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Abstract

High-throughput RNA sequencing (RNA-seq) dramatically expands the potential for novel

genomics discoveries, but the wide variety of platforms, protocols and performance has created

the need for comprehensive reference data. Here we describe the Association of Biomolecular

Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We tested

replicate experiments across 15 laboratory sites using reference RNA standards to test four

protocols (polyA-selected, ribo-depleted, size-selected and degraded) on five sequencing

platforms (Illumina HiSeq, Life Technologies’ PGM and Proton, Pacific Biosciences RS and

Roche’s 454). The results show high intra-platform and inter-platform concordance for expression

measures across the deep-count platforms, but highly variable efficiency and cost for splice

junction and variant detection between all platforms. These data also demonstrate that ribosomal

RNA depletion can both enable effective analysis of degraded RNA samples and be readily

compared to polyA-enriched fractions. This study provides a broad foundation for cross-platform

standardization, evaluation and improvement of RNA-seq.

Introduction

RNA-seq is an important analytical technique that leverages the capacity of high-throughput

sequencing instruments to quantitatively sample a population of RNA molecules with a

large number of “reads” or parallel reactions on discrete templates1,2. Depending on

experimental goals, sample types and read depths, results from RNA-seq data can be similar

or superior to those from microarray data3-5. However, each sequencing platform has unique

aspects of library synthesis, sequencing, alignment, and data processing6-9. Thus, many

questions remain about RNA-seq in regards to inter-operability between platforms, cross-

site reproducibility, bioinformatics methods and the sources of variance in results with both

existing and emerging protocols, such as those for degraded RNA.

Notably, prior work comparing microarray platforms and methods showed high levels of

inter-platform concordance for the ability to detect differentially expressed genes. The

Microarray Quality Control (MAQC) Consortium landmark study10 examined the degree of

variance within and across many different microarray platforms and found similar
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coefficients of variation between platforms. The MAQC data also provided an important

benchmark for the application of microarray technologies to clinical assays. For high-

throughput sequencing platforms, however, very little data exist about cross-site variation of

expression measures. Only two inter-site variation studies are publicly available: the

MAQC-III (a.k.a. the Sequencing Quality Control Consortium, SEQC)11 study and the

GEUVARDIS Consortium12. These studies were either limited to one platform or did not

assess some newer RNA-seq methods that are now widely used. Moreover, important RNA

profiling parameters such as differential expression and splice variant detection have not

been consistently evaluated. Thus, these studies do not answer key questions about the

degree of concordance for RNA-seq across platforms and methods and also about the read

depth, type, and length of sequence reads required to fully characterize a sample with

current techniques13-16. Moreover, RNA-seq is an extremely useful method for exploring

the expression of sequence variants, detecting novel RNAs and for discriminating between

transcript splicing isoforms17-20, but there is no “gold standard” of reference data on the

dynamic range of differential expression and splicing that includes different sample

preparation protocols, instruments and data analysis strategies.

To address this challenge, members of the Association of Biomolecular Resource Facilities

(ABRF)21 designed and conducted the first phase of a large-scale ABRF-NGS Study with a

focus on RNA-seq. The goals of the ABRF-NGS Study are to evaluate the performance of

NGS platforms and to identify optimal methods and best practices. A wide range of

variables was evaluated, including library preparation methods (polyA-enriched and ribo-

depleted), size-specific fractionation (1, 2 and 3 kb) and RNA integrity (using heat, RNase A

and sonication to degrade the RNA). The latter variable was chosen to mimic some of the

damaging effects of tissue fixation with formalin, which is a well-recognized issue for RNA

profiling of formalin-fixed, paraffin-embedded (FFPE) clinical specimens22-24. Finally, we

leveraged a data set of 18,124 PrimePCR reactions and used it with 802 previously

published10 TaqMan RT-qPCR reactions as orthogonal measurements to gauge the linear

response and dynamic range of the RNA-seq results from the different platforms and

protocols. Both platform-agnostic and platform-specific aligners were also compared to

support the validity of the conclusions. Taken together, these data represent a broad cross-

platform characterization of widely used RNA standards and to our knowledge provide the

largest comprehensive comparison of results from degraded, full-length and size-selected

RNA across sequencing platforms and protocols.

Results

Platforms, RNA samples and sequencing protocols

Although comparisons of high-throughput sequencing platforms and sample preparation

protocols have been reported in past studies6,5-27, no other study has been conducted using

five platforms and two standardized RNA samples replicated at multiple sites (Fig. 1).

Platforms evaluated included the Illumina HiSeq 2000/2500, Roche 454 GS FLX+, Life

Technologies Ion Personal Genome Machine (PGM) and Proton, and the Pacific

Biosciences RS (PacBio)6, 8, 28. Data were generated and analyzed by the members of five

ABRF Research Groups, including 25 core facilities at 20 different institutions (Fig. 1 and
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Supplementary Table 1). Additional data from an Illumina MiSeq v2 instrument were used

to compare metrics derived from different read lengths from the same Illumina library

preparation and sequencing methods. Detection of differential RNA abundance was

evaluated using two commercially available and very distinct RNA samples: A = RNA from

cancer cell lines; B = RNA from pooled normal human brain tissues; and two pre-defined

mixtures of these samples (C = [75% A + 25% B]; D = [25% A + 75% B]). All standardized

RNA samples also contained synthetic RNA spike-ins from the External RNA Control

Consortium (ERCC)10, 29, 30. Results from high-quality RNA on the Illumina HiSeq 2500

platform were compared to results on the same platform from RNAs degraded using three

degradation conditions: heat, RNase and sonication. The RNA reference samples were

degraded to a RIN (RNA integrity number) of 2 or less. In addition, results from ribosomal

RNA-depleted and polyA-enriched libraries from intact RNA were compared using the

Illumina HiSeq 2500 platform.

