result of the prediction equation can be rep-
resented by a single line through a scatterplot of
points.

Similarly, quantile regression can be used to esti-
mate the relation of X with Y at a given quantile
within the distribution of Y through a process that
involves: (a) identifying which sample scores for Y
are associated with the selected quantile(s) of inter-
est and (b) estimating the coefficient(s) for the inde-
pendent variable(s). The relation between a given



quantile (t) and a selected score on Y occurs
through a minimization process of the sum of abso-
lute residuals (compared to the sum of squares in
multiple regression), which is represented by the
equation:

Qy (1) = argmin Z

E.€R ic{ilY; > &}

T|Yi_E.'1:|
2)
+ oY (=Ygl g,

ie{ilYi<&:}

where Y; is the vector of independent variables, &,
is the dependent variable, and t is the quantile of
interest. Positive residuals are given a weight of t
and negative residuals are given a weight of 1 — 1.
For example, suppose 10 individuals were assessed

Table 1
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on a measure of language development and the
following vector of scores were obtained as follows:

Y; = (115307 9 13 25 40 31 35).

To calculate which of the scores in the sample
set corresponds to a selected quantile, such as .45
quantile, Equation 2 may be used to generate a
weight matrix as in Table 1. The top row and left
column of the matrix contain the vector of scores
reported above, ordered by magnitude. Within the
matrix, weights are calculated based on Equation 2.
When considering the column for the score of 13,
the 0 denotes that this is the selected score of inter-
est (i.e., no weight is assigned). The weights above
the 0 are calculated with (1 — 1) | Y; — & | from
Equation 2, while the weights below 0 are calcu-
lated with 7 | Y; — & | from Equation 2, where

Quantile Regression Sample Weight Matrix for Estimated Quantiles at t© = .45 and v = .75

Quantile

45 &

Y; 5 7 9 11 13 25 30 31 35 40

5 0 1.10 2.20 3.30 4.40 11.00 13.75 14.30 16.50 19.25
7 0.90 0 1.1 2.2 3.3 9.9 12.65 13.2 154 18.15
9 1.80 0.90 0 1.1 2.2 8.8 11.55 12.10 14.30 17.05
11 2.70 1.80 0.90 0 1.1 7.7 10.45 11.00 13.20 15.95
13 3.60 2.70 1.80 0.90 0 6.6 9.35 9.9 12.1 14.85
25 9.00 8.10 7.20 6.30 5.40 0 2.75 3.3 5.5 8.25
30 11.25 10.35 9.45 8.55 7.65 2.25 0 0.55 2.75 55
31 11.70 10.80 9.90 9.00 8.10 2.70 0.45 0 2.2 4.95
35 13.50 12.60 11.70 10.80 9.90 4.50 2.25 1.80 0 2.75
40 15.75 14.85 13.95 13.05 12.15 6.75 4.50 4.05 2.25 0
Sum 70.20 63.20 58.20 55.20 54.20 60.20 67.70 70.20 84.20 106.70
Quantile

75 &

Y; 5 7 9 11 13 25 30 31 35 40
5 0 0.50 1.00 1.50 2.00 5.00 6.25 6.50 7.50 8.75
7 1.50 0 0.5 1 1.5 45 5.75 6 7 8.25
9 3.00 1.50 0 0.5 1 4 5.25 5.50 6.50 7.75
11 4.50 3.00 1.50 0 0.5 35 4.75 5.00 6.00 7.25
13 6.00 4.50 3.00 1.50 0 3 4.25 45 5.5 6.75
25 15.00 13.50 12.00 10.50 9.00 0 1.25 1.5 2.5 3.75
30 18.75 17.25 15.75 14.25 12.75 3.75 0 0.25 1.25 25
31 19.50 18.00 16.50 15.00 13.50 4.50 0.75 0 1 2.25
35 22.50 21.00 19.50 18.00 16.50 7.50 3.75 3.00 0 1.25
40 26.25 24.75 23.25 21.75 20.25 11.25 7.50 6.75 3.75 0
Sum 117.00 104.00 93.00 84.00 77.00 47.00 39.50 39.00 41.00 48.50
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1= .45, =13, and Y; are each of the other scores
in the vector. When a score of 13 is compared to a
score of 5 at the .45 quantile, the associated weight
is calculated as (1 — 0.45) | 5 — 13 | = 4.40. Con-
versely, when a score of 13 is compared to 25 the
calculated weight is 0.45 | 25 — 13 | = 5.40. This
process is repeated for each score in the vector, and
the resulting weights are summed in each column.
To determine which score in the sample set corre-
sponds to the .45 quantile, one examines the sum of
the weights; the &; with the smallest sum value rep-
resents the score aligned to the .45 quantile. In this
illustration, the score of 13 corresponds to the .45
quantile as its sum (i.e., 54.20) is the smallest calcu-
lated value. This estimation process is repeated for
any quantile the analyst is interested in testing. As
another example, Table 1 shows that a score of 31
corresponds to the .75 quantile.

Once the relation between observed scores and
quantile for Y has been established via Equation 2,
the association between Y and X at a given quantile
can then be expressed with

Y =By + B + €. (3)

Equation 3 is structurally similar to that of Equa-
tion 1 (i.e., each includes the intercept, slope, and
error parameters), with the noted addition of the
superscript T above the intercept, slope, and error
parameters which denotes the quantile at which the
equation is estimating the association. This means
that for each specified quantile of interest for test-
ing, a unique intercept, slope, and error term will
be estimated. As previously noted, a distinguishing
feature of quantile estimation is that no assumption
is made about the distributional form for el@ (e.g.
normal, poisson) in Equation 3, while the corre-
sponding ¢; in Equation 1 (typical linear regression)
is assumed to be normally distributed. This critical
difference allows quantile regression equations to
be fitted to data with non-normal distributions
without worries about an impact on parameter bias.
Just as with linear regression, the results from a
quantile regression from Equation 3 would be rep-
resented by a single line through a scatterplot of
points; however, the distinction between the two
approaches is that quantile regression would fit the
line to the data as a function of the selected quan-
tile while linear regression fits the line to the aver-
age for the entire distribution.

