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Abstract

The Computational Analysis of Novel Drug Opportunities (CANDO) platform (http://protinfo.org/

cando) uses similarity of compound–proteome interaction signatures to infer homology of

compound/drug behavior. We constructed interaction signatures for 3733 human ingestible

compounds covering 48,278 protein structures mapping to 2030 indications based on basic science

methodologies to predict and analyze protein structure, function, and interactions developed by us

and others. Our signature comparison and ranking approach yielded benchmarking accuracies of

12–25% for 1439 indications with at least two approved compounds. We prospectively validated

49/82 ‘high value’ predictions from nine studies covering seven indications, with comparable or

better activity to existing drugs, which serve as novel repurposed therapeutics. Our approach may

be generalized to compounds beyond those approved by the FDA, and can also consider mutations

in protein structures to enable personalization. Our platform provides a holistic multiscale

modeling framework of complex atomic, molecular, and physiological systems with broader

applications in medicine and engineering.

Introduction

Living systems and their biomolecules are well understood by atomic modeling of their

structural chemistry [1–3], which has led to a profound revolution in the digitalization of

biological systems [4–6]. These digitized systems are being catalogued in online databases,

analyzed and modeled computationally primarily by inference of homology with the known

experimental counterparts. In turn, the simulations of biological systems [7–10] can be
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connected to cells, tissues and biomolecules in the real world through advanced chemical

synthesis and biological hardware [11]. Such digitalization of biology is likely to have an

immediate and dramatic impact in the area of drug discovery and development. Virtual

screening to identify candidate drug leads using molecular docking simulations (i.e. methods

to predict interactions between biomolecules) has met with significant success over the past

decade [12–22]; however, there are no current examples of such screening approaches being

successfully applied for clinical use [23,24]. Screening compounds in the traditional, model-

dependent manner with few targets has significant limitations to use such compounds as

drugs for particular indication and/or disease. A model dependent method is a ‘closed

system’, in that the interactions of the compounds with all biomolecules, cells and tissues

(i.e. systems biology) are not taken into account to select a candidate drug lead, and such

non-systems biology approaches might be contributing to the currently dried-up drug

development pipelines [15,25]. The Computational Analysis of Novel Drug Opportunities

(CANDO) platform (http://protinfo.org/cando) is a new model-independent approach to

drug discovery, where molecular docking is but one of several informational components

used to predict, not scan, for potentially important molecular interactions that could lead to

novel pharmacotherapeutics. This agnostic approach, an ‘open system’, is similar to the

predictive analytics approaches of ‘Big Data’ that have been applied successfully in other

fields [26–31], and has the potential to not only discover drugs and compounds that fit into

conventional models, but also unexpected and novel interactions between small molecule

drug candidates and biological molecules of all types, from proteins, nucleic acids and lipids

to carbohydrates. The CANDO platform for drug discovery implements predictive

bioanalytics tools, defined as homology-driven methods at an atomic scale that integrate

heterogeneous data sources to identify multiscale biological relations as interaction

signatures. The CANDO platform leverages the evolutionary basis of small molecule and

protein interactions and the vast amounts of digitized biomolecular data with relatively

inexpensive computational power to predict efficiently candidate drugs for more than 2000

indications and acts as a ‘plug-in’ to evaluate such drug candidates in the search for novel

treatments. It also provides a path towards applying key aspects of the digital world that are

so successful in information technology to the biomedicine, potentially breaking the

infamous Eroom’s Law (i.e. Moore’s law backwards) of pharmacotherapeutics, where drug

development becomes ever more expensive, ever more slowly developed and ever less

effective, and finally placing the search for new drugs and treatments on a Moore’s Law-like

curve leading to ever cheaper, safer, ever more rapidly developed and ever more effective

pharmacotherapeutics [32].