To map the sequencing reads to the human genome (hg19), we used both vendor-

recommended alignment algorithms and ‘universal,’ platform-agnostic aligners. For gene

expression quantification, the following aligners were evaluated: STAR31 (agnostic),

ELAND (HiSeq), TMAP (PGM and Proton), GSRM (454) and GMAP (PacBio). With the

exception of ELAND, each platform-specific algorithm produced better mapping rates,

gene-body coverage evenness and Spearman correlations with PrimePCR quantification

(Supplementary Tables 2–4) when compared to STAR applied uniformly across all

platforms. However, the universal STAR alignments were used as input for shared junction

detection (Supplementary Table 5), since these alignments always showed the lowest

mapping error rate (Fig. 1). After mapping, additional processing for quantifying gene

counts was performed using the open source r-make package (http://

physiology.med.cornell.edu/faculty/mason/lab/data/r-make, and Online Methods) to

calculate the reads and coverage for each gene feature based on GENCODE (v12)

annotation. Quality control data were generated using the fastQC package

(www.bioinformatics.babraham.ac.uk/projects/fastqc) to calculate a large set of performance

metrics for sequence quality, gene coverage and transcriptome quantitation and

characterization for all platforms (Fig. 1 and Supplementary Figs. 1–23).

Base qualities, data quality and duplicate rates

Quality Values (QV, a per base accuracy estimate) were calculated for all sample runs, for

pre-alignment measures (Supplemental Figs. 1–6) and post-alignment measures (Fig. 1b).

Results ranged from Q10 (90% accuracy) to Q60 (99.9999% accuracy) across platforms

(Supplementary Figs. 1–6) and revealed three notable trends. First, most platforms show a

biased QV distribution in the first 1–16 bases, a known effect from the reverse transcriptase

(RT) priming step32. This RT bias can also affect the observed GC content (Supplementary

Figs. 7–11) and base-frequency data11,33, 34 (Supplementary Figs. 12–17). Second, similar

QV profiles were observed for samples A and B, and across different RNA size fractions.

Third, although changes in library preparation techniques and sequencing chemistry for

various platforms can affect the QVs, the largest increase in QVs came from the circular

consensus sequencing (CCS) for the PacBio data (Supplementary Fig. 2), where median

QVs near 40 were observed, though with a wide range of variation. Thus, for most
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platforms, the ends of the reads are where most “noise” was observed, but lower QVs also

occurred at the beginnings of the reads. This results in a source of bias and noise for RNA-

seq data that appears in all platforms and is usually addressed by appropriate sequence

trimming.

The QVs for each base of a read, as well as the read length, alignment method and reference

sequence quality, can all affect mapping accuracy. To estimate the platform-specific and

aligner-specific impact of the sequencing error rate on alignment, we calculated the number

of mismatches relative to the hg19 human reference genome, normalized by total mapped

bases, for two aligners for each platform (Fig. 1b). These data showed that a tradeoff

between higher mapping rate and accuracy can occur for RNA-seq, such as the increased

mapping rate with TMAP/GSRM vs. STAR (Supplemental Table 2) that led to a higher

empirically derived error rate (Fig. 1b). The most common type of mismatch for HiSeq was

single-base substitutions, but the range between all platforms spanned 0.6–7.1%. Insertion/

deletion (indel) type mismatch rates were also highly variable between platforms, spanning

0.017–4.4% of all mismatches observed. Moreover, for all platforms, the reported QVs were

higher than the empirically derived QVs based on sequence mismatches, similar to the QV-

inflation observed for DNA sequencing in the 1000 Genomes Project and GATK35, 36.

Previous work in RNA-seq has noted that duplicate reads may be a confounding factor in

data analysis because reads with exactly the same start and end may arise from clonal copies

produced during library amplification rather than from independently transcribed RNAs in

the biological sample8, 33. However, unlike DNA sequencing of large diploid genomes,

RNA-seq is expected to produce some reads from highly expressed transcripts that begin at

the same nucleotide and are thus designated “duplicate.” An assessment of this question

over a range of read lengths has not been previously reported, but is facilitated in this study

by RNA-seq of the same samples over a range of varying read lengths (Supplementary Figs.

19–23). The read length distributions revealed distinct types for variable-read platforms,

including Gaussian (454) and “ski-jump” (Proton and PGM), and the expected uniform

lengths for Illumina platforms. Yet, all platforms showed no more than 51% of reads as

putative duplicates (Supplementary Fig. 24), with the 454 and PacBio platforms showing the

fewest duplicates (12–20%). PacBio library construction does not include any amplification

step of the final cDNA library, while the reduced duplication with 454 is likely because the

amplification step takes place after template attachment to single beads, so individual

molecules in the library have less chance to spawn multiple reads. For the other platforms,

this analysis cannot distinguish whether observed duplicates are due to independent

transcripts or are a consequence of library amplification, but future datasets based on these

same samples will support investigation of this question.