A distinctive feature of Equation 3 compared to
Equation 1 bears mentioning as it pertains to how
the slope coefficients from each model should
be interpreted. Students who have taken linear

regression classes have been taught that the interpre-
tation of the effect of X on Y is such that for a unit
increase in X, Y will increase by the coefficient asso-
ciated with X. For example, if we have an equation
for a linear regression as,

Y =25+ 1.2(X),

it is expected that Y will increase by 1.2 units for
each unit increase in X. An alternative way to con-
struct the interpretation is in terms of how much
gap exists in Y when considering different values
of X. To illustrate, it could also be stated that the X
coefficient of 1.2 reflects the gap in estimated
performance at the mean of Y for a student who is
average on X compared to an individual who is 1
SD above the mean on X. Although this is a bit
more complex than the traditional interpretation of
a slope, it serves as a foundation to understand
how the slope relates to the outcome in quantile
regression. Now suppose we have two equations
from a quantile regression that estimated the asso-
ciation between X and Y at the .25 and .75 quan-
tiles:

.25 quantile: Y; = 0.43 + 2.5(X);
.75 quantile: Y; = 1.57 + 0.82(X).

The interpretation of the slope coefficient for the
25 quantile (i.e., 2.5) is best stated as the gap in
performance on Y at the .25 quantile for individuals
who were average on X compared to individuals
who were 1 SD above the mean on X was 2.5 units.
Similarly, the interpretation of the slope at the .75
quantile (0.82) is stated as: the gap in performance
on Y at the .75 quantile for individuals who were
average on X compared to those who were 1 SD
above the mean on X was 0.82 units.

This aspect of slope interpretation in quantile
regression is necessary as it assists in avoiding
confusion about the relations between the model
coefficients in the analysis. It is tempting to use the
traditional linear regression interpretation of a
slope; however, this would potentially mislead an
individual to think that at the .25 quantile, increas-
ing the X by 1 unit leads to a predicted score of Y,
which increases by 2.5 units. By increasing a score
in Y by 2.5 units, an individual would no longer be
at the .25 quantile, but would be at a higher quan-
tile. Consequently, it is more appropriate to think
and describe slope coefficients as reflective of gap
performances in Y based on differences in perfor-
mance on X.



Data Sources for Illustrations

In the remainder of this manuscript, we illustrate
the utility of quantile regression using two publicly
available data sets. For the first three examples, we
demonstrate quantile regression with the High
School and Beyond (HS&B) data. The data file con-
tains a standardized measure of 10th-grade math
achievement (M =50, SD = 10) data on 7,185 stu-
dents, as well as students’ socioeconomic status
(SES; i.e., a standardized composite of parent edu-
cation, parent occupation, and parent income;
M=0, SD=1), and a dichotomous indicator
reflecting if students were identified as minority
(coded as 1) or not (coded as 0). We begin by illus-
trating two simple quantile regressions of math
achievement on SES and minority status. This is
done to highlight the differential substantive inter-
pretations made when using a continuous predictor
and a dichotomous predictor. Following these
examples, SES and minority status will be simulta-
neously entered to demonstrate an example of
multiple quantile regression, whereby the model
estimates represent partial coefficients at each quan-
tile (i.e., predictor relation to outcome controlling
for other effects).

The developmental illustration stems from the
U.S. Sustaining Effects Study (Carter, 1982), which
collected data on up to 120,000 students twice a
year from Grades 1 through 3. The specific data set
used here is a reduced version of the companion
data file for the HLM6 software package (Rauden-
bush, Bryk, Cheong, Congdon, & du Toit, 2004) and
contains 1,721 students with math achievement
scores that are on a developmental item response
theory scale score metric (M = 0, SD = 1), as well as
an indicator if the student was male or female, and
an indicator if the student was Black or White. This
developmental analysis uses the data to study the
gap in math achievement between Black and White
students at the fall and spring of Grades 1 and 2.

As part of the examples, we highlight selected
results from a traditional linear regression analysis
compared to quantile regression, and draw con-
trasts in the types of conclusions that may be
reached by both techniques. Furthermore, we illus-
trate within quantile regression how to compare
slope coefficients between quantiles, such that the
researcher may test the extent to which point esti-
mates for slopes may be statistically distinguished.
We conclude our article with a description of best
practices, including sample size considerations,
multiple hypothesis testing, and future directions
for this technique. In all illustrations, we used the
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quantreg and glm packages in SAS 9.3 (SAS Insti-
tute Inc., 2013).

Regression With One Continuous Predictor
Method Comparison

In our first illustration we consider differences in
intercept and slope coefficients between linear and
quantile regressions when regressing math achieve-
ment (Y) on a measure of student SES (X). As a
preface to the analysis, we begin with a visual
inspection of the data via histograms and scatter-
plots for the two variables. Figure 2 highlights that
slight negative skew was found for both SES (X;
—0.23) and math achievement (Y; —0.18), and that
math achievement trended toward a platykurtic
distribution (—0.92). Furthermore, the scatterplot
demonstrates that the correlation between the two
variables is moderate (r = .36). Two fit lines have
been imposed on the scatterplot, with the solid line
representing fit from a linear correlational analysis
approach that yields a fit based on the means. The
dashed line is a spline function, which is a useful
mechanism for highlighting nonlinear patterns in
one’s data. It can be observed that while the spline
and linear fit lines overlap for part of the scatter-
plot, the spline function deviates from a linear fit
closer to the tails of the two distributions, suggest-
ing that the magnitude of the correlation between
SES and math achievement may vary when, for
example, SES scores are less than —1 or greater
than approximately 1.5. Another piece of evidence
from Figure 2 that corroborates this idea lies in the
nature of the scatter itself. For math achievement
scores on the y-axis less than 4 (i.e., the bold + sym-
bols in the scatterplot) SES scores range from —3.5
to 2; however, for math achievement scores greater
than 20 (i.e., the bold * symbols in the scatterplot),
the range of SES scores is much narrower (—2 to
1.5). The restricted range of SES scores for high
math achievement, and wider range of SES scores
for low math achievement suggests that a different
relation between the two variables may exist when
math achievement is high compared to when it is
average or low. In this case, quantile regression
could further illuminate the extent to which such a
differential relation exists.

Moving from the simple correlation analysis to a
regression model, the primary distinction between
the specifications of two procedures is that the
quantile regression allows the user to specify quan-
tile, in this case the .10, .25, .50, .75, and .95 quan-
tiles. It is via this design that the quantile
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Math Achievement

I

Figure 2. Scatterplot between socioeconomic status (SES) and math achievement with overlain histograms and both a regression fit line

(solid) and spline fit line (dashed).

regression estimates unique intercept and slope
coefficients at each of the quantiles.

A graphical comparison of the results from the
two procedures is provided in Figures 3a and 3b.
Figure 3a displays the scatterplot of SES and math
achievement with the linear regression line (identi-
cal to that in Figure 2), where the fit line represents
the minimization of the sum of squared residuals.
Figure 3b, by contrast, represents the results of a
quantile regression on the same data. There are five
fit lines presented in Figure 3b, representing the
.10, .25, .50, .75, and .95 quantiles. Notice that the
fit line for the .50 quantile (i.e., median) is very
similar to the line representing the linear regression
(Figure 3a). Conversely, the lines representing the
10 and .95 quantiles have slopes that are not as
steep as that of the .25, .50, or .75 quantiles. As we
hypothesized from the correlational analysis in
Figure 2, this suggests that scores at the 10th and
95th percentiles of math achievement demonstrate a
weaker relation between math achievement and
SES compared to scores within the interquartile
range of math achievement.

The specific intercept and slope estimates associ-
ated with these linear and quantile regression plots
are reported in the upper portion of Table 2. Linear
regression results are reported in the usual manner
with the coefficients, standard errors, confidence
intervals, t statistics, and p values. Model coeffi-
cients for this analysis indicated that for students
with average SES (due to SES being a z score in the
data set), their expected math achievement score
was 12.75, and as SES changed by 1 unit, math was
expected to change by 3.18 points. As a first com-
parison between linear and quantile regression, we
focus on the .50 quantile (i.e., the median of the dis-
tribution of math achievement). When the data are
multivariate normal, both methods will yield the
same result; because the histograms in Figure 2
demonstrated deviations from normality, it was
expected that the results would be similar, albeit
not exact. The coefficients at the .50 quantile indi-
cated that the expected math achievement score for
an individual with average SES was 12.94, which
closely corresponded to the intercept of the linear
regression model. Similarly, the slope for SES at the
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Figure 3. Comparison of scatterplots and fit lines from (a) linear regression and (b) quantile regression from High School and Beyond

data regression of math achievement on socioeconomic status (SES).

.50 quantile (3.93) was closely aligned to that of the
linear model (3.18), as were the standard errors,
confidence interval bounds, t statistics, and p val-
ues. As we noted in the previous section on estima-
tion, the slope coefficient should be interpreted
differently in the quantile framework compared to
what commonly occurs in linear regression. In this

example, the slope coefficient of 3.93 reflects the
gap in math achievement performance at the .50
quantile between an individual who is average with
SES and one who is 1 SD above the mean with
SES. Similarly, this interpretation could also be
applied to the linear regression model whereby the
3.18 slope reflects differences in math achievement
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Table 2

Comparison of Linear and Quantile Regressions of Math Achievement on SES and Math Achievement on Minority Status

95% confidence

interval
Model Parameter Estimate SE LB UB t value p value
Linear regression—Math achievement and SES
Intercept 12.75 0.08 12.60 12.90 168.42 <.001
SES 3.18 0.10 2.99 3.37 32.78 <.001
Quantile regression—Math achievement and SES
QR-10 Intercept 4.04 0.11 3.81 4.26 35.13 <.001
SES 2.54 0.17 2.21 2.88 14.91 <.001
QR-25 Intercept 8.04 0.10 7.82 8.25 73.42 <.001
SES 3.58 0.13 3.33 3.84 27.50 <.001
QR-50 Intercept 12.94 0.09 12.75 13.14 131.60 <.001
SES 3.93 0.10 3.72 4.14 37.14 <.001
QR-75 Intercept 17.81 0.11 17.59 18.03 159.11 <.001
SES 3.20 0.13 2.94 3.46 24.07 <.001
QR-95 Intercept 22.74 0.08 22.58 22.89 282.50 <.001
SES 1.31 0.11 1.09 1.52 12.05 <.001
Linear regression—Math achievement and minority status
Intercept 13.88 0.09 13.70 14.06 151.22 <.001
Minority —4.13 0.18 —4.47 -3.79 —23.58 <.001
Quantile regression—Math achievement and minority status
QR-10 Intercept 4.36 0.15 4.07 4.65 29.09 <.001
Minority —-3.07 0.24 —3.55 —2.50 —12.75 <.001
QR-25 Intercept 8.79 0.15 8.49 9.10 57.03 <.001
Minority —4.28 0.20 —4.68 —3.88 —20.94 <.001
QR-50 Intercept 14.49 0.14 14.23 14.77 104.96 <.001
Minority —5.10 0.28 —5.65 —4.56 —18.41 <.001
QR-75 Intercept 19.33 0.14 19.06 19.60 140.93 <.001
Minority —4.52 0.27 —5.05 —3.98 —16.65 <.001
QR-95 Intercept 23.47 0.08 23.31 23.62 291.83 <.001
Minority —2.18 0.23 —2.62 —-1.73 —9.55 <.001

Note. Boldface in the table is used to facilitate comparison of results. SES = socioeconomic status; LB = lower bound; UB = upper
bound; QR-10 = quantile regression at the .10 quantile; QR-25 = quantile regression at the .25 quantile; QR-50 = quantile regression at
the .50 quantile; QR-75 = quantile regression at the .75 quantile; QR-95 = quantile regression at the .95 quantile.

performance at the mean of math achievement
between an individual who is average with SES
compared to a student who is 1 SD above the mean
with SES.

This initial comparison serves to show that when
estimating the relation between SES and math
achievement using either a means-based approach
via linear regression, or a median-based approach,
the results can be very similar given the nature of
data distributions. With linear regression, however,
the interpretation of the dynamic between math
achievement and SES would cease at knowing that
the effect of SES was 3.18, yet the specification of
multiple quantiles allows for us to test whether that
slope effect changes depending on one’s level of
math achievement. In addition to estimating the rela-

tion at the .50 quantile, the model was specified to
test for effects at the .10, .25, .75, and .95 quantiles,
and the estimated slope coefficients across these
selected points of the distribution are reported in the
upper portion of Table 2. There are several points
worth noting about the quantile-based estimates.
First, the intercept values increase from 4.04 at the
.10 quantile, to 22.74 at the .95 quantile, and this is a
natural expectation of quantile regression. Because
the analysis is conditional on score of the dependent
variable, higher quantiles are associated with higher
observed scores, and thus higher intercepts com-
pared to intercepts at lower quantiles. Second, the
slope coefficients for SES vary across the five selected
quantiles, and in a manner that appears curvilinear.
At the .10 quantile the SES slope was § = 2.54, which



increases to = 3.58 at the .25 quantile, and B = 3.93
at the .50 quantile, but then begins to decrease at the
.75 quantile down to B = 3.20 and B = 1.31 at the .95
quantile. These between-quantile differences in
slopes relate well to what was observed in Figure 3b.
Just as the fit lines for the .10 and .95 quantiles dem-
onstrated slopes that were not as steep as the other
quantiles, so too are the actual coefficients for SES
lower for the two quantiles.