Coverage of genes

Next we examined the normalized coverage of all GENCODE gene transcripts from 5′ to 3′

termini for any bias in the number of mapped bases originating from different regions of the

transcripts. Almost all samples showed a fairly similar distribution of coverage for genes

(Fig. 2). Notably, the ribo-depleted RNA samples, whether degraded or not, consistently

showed more-uniform gene coverage than did polyA-selected libraries. The data also
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showed “banding” or altered coverage distributions, likely caused by the use of a different

library kit version at one of the test sites (C). This indicates that gene coverage can be

affected by platform and preparation-dependent factors, but aligners can also play a role

(Supplementary Table 3). Finally, the highest and most-uniform coverage of full-length

transcripts came from preparing samples with enrichment for both the 3′ polyA tail and an

antibody (Ab) for the 5′ methylguanylate cap (5′G cap), combined with long-read

technology (see Online Methods for Pacific Biosciences).

Transcriptome profiling and splice junction detection

We investigated the ability of each platform to reproducibly detect and quantify genes and

splice junctions across the transcriptome (Fig. 3). Data were restricted to genes that were

observed at all test sites and in all technical replicates for each platform. The platforms

showed a median range of 11–39% inter-site CV (Coefficient of Variation) in their

quantification of detected genes using normalized gene expression values (Fig. 3a,

Supplementary Methods), with HiSeq showing the lowest median CV. The Spearman

correlations of normalized transcript levels were measured for samples A and B on different

platforms (454, HiSeq, Proton and PGM) across multiple sites for Figure 3b; PacBio was not

included because it displayed an (expected) low read count for many genes. The inter-

platform correlation was high (R2 average of 0.83) for the same samples profiled on

different platforms, and the intra-platform correlation was even higher (R2 average greater

than 0.86). Each platform was also compared to normalized expression data from an

orthogonal quantitation method (PrimePCR, Supplementary Fig. 25), and the Spearman

correlations of the log2 fold differences were ranked as 454 < PGM < Proton, HiSeq,

ranging from 0.83 to 0.89.

Next we examined the impact of read depth and length on transcript identification. A clear

log-linear relationship was observed between sequence base depth and gene detection (Fig.

3d), showing that increasing the depth of sequencing for any platform is a quick means to

find more genes. Characterizations of splice junction detection efficiency and inter-platform

agreement have not been previously reported, so to account for each platform’s different

read lengths, the effect of total sequenced base depth (rather than read count) was examined

for previously annotated and new, unannotated splicing. Splice junction profiling showed an

early plateau for detection of known junctions (Fig. 3e). The Proton, PGM and 454

platforms detected more known junctions despite fewer bases sequenced compared to

Illumina HiSeq. However, a follow-up experiment with long-read Illumina MiSeq data

(2×250 bp paired-end reads) showed a similar boost in junction identification

(Supplementary Fig. 26), suggesting that splice junction detection is most affected by read

length, rather than library preparation or sequencing chemistry. The ratio of the number of

junctions detected as a function of total bases sequenced (junctions/Mb) revealed a wide

range of values (Fig. 3f) but clearly demonstrated that longer reads are a more efficient way

to capture junctions. This is reflected in the data from the long-read platforms and also in the

comparison of the number of junctions detected in the Illumina HiSeq vs. MiSeq data from

two aliquots of the same library (22.6 junctions/Mb for HiSeq vs. 33.9 junctions/Mb for

MiSeq, Supplemental Fig. 26).
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We also characterized the inter-platform agreement of known and novel junctions. The

known GENCODE junctions (v12) showed higher inter-platform agreement, with most of

these junctions detected by three or more platforms (Fig. 3g, left panel). However,

unannotated junctions have lower concordance than known junctions across platforms (Fig.

3g). An examination of these rare isoforms revealed that the lower detection agreement is

likely due to their lower expression levels (Supplementary Fig. 27), but they also may

represent platform-specific artifacts. Therefore, only unannotated splice junctions observed

on at least three platforms (which still includes >20,000 junctions per sample) are reported

in this analysis.

These cross-platform splicing data showed that the types of reads dramatically influenced

each platform’s measure of low abundance transcripts. This effect was apparent for RNA

splice isoforms such as SRP9 (Fig. 4a), suggesting that rare-isoform quantification benefits

the most from greater read depths (such as from the Illumina HiSeq and Life Technologies

Proton). However, uniformity of coverage across exons is improved with long-read

technology such as PacBio (Fig. 4a and Supplementary Table 3), despite less read depth. An

examination of the size-selected PacBio CCS libraries demonstrated that the polyA+5’G cap

enrichment method captured the full lengths of expressed transcripts (Supplementary Fig.

28), with the majority (90%) showing complete transcript sequences in the 1–2 kb range or

even longer. These results indicate that a combination of appropriate sample preparation and

long reads can readily create cDNA profiles that approach the full-length sequences of

mRNAs from complex samples, underlining the utility of long read platforms, despite the

lower read depths they may produce37.

To examine the ability of each platform to detect differentially expressed genes (DEGs)

(Fig. 4b, Supplementary Figs. 29–31), we used limma-voom38 to perform DEG analysis on

the normalized counts for each platform. Although a majority of DEGs were observed by

two or more methods, each produced unique DEGs at all statistical significance and fold-

change cutoffs (Supplementary Figs. 30, 31). Thus, although high read–depth platforms

showed greater DEG overlap, each platform produced unique subsets (from unique

systematic effects) of statistically significant DEGs (FDR < 0.05, fold change > 2, Online

Methods), ranging from 6–11% of all called DEGs detected uniquely by a platform or

preparation method (Fig. 4b, peripheral sets). These instruments span different chemistries,

measurement techniques (optical vs. electrical) and base-calling methods, all of which likely

play roles in the system-specific noise profiles, as noted in Figures 1–3 and Supplementary

Figures 1–24.