Plots

A useful way to summarize the intercept and
slope coefficients is to generate a quantile process
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plot. The intercept portion of the quantile process
plot (Figure 4a) displays the predicted math
achievement score when SES is 0 (y-axis), which
corresponds to the data presented in Table 2, condi-
tional on the quantile of math achievement (x-axis).
The intercept plot is self-referential, demonstrating
that children at lower quantiles of math achieve-
ment have lower math achievement scores, and
children at the higher quantile of math achievement
have higher math achievement scores. A more use-
ful plot to examine is the slope plot (Figure 4b),
which contains SES on the y-axis and the math
achievement quantile on the x-axis. The dark line
reflects the estimated slope coefficient for SES
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Figure 4. Quantile process plots for math on socioeconomic status (SES)—(a) math intercept, (b) SES slope—and math on minority sta-

tus—(c) math intercept, (d) minority status slope.
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conditional on the quantile of math achievement.
At the lowest quantile (.01), the process plot shows
that the coefficient for SES is approximately 2. By
examining the pattern of this process plot, it is clear
that as math achievement increases from the .01
quantile to the .50 quantile, SES becomes more
strongly related to math achievement, with the SES
coefficient increasing from approximately 2.0 to 4.0,
and then begins to decline, such that the slope coef-
ficient approaches 1 for those students with very
high math scores. Although specific estimates may
be difficult to ascertain from this plot, it is useful
for quickly ascertaining patterns in the conditional
Y-X relation that varies across quantiles. From this
plot, we conclude that SES has the strongest rela-
tion with math achievement for those students who
are in the middle of the distribution (i.e., between
the 40 and .60 quantiles), but for students who
have very high or very low math scores, SES does
not maintain as strong of an association. This is
quite different than the interpretation yielded from
the linear regression. A contrast of the two
approaches demonstrates that the relation between
SES and math achievement was overestimated (pre-
dicted to be higher than is truly observed) in the
20th percentile and below, as well as the 80th per-
centile and above, while scores were underesti-
mated for those individuals closer to the median of
the distribution. The advantage of quantile regres-
sion is more readily observed with these data as it
provides broader context to the effect of slope on
math achievement.

Quantile Comparisons

A subsequent query that may arise when view-
ing the trend from Figure 4b is whether slope val-
ues across the quantiles are statistically
differentiated from each other. For example, one
could ask if the estimated slope coefficient of 2.54
at the .10 quantile (Table 2) is significantly differ-
ent from the 3.93 slope coefficient at the .50 quan-
tile. The between-quantile analysis uses a Wald
test (Koenker & Bassett, 1978), which provides a
¥° statistic with degrees of freedom, and p value
for the test of differences. For a comparison
between the .25 and .50 quantiles the results sug-
gested that the estimated SES slope coefficients
were significantly  differentiated, x*(1) = 7.45,
p < .01, as were the differences between the .50
and .75 quantiles, (1) = 32.79, p <.001, and the
differences between the .25 and .75 quantiles,
x*(1) = 5.44, p <.05. As a whole, these findings
suggested that the effect of SES on math achieve-

ment is statistically differentiated based on one’s
math achievement; thus, we may infer that SES
and math achievement have a smaller association
when math achievement is very low or high com-
pared to SES having a stronger association when
math achievement was average.

Regression With One Dichotomous Predictor

Along with using quantile regression for predicting
outcomes with a continuous independent variable,
researchers often hypothesize that differences in an
outcome may be explained by a categorical variable
(e.g., examining gender differences, treatment group
differences, etc.). Our second example tests whether
minority students differ in math achievement from
White students across the distribution of math
achievement. Results from linear and quantile
regressions of math achievement on minority status
are presented in the lower portion of Table 2. For
the linear regression model, the intercept value was
13.88, reflecting the mean math achievement for
White students. The slope coefficient for minority
students was negative and indicated that minority
students, on average, had lower math achievement
by 4.13 points. Quantile regression at the .50 quan-
tile revealed that the mean predicted value of math
achievement for a White student is 14.49, and that
minority students, on average, had math scores that
were 5.10 points lower. These values are compara-
tively similar to the linear regression, however, not
exact due to the distributional characteristics of the
dependent variable previously described. As was
observed in the former example, the intercept coef-
ficients expectedly increased across the quantiles,
and in this model the slope coefficients also varied.
At the .10 quantile the gap between White and
minority students was 3.07 points, and increased to
4.28 at the .25 quantile and 5.10 at the .50 quantile,
but then decreased to 4.52 points at the .75 quantile
and 2.18 points at the .95 quantile. This pattern of
different slope coefficients when plotted as a quan-
tile process plot (Figures 4c and 4d) yielded a
U-shaped pattern for minority status (Figure 4d),
demonstrating that the gap between minority and
nonminority students in math achievement was not
uniform across the range of math scores. Although
the gap was smallest when students had either very
low (i.e., quantiles < .20) or very high (i.e., quantiles
> .80) math achievement scores, performance closer
to the middle portion of the distribution (i.e., the
40 to .60 quantiles) resulted in the largest the gap
between White and minority students, evidenced



by the minority slope coefficients of greater than
5.

The slopes from this model were compared
across selected quantiles to test the extent to which
the gap between White and minority students at
the .50 quantile statistically differed from that
observed at the other estimated quantile. Differ-
ences were analyzed using the same between-quan-
tile approach in the first example, and results
indicated that the math achievement gaps between
at the .10, .25, .75, and .95 quantiles were all signifi-
cantly smaller compared to differences at the .50
quantile: (a) .10 contrast, ¥*(1) = 50.62, p < .001; (b)
.25 contrast, ¥*(1) = 12.55, p <.001; (c) .75 contrast,
x*(1) = 5.50, p <.05; and (d) .95 contrast, (1) =
89.01, p < .001. With the dichotomous predictor the
linear regression estimation demonstrated that, on
average, there was a 3-point difference between stu-
dents of minority status and nonminority status in
math achievement. However, the quantile regres-
sion demonstrated the more complex relation: The
3-point differential was specifically representative
of individuals with either low or high math scores,

Table 3
Comparison of Linear Multiple and Quantile Regression
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but that the gap ranged from 2 to 5 points based
on their math achievement.

Multiple Regression

Our next illustration of the quantile regression tech-
nique extends the findings from the previous two
examples to integrate the predictors into a multiple
regression. Doing so allows an examination of the
partial effects of SES and minority status when
controlling for each other.

The results of the multiple linear and quantile
regression analyses are summarized in Table 3; the
linear regression demonstrated that the predicted
math achievement score for a White student who
was average on SES was 13.53. When controlling
for the effect of minority status, SES had a positive
relation with math, whereby the gap in math per-
formance at the mean was expected to be 2.74
points between an individual with mean SES com-
pared to 1 SD above the mean in SES. In addition,
when accounting for SES, minority students scored

95% confidence

interval
Model Parameter Estimate SE LB UB t value p value
Linear multiple regression
Intercept 13.53 0.09 13.35 13.70 153.31 <.001
SES 2.74 0.09 2.55 2.94 27.69 <.001
Minority —2.83 0.17 -3.17 —2.49 —16.35 <.001
Quantile multiple regression
QR-10 Intercept 4.79 0.13 4.52 5.05 35.95 <.001
SES 2.18 0.16 1.86 2.50 13.35 <.001
Minority —2.19 0.27 —-2.71 -1.67 —8.19 <.001
QR-25 Intercept 8.91 0.15 8.60 9.21 57.69 <.001
SES 3.13 0.13 2.88 3.38 24.54 <.001
Minority —2.76 0.25 -3.26 —2.26 —10.87 <.001
QR-50 Intercept 13.83 0.13 13.59 14.07 112.81 <.001
SES 3.40 0.11 3.17 3.62 29.94 <.001
Minority —-3.18 0.25 —3.68 —2.69 —12.63 <.001
QR-75 Intercept 18.57 0.12 18.34 18.81 155.56 <.001
SES 2.72 0.13 247 297 21.36 <.001
Minority —-3.27 0.26 —3.79 —2.76 —12.49 <.001
QR-95 Intercept 23.06 0.09 22.90 23.23 272.88 <.001
SES 1.15 0.09 0.96 1.34 11.65 <.001
Minority -1.76 0.24 —2.24 -1.28 —7.22 <.001

Note. Boldface in the table is used to facilitate comparison of results. SES = socioeconomic status; LB = lower bound; UB = upper
bound; QR-10 = quantile regression at the .10 quantile; QR-25 = quantile regression at the .25 quantile; QR-50 = quantile regression at
the .50 quantile; QR-75 = quantile regression at the .75 quantile; QR-95 = quantile regression at the .95 quantile.
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2.83 points lower than White students. At the .50
quantile, the predicted math achievement score for
a student with nonminority status and an SES of 0
was 13.83, which was close to the estimated value
for the linear multiple regression. The expected gap
in math achievement at the .50 quantile between
average SES and 1 SD above the mean in SES was
expected to be 3.40 points when controlling for
minority status. Similarly, when controlling for SES,
the predicted math achievement score for minority
students was —3.18 points lower than nonminority
students (i.e., 10.65). Note the similarity of the solu-
tion at the .50 quantile to that of the multiple
regression (top rows, Table 3). Furthermore, the
slope coefficients at the .10, .25, .75, and .95 quan-
tiles all displayed estimates that deviated from the
mean value from the linear multiple regression and
demonstrated patterns that were similar to when
they were estimated in separate, simple quantile
regression models.

Figure 5 shows the quantile process plots for the
multiple quantile regression, including the intercept
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(5a), the slope coefficient for SES (5b), and the slope
coefficient for minority status (5c). The plots of the
two predictors in Figures 5b and 5c represent the
partial slope coefficients for each variable when
controlling for the other. An ancillary component of
this model examined next was the extent to which
the between-quantile comparisons demonstrated
different results than the simple linear quantile
regressions. In other words, how does the gap
between minority and nonminority students in
math achievement change when controlling for the
effects of SES? First, when comparing Figure 4d
(simple quantile for minority status) with Figure 5c
(multiple quantile for minority status), it is clear
from an evaluation of the scaling of the y-axis in
both figures that minority gap in math achievement
is not as strong after controlling for SES (range = 0
to —4) as it was when it was the only predictor of
math achievement (range = 0 to —6). Quantile com-
parisons tests were used to determine if the
observed differences across the distribution of math
achievement were significant. The results of the
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S

0.0 0.2 0.4 0.6 0.8 1.0
Math Achievement Quantile

©

Figure 5. Quantile multiple regression process plot with confidence limits.



between-quantile comparisons suggested the esti-
mated coefficients at the .25, .50, .75, and .95 quan-
tiles were not significantly different from one
another, confirming that the achievement gap
between students of minority status and nonminor-
ity status is stable across the distribution after con-
trolling for SES. The effect of SES on math
achievement was also comparatively weaker in the
multiple regression (Figure 5b) than the simple
regression (Figure 4b). However, even though the
magnitude of the partial coefficient for SES was
weaker compared to the simple regression model,
the quantile comparisons indicated that significant
differences across the distribution still existed
between the 25 and .50 quantiles, v*(1) = 4.15,
p < .05 the .75 and .50 quantiles, ¥*(1) = 27.80,
p<.001;, and the .50 and .95 quantiles,
x*(1) = 226.50, p < .001.

Taken together, these results revealed several
trends that would not have been directly observable
using multiple regression. First, the simple linear
regression demonstrated that a differential achieve-
ment gap existed between minority and nonminor-
ity students at different points of the outcome.
Once SES was controlled, however, this differential
gap no longer existed, which, in one sense corrobo-
rates the findings in the multiple regression in that
the mean coefficient can generalize across the distri-
bution of math achievement. From another perspec-
tive, it is important to note that without controlling
for SES, the differential gap would still exist across
the different points of the outcome, and multiple
regression would have still assumed that the model
coefficient remained the best estimate of predicting
differences in math. Second, when controlling for
minority status in the multiple regression the
between-quantile analysis for SES was found to be
significantly more strongly related to math achieve-
ment scores for moderate math achievement scores
(the .4 to .6 quantiles) than it was of those students
with higher or lower scores (Figure 5b).

Developmental Illustration

The preceding sections have served to familiarize
the reader to quantile regression theory and estima-
tion, with applied examples of simple and multiple
quantile regression. A natural extension of the pre-
vious examples is to examine the extent to which
the predictive relation between selected variables
varies at different developmental phases. Using the
previous HS&B data as a conceptual illustration, it
is possible that the quantile relation between math
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achievement and minority status might vary at dif-
ferent points in time, such that the curvilinear
shape from Figure 4d may change when measured
at an alternative time point.