Influence of library preparation on transcriptome profiles

To examine other factors that affect DEG measurements, we prepared libraries using both

polyA enrichment or ribosomal RNA depletion of the standard samples, and then performed

sequencing on the same Illumina HiSeq 2500 instrument. Identical aliquots of the standards

(A, B, C and D) were separated into quadruplicate sets for library preparation. All replicate

libraries were then sequenced in a multiplexed assay on a full Illumina flow cell. The ribo-

depletion library method produced a read source distribution very different from the polyA

preparation method (Fig. 5a). The ribo-depleted libraries showed 40–47% of the bases

Li et al. Page 7

Nat Biotechnol. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



mapping to introns vs. 7–12% for polyA RNA from the same sample (lower intronic reads

were similarly observed for polyA RNA on the other platforms, Supplementary Fig. 32).

Both methods produced fairly consistent measures of RNA abundance (FPKM, Online

Methods), with a median FPKM difference of only 0.055 between all genes. However, more

genes with lower levels of expression were observed with the ribo-depletion method,

whereas the polyA libraries contained more highly expressed genes and 3′ untranslated

regions (3′ UTR) Supplementary Fig. 33). As expected, the ribo-depleted libraries were

enriched for non-coding RNAs, such as lncRNAs and snoRNAs (Supplementary Table 6),

whereas the polyA libraries were enriched for protein-coding genes and mitochondrial genes

(Supplementary Tables 6–8)39. Sequence annotations in GENCODE currently labeled as

“intron” and other categories are likely to change as new non-coding RNAs (or new

transcript classes) are identified.

Yet, few overall differences were observed between the polyA and ribo-depleted library

preparations in gene quantification and detection of differentially expressed genes. Both data

sets were evaluated using alignments from STAR and DEG calculations from limma-

voom38, and surrogate variable analysis (SVA) was applied for the detection of latent

variables (Online Methods)39. A pairwise comparison of the average normalized gene

expression across replicates of the two library types for the four standard samples showed

high Spearman correlation coefficients (sample A: 0.91, B: 0.93, C: 0.92, D: 0.93). The

overall numbers of DEGs detected between the biologically distinct samples (A vs. B, A vs.

D, etc.) were also consistent between library preparation methods (Fig. 5b, 5c). These DEG

data were then compared to results from 802 TaqMan assays for these same RNA samples

(GEO dataset GSE5350)10. Both library types had similar accuracy as measured by

Matthews correlation coefficient (MCC, Fig. 5d)40, 41, which is a joint measure of the

assay’s sensitivity and specificity. The corresponding DEGs without SVA analysis show

similar but slightly lower overlap percentage and MCC (Supplementary Fig. 33). The

median MCC is 0.659 before SVA and 0.678 after SVA, with an average increase of 0.015.

Also, the percentage of shared DEGs ranges from 67– 81% at FDR < 0.01 and fold-change

> 2, and similarly ranges from 68–81% after SVA. However, the synthetic RNAs spiked into

these samples (ERCC controls) performed slightly better in the ribo-depletion protocol than

the polyA-enrichment protocol (mean R2 = 0.91 and 0.82, respectively), although these

ranges of correlation to TaqMan were similar to that observed for ERCCs sequenced on the

PGM, where the mean R2 = 0.78 (Supplementary Figs. 34, 35).

Impact of RNA degradation on transcriptome profiling

As polyA and ribo-depleted gene quantifications were similar, we sought to test the effect of

ribo-depletion on “low quality” or degraded RNAs. The reference samples A and B were

degraded using heat, sonication or RNase-A until all samples showed a high level of

degradation when evaluated on the Agilent Bioanlyzer 2100 (RIN≤2.0, Online Methods).

Samples were ribo-depleted before library preparation and sequenced on the HiSeq platform

at multiple sites. Multiple metrics indicated that the degraded RNA performed as well as the

polyA-enriched or ribo-depleted libraries from intact RNA. First, sequencing of the

degraded RNA, after ribo-depletion, fully covered the gene bodies (Fig. 2) and, similar to

ribo-depleted libraries from intact RNA, more reads mapped to intronic areas of the genome
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(Supplementary Fig. 32). Second, the degraded RNA showed minor differences in gene

detection or DEG accuracy, with high Spearman correlation (R2 >0.96, Fig. 3c) in

expression comparisons to intact RNA samples. In addition, a comparison to the orthogonal

PrimePCR dataset showed that the degraded RNA analysis was highly correlated (Pearson

R2 >0.83) to the corresponding intact samples (Supplementary Table 4). However, the

degraded RNA did have a lower Spearman rank-order correlation with quantitative PCR for

the expression differences detected between samples A and B. The Spearman correlation

was highest for heat degradation (R2 = 0.83, AH), followed by RNase A (R2= 0.79, AR), and

then sonication (R2=0.74, AS) (Supplementary Figs. 36a–c). Comparison of the results from

one degraded sample to the results from one intact sample, repeated at multiple laboratories

(sites L, V and R), also produced an overall high average Spearman correlation coefficient

(0.80, Supplementary Fig. 36d). These data indicate that although appropriate library

preparation of degraded RNA can produce accurate expression measurements

(Supplementary Fig. 36), but mixing intact and degraded samples (or samples degraded

during different types of tissue processing) should be avoided.