As the referenced HS&B data set lacks sufficient
data for this longitudinal examination, we switch to
the U.S. Sustaining Effects data set. Recall from
earlier that while this study uses math achievement
as an outcome, the metric of the score is different
from HS&B in that the current data set uses a
vertically scaled z score such that growth may be
inferred over time. Here, we consider achievement
differences in math achievement between Black and
White students at four time points (i.e., fall and
spring of Grade 1, fall and spring of Grade 2) using
linear and quantile regression. Our previous illus-
trations of quantile regression have thus far demon-
strated how we were able to compare intercept and
slope coefficients between points on the distribution
of Y. For this longitudinal application, we can
further examine whether the relations between
minority status and math achievement at a given
quantile were different in magnitude at different
data collection points, as well as examine whether a
statistically significant difference in Black-White
student achievement gaps in map between two
specified quantiles varied across the four time
points.

Linear Regression

Results for the linear regression of math achieve-
ment on the dummy-coded covariate representing
Black and White differences for each of the four
time points are reported in Table 4. The intercept
value, representing the mean math achievement for
White students, increased across each of the four
administrations from —1.63 at the fall of Grade 1
(i.e., Math 1) to 0.75 at the spring of Grade 2 (i.e,,
Math 4). The coefficient for Black students at Math
1 was —0.34, indicating that their math achievement
was, on average, lower than White students by .34
units. Across the remaining time points, it can be
seen that the coefficient for Black students increases,
suggesting that the gap in math achievement grows
from the fall of Grade 1 (—0.34) to the spring of
Grade 2 (—0.66).

Quantile Regression

The results of the quantile regressions of Black-
White student differences in math achievement are
displayed in Figure 6 (6a = Math 1; 6b = Math 2;
6¢ = Math 3; 6d = Math 4), with estimates reported
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Table 4
Linear Regression Results for U.S. Sustaining Effects Study

95% confidence

interval
Outcome Predictor Coefficient SE LB UB t value p value
Math 1 Intercept -1.63 0.05 —1.74 —1.54 —31.98 <.001
Black —0.34 0.06 —-0.46 -0.22 —5.55 <.001
Math 2 Intercept —0.61 0.05 -0.71 —0.51 —12.36 <.001
Black —0.43 0.06 —0.55 -0.32 —~7.35 <.001
Math 3 Intercept 0.18 0.05 0.08 0.29 3.36 <.001
Black —0.56 0.07 —0.69 —0.43 —8.56 <.001
Math 4 Intercept 0.75 0.06 0.63 0.87 12.42 <.001
Black —0.66 0.07 —-0.80 —0.51 —-8.99 <.001

Note. SES = socioeconomic status; LB = lower bound; UB = upper bound; Math 1 = fall, Grade 1; Math 2 = spring, Grade 1; Math
3 = fall, Grade 2; Math 4 = spring, Grade 2.
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Figure 6. Regression of math achievement on Black-White differences over four time points.

in Table 5. Model coefficients can be interpreted in  sions at each time point, followed by a comparison
the same way as those in the previous (simple  across the time points.

dichotomous predictor) sections; however, we will For Math 1, the intercept value was —1.76 com-
briefly describe the results of the quantile regres-  pared to the —1.63 from linear, and the slope coeffi-



Table 5
Quantile Regression Results for U.S. Sustaining Effects Study
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95% confidence

interval
Outcome Quantile Predictor Coefficient SE LB UB t value p value
Math 1 QR-10 Intercept —3.07 0.07 —-3.21 -2.93 —42.60 <.001
Black —0.46 0.10 —0.66 —0.26 —4.47 <.001
QR-25 Intercept —2.41 0.07 —2.55 —2.28 —34.72 <.001
Black —0.39 0.10 —0.59 -0.19 -3.79 <.001
QR-50 Intercept —1.76 0.04 —1.83 —1.69 —46.91 <.001
Black -0.23 0.05 —0.32 -0.13 —4.61 <.001
QR-75 Intercept —0.94 0.06 —1.06 —0.82 —15.34 <.001
Black -0.29 0.07 —0.44 -0.15 —4.03 <.001
QR-95 Intercept 0.46 0.14 0.19 0.74 3.31 <.001
Black —0.35 0.18 -0.70 0.00 -1.97 0.049
Math 2 QR-10 Intercept -2.07 0.08 —-2.23 -1.91 —25.28 <.001
Black -0.39 0.10 —0.59 -0.19 —3.78 <.001
QR-25 Intercept —1.38 0.05 —1.48 —1.28 —26.49 <.001
Black —0.44 0.06 —0.56 -0.32 —7.02 <.001
QR-50 Intercept —0.65 0.07 —0.78 —0.51 -9.23 <.001
Black —0.48 0.08 —0.63 —0.32 —6.17 <.001
QR-75 Intercept 0.06 0.06 —0.07 0.18 0.90 0.370
Black —0.37 0.08 —0.53 -0.22 —4.80 <.001
QR-95 Intercept 1.49 0.13 1.22 1.75 11.19 <.001
Black —0.58 0.15 —0.88 -0.29 —3.86 <.001
Math 3 QR-10 Intercept —1.56 0.06 —1.68 —1.43 —24.74 <.001
Black —0.44 0.09 —0.61 -0.27 —5.11 <.001
QR-25 Intercept -0.73 0.07 —0.86 —0.59 -10.17 <.001
Black —0.58 0.08 —0.74 —0.42 -7.10 <.001
QR-50 Intercept 0.11 0.09 —0.07 0.29 1.25 0.212
Black —0.53 0.10 —0.73 —0.34 —5.44 <.001
QR-75 Intercept 1.15 0.10 0.94 1.35 11.02 <.001
Black —0.68 0.11 —0.89 —0.47 —6.39 <.001
QR-95 Intercept 2.43 0.13 2.17 2.69 18.03 <.001
Black -0.75 0.14 -1.02 —0.48 —5.41 <.001
Math 4 QR-10 Intercept -0.89 0.11 -1.10 —0.67 —8.14 <.001
Black —0.48 0.13 -0.73 -0.22 -3.59 <.001
QR-25 Intercept —0.08 0.10 -0.27 0.11 —0.81 0.416
Black -0.62 0.12 —0.85 —0.39 —5.32 <.001
QR-50 Intercept 0.79 0.07 0.64 0.93 10.65 <.001
Black —0.71 0.09 —0.88 —0.54 —8.18 <.001
QR-75 Intercept 1.62 0.10 1.42 1.83 15.56 <.001
Black -0.75 0.12 -0.99 —0.51 —6.20 <.001
QR-95 Intercept 2.81 0.13 2.57 3.06 22.35 <.001
Black -0.78 0.13 —1.04 —0.52 —5.91 <.001

Note. Boldface in the table is used to facilitate comparison of results. SES = socioeconomic status; LB = lower bound; UB = upper
bound; QR-10 = quantile regression at the .10 quantile; QR-25 = quantile regression at the .25 quantile; QR-50 = quantile regression at
the .50 quantile; QR-75 = quantile regression at the .75 quantile; QR-95 = quantile regression at the .95 quantile.

cient of —0.23 in the quantile model approximated
that of the linear regression model (i.e., —0.34).
However, the quantile regression showed that the
gap between Black and White students had high
dispersion in its differences. Note that in the quan-

tile results for Math 1 that the gap between Black
and White students decreases by half from the .10
quantile (—0.46) to the .50 quantile (—0.23), but then
increases from the .50 quantile to the .95 quantile
(i.e., —0.23 to —0.35). This trend is graphically dis-
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played in Figure 6a and corroborates the data
found in Table 5. To test these differences, empiri-
cal comparisons were made between slope coeffi-
cients of selected pairs of quantiles. Significant
differences in the slope was observed between the
.10 and .50 quantiles, ¥2(1) = 7.43, p < .01, but no
significant differences in the slope coefficient were
estimated when the .50 quantile was compared to
the .25, .75, or .95 quantiles. This indicated that at
the fall of Grade 1, the gap between Black and
White students” math achievement was significantly
greater for students who attained the lowest math
achievement scores compared to those who were at
the median, or close to the average performance
level, where the gap was much smaller.

By the spring of Grade 1, the gap between Black
and White students appeared to normalize across
the distribution of math achievement (Figure 6b),
such that the slope coefficient was approximately
—0.40 at each quantile (Table 5). A pairwise com-
parison of quantiles concurred with this observa-
tion: no significant differences in the Black—-White
math achievement gap were found when the .50
quantile was compared to the others. Once students
moved into Grade 2, the quantile regression high-
lights that the gap between Black and White
students ranged from —0.44 at the .10 quantile up
to —0.75 at the .95 quantile (Figure 6c). The signifi-
cance of this change was confirmed via between-
quantile comparisons tests: Effects were found
when comparing estimates at opposing ends of the
distribution, that is, .10 and .75 quantiles,
x*(1) = 4.45, p < .05. Finally, the achievement gap
found in fall of Grade 2 continued through the
spring (Figure 6d), whereby the math gap was
much smaller for those students whose math scores
were lower (e.g., a —0.48 difference at the .10 quan-
tile; Table 5), compared to a larger gap when math
achievement was higher (e.g.,, —0.78 difference at
the .95 quantile).

Longitudinal Comparisons

Examining the results developmentally, the lin-
ear regression suggests a small but steady widen-
ing of the gap in math achievement between Black
and White students from the fall of Grade 1
(—0.34) to the spring of Grade 2 (—0.66). The quan-
tile regression results demonstrated substantial
individual differences around each of these esti-
mates. First, the estimates from the quantile regres-
sion at the median generally aligned in magnitude
with those of the linear regression at each of the
four time points, suggesting a slight widening of

the achievement gap over time. If we focus instead
on the low end of the distribution of math scores
(i.e., the .10 quantile), the gap in math achievement
at each time point as consistently about 0.40, sug-
gesting no change in the achievement gap for stu-
dents who score at the low end of math
achievement. The opposite was true when we
examined the results at the highest quantiles. While
the gap increased by .32 z-score units for students
at the median (i.e., —0.66 to —0.34), at the .75 quan-
tile, the coefficient associated with math differences
increased from —0.29 in the fall of Grade 1 to
—0.75 in the spring of Grade 2 (i.e., a 0.46 increase
in the gap). Thus, the extent to which Black stu-
dents and White students differed in their math
achievement scores over time was dependent on
whether students were low (stability in gap over
time), at the median (small increase in gap over
time), or high (moderate increase in gap over time)
in math achievement.

Discussion

Many questions about individual differences in the
developmental and education sciences have tradi-
tionally been evaluated with linear regression-based
methodologies. Such procedures allow for the
discussion of the average effects existing within a
sample. In this study, we have provided an over-
view of quantile regression, which extends the gen-
eral logic and goal of linear regression to specific
knowledge about individual differences conditional
on the performance on the outcome. The illustra-
tions highlighted that quantile regression possesses
several advantages over linear regression. First, in
the basic illustration of simple linear regression, the
quantile process plots demonstrated that the rela-
tion between SES and math achievement in the
HS&B data was not the same magnitude across all
points of math achievement. Although the slope
coefficient from linear regression was aligned to
that found at the .50 quantile, the quantile regres-
sion revealed that SES was less related to math
when math achievement was very poor or very
good but was strongly related at approximately the
40th to 60th percentiles of math achievement.

Next, we demonstrated a multiple regression
example of both minority status and SES as predic-
tors of math achievement. Quantile regression
revealed that after controlling for minority status,
there were still significant differences in the
strength of the relation of SES with math achieve-
ment. Furthermore, comparing the simple and



multiple regression results was also illuminating. In
the simple regression results, there were significant
differences in the math achievement gap between
minority and nonminority students at particu-
lar quantiles. Once SES was controlled for in the
multiple regression these differences were no longer
significant. Such an observation could not have
been tested using multiple regression.

Finally, the developmental illustration demon-
strated that it was possible to observe whether the
relation between X and Y at a specific quantile of Y
remains static over multiple assessment points. In
our illustrative example, the linear regression sug-
gested a moderate increase in the achievement gap
between the fall of Grade 1 and the spring of Grade
2. The quantile regression results suggested that
this relation was more complex. We found that the
math achievement gap between Black and White
students was about the same at each time point for
those students with low math achievement. How-
ever, for those students with high math achieve-
ment, the achievement gap was much larger
(almost double) in the spring of Grade 2 than it
was in the fall of Grade 1. This finding highlights
the fact that linear regression models are not capa-
ble of providing such targeted information about
slope coefficients at different points in the distribu-
tion of scores.