Discussion

This ABRF-NGS Study represents, to our knowledge, the largest reported cross-platform,

cross-protocol, and cross-site examination of RNA-seq data performed to date. The results

provide a unique opportunity to examine various aspects of the transcriptome, including the

intra- and inter-site coefficients of variance of gene detection, gene expression quantification

and RNA splicing between sequencing platforms, as well as the ability of long read lengths

to enable complete isoform characterization. Comparisons of platform-specific aligners with

STAR showed that mapping rates, error rates and transcript coverage are larger concerns

when considering inter-platform data than is gene quantification. As such, the use of

different alignment algorithms will have different influences on comparisons between

experiments depending on the metric studied, and the importance of ‘bioinformatics noise’

can be placed alongside technical and biological noise as key factors in experimental design.

Finally, the results expanded previous work26 by showing that gene detection and

quantification with highly fragmented or degraded RNA samples (from three types of

degradation) is strikingly similar to intact RNA, once ribosomal RNA is removed.

This study found similar RNA-seq results between the various NGS platforms and similar

ranges in coefficients of variance across lab sites for each platform. These results indicate

that both long- and short-read technologies measure gene expression with similar levels of

statistical variation, although they show a ten-fold variation for error rates in indels. Using

normalized gene expression as a comparison measure, we found high intra-platform

consistency (R2>0.86) and high inter-platform concordance (R2> 0.83) measured by

Spearman rank correlation (Fig. 3b). However, the results clearly show that deeper

sequencing of the transcriptome is needed to reveal low abundance transcripts and splice

junctions, indicating that read depth should be a key consideration when experimental goals

include rarely expressed genes, coverage of introns and non-polyadenylated targets. Very

deep sampling is not currently cost-effective with long-read platforms such as PacBio or 454

(Table 1), and thus the best discovery platforms for low-abundance targets are currently the
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shorter read platforms, as they can cover wider dynamic range of RNA molecules (i.e.,

generate more reads per sample).

Despite lower read depths and higher costs, the longer read NGS technologies have the best

ability to efficiently catch the vast majority of known splice junctions (Fig. 3d–g), indicating

that they can be an effective means to annotate splicing complexity. The ABRF-NGS

Study’s results include a wealth of putative novel splice junctions, with more than one

million such junctions observed in at least one platform (Gene Expression Omnibus

GSE46876). These putative novel splice junctions displayed greater inter-platform disparity

than the known splice junctions (Fig. 3e). This difference was likely due to the challenge of

correctly predicting novel isoforms and also to the possibly high false-positive rate of such

predictions, which is expected given their lower expression levels. However, a substantial

number of the previously unannotated, predicted junctions are likely genuine, as they were

observed using multiple platforms. The resulting data sets nearly double the catalog of splice

junctions for these RNA standard samples. The junctions discovered on multiple platforms

can be used alone or with previous data for future algorithm design and assay optimization,

and as positive controls, to advance splicing isoform characterization by RNA-seq14, 42-44.

Perhaps most notably, the data demonstrated that results from polyA-enriched and ribo-

depleted RNA libraries, and even libraries made from severely degraded RNAs, are

comparable. Given sufficient depth of sequencing, results from ribo-depleted libraries can

include almost all of the differentially detected genes identified by the polyA preparation

method, without loss of sensitivity or specificity. This was evident not only in the overlap of

DEGs, but also in comparisons to TaqMan and PrimePCR data. Furthermore, a near-

complete reconstruction of the transcriptome profile was observed when using degraded

RNA in the ribo-depletion protocol, with some variation between degradation treatments, as

judged by correlations to the expression abundances measured in intact samples A and B by

quantitative PCR and by the uniform coverage of full transcript lengths. Similar degraded

RNA results were recently reported26, suggesting that low quality samples can now be

considered for reliable RNA-seq expression profiling. This should support studies using old,

degraded or fragmented RNAs, such as those from formalin-fixed, paraffin-embedded

(FFPE) tissues in clinical archives. Although the degraded RNA samples were run only on

the HiSeq platform, the clear utility of such an approach should spur the development of

similar degraded RNA resources for analyses on all sequencing platforms.

However, despite their overall similarities, distinct transcriptomes are represented in

libraries prepared by polyA enrichment, ribo-depletion or combined polyA and 5′G cap

enrichment. The dual enrichment method for PacBio libraries provided superior 5′ to 3′

coverage of the sequenced transcripts, as illustrated by comparisons across platforms for

genes consistently detected by PacBio (Supplementary Fig. 37). The revised version of the

Illumina library kit (v2 vs. v3) includes built-in ribo-depletion and tags cDNA strand

orientation, and the two protocols produced differences in gene-body coverage. A

comparison of polyA and ribo-depleted libraries showed different detection of

nonpolyadenylated transcripts, 3′UTRs and introns. The former is an intentional

consequence of the enrichment protocol, but it is not clear if the 3′UTR coverage bias is due

to different efficiencies of priming during reverse transcription or to skewed sampling
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caused by a higher concentration of structural and non-coding RNAs in ribo-depleted

libraries. Owing to the higher rate of intron-mapped reads, RNA-seq of total RNA will

require greater read depths for ribo-depleted libraries (~2.5X) than for polyA libraries to

achieve equal coverage of exons. Transcriptome measurement variations demonstrated

between the reference datasets are easily avoided by consistently using the same protocols,

platform, and analysis pipeline for all samples in an experiment. Nonetheless, if this is not

possible, surrogate variable analysis enabled removal of latent variables from the data for

ribo-depleted and polyA-enriched libraries, producing nearly indistinguishable lists of DEGs

and illustrating the utility of surrogate variable analysis as a powerful and strongly

recommended method for ameliorating the effects of inter-batch and cross-protocol noise.