Other Potential Uses

Although it did not happen in these particular
examples, it is possible that a predictor identified as
statistically significant in the linear regression may
show a lack of relation at certain points when sub-
set on the conditional distribution of the outcome.
For example, even when a linear regression weight
(slope or intercept) is statistically significant, it is
still possible that the quantile regression results find
nonsignificant relations between the predictor and
the outcome at or below a given quantile. If such a
pattern of results were observed, it would suggest
that the predictor was important for the outcome in
general but was not an important predictor of the
lowest performers on the outcome. A similar result
was found in the Catts et al. (2009) study men-
tioned in the Introduction: No relations between
two reading skills were observed at the lowest
quantiles. In the case of Catts et al., this finding
was indicative of the floor effects found with the
examined assessments. Such a result could also sug-
gest that two qualitatively different groups of peo-
ple exist (e.g., good and poor readers, high and low
frequency of response, impairment and not
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impaired). This analysis would give the researcher
an empirical basis to determine at what point in the
distribution the qualitative change occurred.

Research questions in educational research are
often examined using simple regression techniques.
However, questions can often go beyond what can
be answered in a standard regression framework.
As previously noted, splitting a sample into two
groups results in several potential limitations,
including the sacrifice of statistical power from
dividing the sample, and the fact that the results
could differ depending on where the cut point is
set. The use of quantile regression allows for the
examination of questions of differential relations or
importance without the problems associated with
dichotomizing variables or splitting a sample into
smaller subsamples.

Considerations for Best Practices

We conclude this article with a discussion of sev-
eral ancillary considerations pertaining to planning
a study using quantile regressions. Issues such as
minimal sample sizes and estimation of effect sizes
or practical importance are all common components
of methodologies that should be addressed. Current
research into minimal samples for quantile regres-
sion is limited. Most of the research pertaining to
sample size is rooted in simulation work pertaining
to potential new estimators for quantile regression
and its impact on parameter estimates given a par-
ticular set of sample sizes (see Hardle, Ritov, &
Song, 2010; Huber & Melly, 2011). A growing body
of research has begun to develop permutation tests
to improve Type I error rates (Cade & Richards,
1996, 2006), yet such studies do little to provide
concrete recommendations for sample size beyond
the general maxim that larger samples are desired
compared to smaller. Koenker and d’Orey (1987)
found that quantile regression may perform poorly
at particular quantiles (e.g., > .70 quantiles) when
the sample size at that place in the distribution is
smaller. Similarly, Chernozhukov and Umanstev
(2001) found that slope coefficients at the tails of
the conditional distribution had wider confidence
bands compared to the coefficients at the middle
part of the distribution. Such findings suggest that
when one is planning a study to use quantile
regression, uniform sampling of individuals across
the ability distribution will ensure that the condi-
tional point estimates are equally precise the range
of the outcome. In addition, when data are collected
from small samples, individuals should consider
the use of bootstrapping the parameter estimates
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or using a permutation test (Cade & Richards,
2006).

A second consideration for best practices pertains
to the selection of the number of quantiles to be
specified. Our focus in choosing quantiles in this
study was to provide individual points that
corresponded to a reasonable lower bound quantile
(i.e.,, .10), values approximately corresponding to
points in the interquantile range (i.e., .25, .50, .75),
as well as a reasonable upper bound quantile (i.e.,
95). In practice, the specification should be based
on the sample size, the number of parameters in
the number, and the distribution of the data (Cade
& Noon, 2003). Catts et al. (2009), Logan et al.
(2011), and Petscher and Kim (2011) used 19
selected quantiles ranging from .05 to .95 in inter-
vals of .05. Applications of quantile regression in
econometrics and biometrics have similarly used
the 19 quantiles based on the inversion of a quan-
tile rank-score test (Koenker, 1994; Koenker &
Mochado, 1999). It is likely that basic applications
can reasonably use the quantile points used in this
study to broadly characterize phenomena in their
data, and with larger samples the use of 19 (or
greater) quantiles will add greater specificity to
potentially differential estimation of slopes.

Third, when fitting a regression model, research-
ers are often interested in evaluating the goodness
of fit for a sequence of models. In linear regression,
this is typically done via the coefficient of determi-
nation (i.e., R%), which indicates how well the fitted
regression line approximates the real data points.
Model R* values are useful for not only examining
the total explanatory power for a set of predictors
but can be used to estimate how much unique vari-
ance a given independent variable explains within
a set of predictors. Although quantile regression
has, to date, contained little research on extensions
of this statistic to the conditional median models,
work by Petscher, Logan, and Zhou (2013) demon-
strated that a pseudo-R*> may be calculated for each
quantile, with results showing comparable findings
to the traditional linear regression R*.

A final consideration for quantile regression
concerns hypothesis testing for between-quantile
slope coefficients. When multiple hypothesis testing
occurs in data analysis, it is possible that the Type
I error rate may become inflated. Traditional multi-
ple hypothesis testing occurs when differences are
being tested on one outcome for multiple groups,
or when multiple outcome are being tested in
multiple groups. It may be practically relevant to
consider between-quantile coefficient testing as an
instance of multiple hypothesis testing. When plan-

ning for a between-quantile analysis, it is likely the
user both (a) a priori select the points in the distri-
bution that to compare and (b) choose an appro-
priate method for hypothesis testing correction
(e.g., linear step-up procedure). This will minimize
the likelihood of capitalizing on chance data fluctu-
ations when conducting these inferential tests.

Conclusions

Although the goal of this article is to introduce
the reader to quantile regression through the illus-
tration of simple and multiple regressions at one
point in time, or across multiple, it is possible to
see that conditional median modeling could illumi-
nate other types of relations beyond what has been
presented here. For example, our example of simple
linear regression with a dichotomous variable could
be extended to looking at treatment effects, evaluating
how groups may differ along the distribution of a
posttest score, yet more research is needed to
develop upon ideas of power analysis, sample size,
and effect sizes before more fully utilizing the
strengths of quantile regression in treatment studies.
In addition, it may be possible to extend these
models to account for clustering effects (Geraci &
Bottai, 2011) as well as other models that seek to
explain individual differences. In summary, we
believe that quantile regression fills a need in the
developmental and educational research fields by
providing the ability to examine correlations and
partial correlations, along with their corresponding
significance tests, as well as estimates of variance
explained, all conditional on the score of the out-
come without the potential disadvantages of divid-
ing the sample into subgroups. Combined, these
elements of the quantile regression technique make
it a powerful tool that is particularly suitable for
developmentally oriented questions.
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