The results presented here also highlight additional variables that should be considered when

aligning library protocols and platforms with research goals. The reported QV values of all

platforms are all higher than empirically derived error rates, indicating that a splicing-aware,

base quality score recalibration may be needed for RNA-seq, as is already done for DNA-

seq with GATK. Long-read sequencing effectively cataloged splicing isoforms, but had less

dynamic range for transcript quantitation and discovery due to lower read depths. The use of

the ERCCs is generally recommended as a good QC metric check, but these standards

performed better in ribo-depleted libraries than in polyA libraries, and this should also be

considered during experimental design. In summary, the priorities for biological

interpretation are essential when considering the protocols and methods that will be used in

an RNA-seq experiment. Some of these priorities are summarized in Table 1, which

provides a cross platform summary of the strengths and relative costs of the sequencing

technologies included in this study.

The ABRF-NGS Study is not intended to be a “bake-off” between NGS platforms, but rather

is an effort to establish a useful reference data set for each platform which will assist

laboratories in improving their methods and in evaluating new chemistries, protocols and

instruments. It is encouraging that comparison of gene expression quantification, including

results from intra-platform, inter-platform, inter-protocol and even inter-aligner

comparisons, demonstrated high correlations overall. This result suggests broader inter-

study analyses and data mining can be successfully carried out across multiple platforms

despite intrinsic differences between technologies, methods and aligners.

Reference data resources, such as the results from this ABRF-NGS Study, are key to

understanding the effects of variable sample quality, changes to platform protocols and the

adoption of new technologies. Given the rapid pace of advancement in sequencing

technologies, techniques and bioinformatics tools, the methods and data described here can

facilitate the development of best practices for gene quantification, isoform characterization,

dynamic range comparisons, managing inter-site and intra-site variation, analysis pipeline

refinement, and cross-platform testing of transcriptome hypotheses. These data can also be

used to address other aspects of RNA-seq, including polymorphism detection, allele-specific

expression, intron retention, RNA editing and gene fusions, and provide an immediately

useful resource that can complement current databases, such as the RNA-Seq Atlas45. These

and other applications, especially clinical molecular diagnostics that rely on nucleic acid

biomarkers, will require a level of technical stability across time and both within and
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between studies, which this study helps to establish. Reference data resources are key to

monitoring platform stability, and widespread adoption of standard samples and routine

reference benchmarking are challenges that must be addressed to advance genomics

technologies further.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design and sequencing platforms
(a) Two standard RNA samples (A = Universal Human Reference RNA and B = Human

Brain Reference RNA) were combined with two sets of synthetic RNAs (ERCCs) to prepare

a set of samples to be sequenced on five platforms: Illumina (ILMN) HiSeq 2000/2500, Life

Technologies Personal Genome Machine (PGM), Life Technologies Proton (PRO), Pacific

Biosciences (PacBio) RS (PAC), and the Roche 454 GS FLX+. Additional RNA samples

were also generated: samples C and D were prepared as defined mixtures of A and B, while

other aliquots of A and B were degraded by three methods. All these additional samples

were ribo-depleted for RNA-seq on the HiSeq platform. The number of technical replicates

(x2, x3 or x4) of each sample set is indicated for each platform and method. (b) Stacked bar

plots of the sequencing platforms’ mismatch rates (y-axis) for single-base mismatches

(white) and insertions/deletions (indels, grey) based on different aligners for each platform

(x-axis). Q10 (90% accuracy) and Q20 (99% accuracy) are shown as the top and bottom

line, respectively.
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Figure 2. Transcript coverage across all genes detected
Each gene was examined as a set of 100 adjacent segments (percentiles of total transcript

length). The relative number of reads that map to each segment was then plotted for each

sample, platform, and technique (percent of all library reads per segment, see heatmap color

key). Samples are categorized by five parameters (top): NGS platforms: Roche 454 GS FLX

+, Illumina HiSeq 2000/2500, Pacific Biosciences RS, Life Technologies PGM and Proton;

input RNA sample: samples A (red), B (blue), C (green), and D (purple); RNA type: intact

or degraded by heat (H, blue), RNase (R, green) or sonication (S, purple); library protocol:

polyA enrichment, ribosomal RNA depletion (ribo) or polyA plus 5′ cap enrichment with (1,

2, 3) or without (4) size fractionation; and site: 14 core facility sequencing laboratories.

Most platforms showed less coverage at the 5′ and 3′ ends of the transcripts. Details on

sequencing platforms, site abbreviations, sample type chemistries, and library preparations

are listed in Table 2.
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Figure 3. Intra- and inter-platform variation of RNA-seq transcript metrics
The coefficients of variation (CV) of various metrics for transcripts detected across all sites

were calculated for the Roche 454 GS FLX+, Illumina HiSeq 2000/2500 (ILMN), Pacific

Biosciences RS (PAC), and Life Technologies PGM and Proton (PRO). (a) Inter-site CV of

normalized gene expression for transcripts detected across all sites. The median CV for

number of genes detected ranged from 10.70-38.68%, with many outlier genes present for

each platform. (b) Inter-platform and intra-platform normalized gene expression Spearman

correlation coefficients for samples A and B. (c) The degraded RNA profiles match the

corresponding intact RNA profiles from HiSeq RNA-seq with very high correlation

coefficients (0.975). Error bars are standard error of the mean. (d-e) Sequenced bases

(log10) were plotted against the number of detected genes or the number of detected splice

junctions for known GENCODE junctions. (f) More efficient splice junction detection (y-

axis, number of junctions/Mb of sequence) was observed for long read platforms (PAC,

454). Detection efficiencies were calculated at comparable scales by constraining the total

number of bases used from each platform to a range of 630-5451 × 106. (g) Most known

junctions were detected by three or more platforms, indicating concordance among RNA-

seq methods (left panel). The novel junctions (right) defined by independent observation on

three or more platforms were less numerous than known junctions.
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Figure 4. Inter-platform consistency of splicing and differential expression analysis
(a) As a representative plot for RNA splicing, transcripts from the SRP9 gene are shown in a

sashimi plot across five platforms and two Illumina library protocols. Pacific Biosciences

(PAC), Roche 454 (454), and Life Technologies Ion PGM (PGM) detected the two most

abundant isoforms. Life Technologies Proton (PRO) and Illumina ribo-depletion (RIBO) or

polyA-enriched (POLYA) methods also detected a third isoform. PAC showed more

uniform sequencing depth across the gene body. Read coverage as measured by the range of

19-1537 (coverage) is indicated in brackets. (b) Starting from the set of genes detected at

any expression level on all platforms, the numbers of A vs. B differentially expressed genes

uniquely or repeatedly detected at statistically significant thresholds (FDR <0.05 and fold

change >2) are shown; sets of greater than 1000 genes are indicated in red, 100-999 in

yellow.
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Figure 5. Differentially expressed genes in ribo-depleted and polyA-enriched libraries
(a) The percentage of reads that map to various gene sequence categories was plotted. A

greater number of intronic reads from ribo-depleted libraries was observed. The sequence

type and read distribution of gene features detected in polyA-enriched and ribo-depleted

libraries from the same sample were examined using GENCODE (v12) annotations.

Mitochondrial RNA reads are present at trace levels (<0.1%, data not shown). (b)

Differentially expressed genes (DEGs) were detected in all pairwise comparisons of the

original (A, B) and mixed samples (C, D); (c) results were similar for both library types

from the common set of detected genes at all fold-change (FC) and false discovery rate

(FDR) thresholds tested. (d) Both library types show similar accuracy as evidenced by

Matthews Correlation Coefficients (MCC) with RT-qPCR assays (see Suppl. Fig. 29b for

expanded data). A subset of GENCODE mapped reads was used from each library (mean =

37.6 million reads, S.D. = 2.07 million per replicates) to ensure the same number of exon-

mapped reads per sample was compared between all replicates.
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Table 2

Sequencing platforms, chemistries and library preparations.

Illumina Hiseq2000/2500 and MiSeq

Labs Samples
Libraries

per
Sample

Preparation Read Length
Number of
Reads per

Library

Output
(Mb)

1(L)
MAQC A 1 3 Ribo-depleted 100 bp (2 x 50) 386,726,967 38,673

MAQC B 1 3 Ribo-depleted 100 bp (2 x 50) 251,724,566 25,172

2(R)

MAQC A 1 3 Ribo-depleted 100 bp (2 x 50) 229,131,233 22,913

MAQC B 1 3 Ribo-depleted 100 bp (2 x 50) 229,591,730 22,959

MAQC B 1 1 Ribo-depleted 500 bp (2 x 250) 7,848,217 3,924

3(V)
MAQC A 1 3 Ribo-depleted 100 bp (2 x 50) 207,603,620 20,760

MAQC B 1 3 Ribo-depleted 100 bp (2 x 50) 239,930,780 23,993

4(N)

MAQC A 1,3 2 Ribo-depleted 100 bp (2 x 50) 215,903,801 21,590

MAQC B 1,3 3 Ribo-depleted 100 bp (2 x 50) 219,257,190 21,926

MAQC A 1,4 1 Ribo-depleted 100 bp (2 x 50) 183,811,383 18,381

5(M)
MAQC A 1,4 3 Ribo-depleted 100 bp (2 x 50) 386,726,967 38,673

MAQC A 1,5 3 Ribo-depleted 100 bp (2 x 50) 181,740,643 18,174

6(W)

MAQC A 2 4 Ribo-depleted 100 bp (2 x 50) 128,133,887 12,813

MAQC B 2 4 Ribo-depleted 100 bp (2 x 50) 137,096,343 13,710

MAQC C 2 4 Ribo-depleted 100 bp (2 x 50) 142,135,538 14,214

MAQC D 2 4 Ribo-depleted 100 bp (2 x 50) 128,040,437 12,804

MAQC A 2 4 polyA-enriched 100 bp (2 x 50) 106,762,840 10,676

MAQC B 2 4 polyA-enriched 100 bp (2 x 50) 111,430,017 11,143

MAQC C 2 4 polyA-enriched 100 bp (2 x 50) 108,582,900 10,858

MAQC D 2 4 polyA-enriched 100 bp (2 x 50) 105,978,082 10,598

Life Technologies Ion Torrent PGM and Proton

Labs Samples6 Libraries
per Sample Preparation7

Median
Read

Length

Mean
Number of

Reads

Output
(Mb)

1(P) Ion
PGM

MAQC A 2 polyA-enriched 161 5,323,672 857

MAQC B 2 polyA-enriched 184 5,802,563 107

ERCC 1 1 polyA-enriched 189 4,188,385 792

ERCC 2 1 polyA-enriched 158 3,231,475 511

ERCC 1 1 polyA-enriched 180 4,442,093 800

ERCC 2 1 polyA-enriched 189 4,310,663 815
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Life Technologies Ion Torrent PGM and Proton

Labs Samples6 Libraries
per Sample Preparation7

Median
Read

Length

Mean
Number of

Reads

Output
(Mb)

2(H) Ion
PGM

MAQC A 3 polyA-enriched 128 3,374,068 445

MAQC B 3 polyA-enriched 129 3,409,662 436

ERCC 1 2 polyA-enriched 152 2,538,594 810

ERCC 2 2 polyA-enriched 112 2,119,884 514

VL A 1 polyA-enriched 187 3,965,022 770

VL B 1 polyA-enriched 162 4,138,326 687

3(S) Ion
PGM

MAQC A 3 polyA-enriched 198 5,049,998 1,000

MAQC B 3 polyA-enriched 199 5,743,028 1,140

ERCC 1 1 polyA-enriched 206 6,835,287 1,410

ERCC 2 2 polyA-enriched 207 7,119,023 1,480

ERCC 1 1 polyA-enriched 182 6,525,478 1,190

ERCC 2 1 polyA-enriched 191 5,490,495 1,050

4(S) Proton
MAQC A 3 polyA-enriched 78 50,063,784 3,900

MAQC B 3 polyA-enriched 85 53,203,028 4,497

5(B) Proton

MAQC A 1 polyA-enriched 95 57,701,947 4,864

MAQC B 1 polyA-enriched 75 39,099,605 2,946

MAQC C 1 polyA-enriched 64 41,308,206 6412,641

MAQC D 1 polyA-enriched 53 46,665,851 3,160

6(L) Proton

MAQC A 1 polyA-enriched 99 60,106,614 5,978

MAQC B 1 polyA-enriched 100 60,769,231 6,085

MAQC C 1 polyA-enriched 107 60,353,696 6,454

MAQC D 1 polyA-enriched 106 69,977,984 7,413

Pacific Biosciences RS

Labs Samples
Libraries per
Sample: Size
Fractionation

Preparation8
Avg.
Read

Length
Reads/Mb Output

(Mb)

1(A)

MAQC A 1: >3 kb polyA + 5'G cap 3,983 251 663

MAQC A 1: 2-3 kb polyA + 5'G cap 3,513 284 520

MAQC A 1: 1-2 kb polyA + 5'G cap 2,811 356 780

MAQC B 1: >3 kb polyA + 5'G cap 3,467 288 536

MAQC B 1: 2-3 kb polyA + 5'G cap 3,223 310 459

MAQC B 1: 1-2 kb polyA + 5'G cap 3,112 321 638

2(F)

MAQC A 1: >3 kb polyA + 5'G cap 3,472 288 634

MAQC A 1: 2-3 kb polyA + 5'G cap 3,644 274 555

MAQC A 1: 1-2 kb polyA + 5'G cap 2,792 358 927

MAQC A 1: unfractionated polyA + 5'G cap 2,832 353 260

MAQC B 1: >3 kb polyA + 5'G cap 3,578 280 667

MAQC B 1: 2-3 kb polyA + 5'G cap 3,523 284 594
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Pacific Biosciences RS

Labs Samples
Libraries per
Sample: Size
Fractionation

Preparation8
Avg.
Read

Length
Reads/Mb Output

(Mb)

MAQC B 1: 1-2 kb polyA + 5'G cap 2,844 351 991

MAQC B 1: unfractionated polyA + 5'G cap 2,814 355 251

3(H)

MAQC A 1: >3 kb polyA + 5'G cap 3,201 312 528

MAQC A 1: 2-3 kb polyA + 5'G cap 3,135 319 344

MAQC A 1: 1-2 kb polyA + 5'G cap 2,761 362 767

MAQC A 1: unfractionated polyA + 5'G cap 2,998 334 477

MAQC B 1: >3 kb polyA + 5'G cap 3,189 314 572

MAQC B 1: 2-3 kb polyA + 5'G cap 2,952 339 383

MAQC B 1: 1-2 kb polyA + 5'G cap 2,779 360 660

MAQC B 1: unfractionated polyA + 5'G cap 3,069 326 395

Roche 454 FLX

Labs Samples Libraries
per Sample Preparation9

Median
Read

Length

Total Reads per
PicoTiterPlate

Output
(Mb)

1(I)

MAQC A 1 polyA-enriched 520 1,061,320 552

MAQC B 1 polyA-enriched 494 1,001,678 495

MAQC A 1 polyA-enriched 497 805,399 400

MAQC B 1 polyA-enriched 496 1,076,634 534

2(P)
MAQC A 1 polyA-enriched 455 832,580 379

MAQC B 1 polyA-enriched 470 1,181,610 555

3(C)
MAQC A 2 polyA-enriched 505 1,294,497 654

MAQC B 2 polyA-enriched 358 293,471 105

1
Illumina RNA TruSeq v2 library kit,

2
Illumina RNA TruSeq v3 library kit,

3
RNaseA degraded,

4
heat degraded,

5
sonicated

6
ERCC: synthetic standards only (External RNA Control Consortium); VL: pilot data for sample A or B;

7
Ion Total RNA-Seq v2 library kit

8
PacBio Large Insert Template Prep Kit

9
Roche cDNA Rapid Library kit
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