Virtual drug screening and rational drug design

Molecular docking simulations have the potential to save time and cost to identify candidate

drug leads that interact with potential active sites on target protein structures that are

selected by their relevance in an indication and/or disease setting. In typical docking

experiments, crystallographic- or NMR-generated model structures of proteins and small

molecule compounds are used to simulate binding interactions by assessing the ‘fit’ of the

compound in the binding site of the protein. Positive binding interactions predicted by

simulations are then tested at the lab bench to verify that docking predictions reflect the
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chemistry of the real world, and successful hits are then tested in cell cultures and animal

models for toxicity, efficacy and/or mechanism of action of the compounds interacting with

protein targets. Finally, successful hit(s) are then tested in humans for safety and efficacy,

such that the compound can be used as a drug for a particular indication in the clinic. More

often, the predicted compounds tested at the bench are fine-tuned in their binding to target

proteins through cycles of computational modeling and chemical synthesis to yield stronger

molecular fits in the hope to achieve more effective small molecule compound protein

interactions (Fig. 1). This approach has resulted in many candidate drug leads, costing less

money and time to identify them compared with more traditional methods, such as blind

high-throughput screening (HTS) approaches to identify candidate drug leads for selected

protein targets. Virtual screening methods also have a huge potential to repurpose approved

medications [33–36], resulting in savings in cost and time by increasing the odds of success

for a compound to become a drug in the clinic. This approach has now become routine, with

freely available web based tools, such as drugable.com [37], giving access to the binding

relation between a compound and protein targets to any group developing

pharmacotherapeutics.

Virtual screening to identify candidate drug leads using molecular docking simulations has

significant limitations. Chief among them is the lack of integration of the vast amount of

biological information available, which is being accumulated at a rate exceeding Moore’s

law and, therefore, outstripping current computer hardware capacity for storage and

analysis. Such a vast amount of data provides a route to more successful homology-based

prediction methodologies by learning from known biological information instead of trying to

accurately model complex biological systems. Moreover, conventional docking approaches

are not easily adapted to predicting binding interactions between all available biomolecular

structures from one species against all of the available candidate small molecule drugs in a

computationally efficient manner. This limits their use significantly in identifying putative

drugs in the modern -omics era of personalized medicine. Finally, such approaches are not

model independent, in that they assume drugs of interest act only via inhibition through

binding in the active sites of target proteins, thus constituting a classic ‘closed system’

where drugs that act via other mechanisms or which have pleiotropic effects will not be

found. Thus, only small molecules binding to proteins with enzyme-like active sites will be

found, leaving out vast numbers of potential candidates that are viable alternative but act by

as yet undiscovered or described mechanisms [15].

The evolutionary basis of drug discovery

Most small molecule drugs are derived from plant sources [38–40]. Evolution has perfected

these molecules as a result of a dynamic interplay of between plants and other organisms

sharing their environment. Thus, it is a reasonable hypothesis that interesting or functional

small molecules that become drugs have multiple modes of action. The CANDO platform is

agnostic to how protein compound interactions are determined (whether predicted or

observed) but rather relies on whole ‘signatures of interactions’, which is either a binary or

real value row of numbers (vector for multiscale biological relations between compounds

and proteins) that indicates how well a compound binds to a library of protein structures as a

representative of the (current) protein structural universe. The platform then uses similarity
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of compound proteome interaction signatures, which are indicative of similar functional

behavior and nonsimilar signatures (or regions of signatures) are indicative of off- and

antitarget (adverse) effects, in effect inferring homology of compound and or drug behavior

at a proteomic level. This approach is efficient, producing significantly more drug leads per

computing cycle than more conventional methodologies by taking advantage of statistical

multiplier effects in much the same manner seen in whole-genome shotgun sequencing.

These signatures are then used to rank compounds for all indications and provide an

optimized and enriched set of verified protein–compound interactions, a comprehensive list

of indications and compounds that could be readily repurposed, as well as mechanistic

understanding of drug behavior at an atomic level. Thus, the evolutionary dance of such

molecular interactions provides the rationale for using the predictive bioanalytical

approaches incorporated into the CANDO platform.

Predictive bioanalytics and the CANDO platform

Predictive analytics uses data mining tools to extract information from huge data sets to

predict trends and behavior patterns. Such approaches are used to model purchasing

behavior, traffic patterns and financial behavior, and often fall under the rubric ‘Big Data’.

Predictive analytics can also be used to model and predict the behavior of biomolecules, and

are increasingly being used in the search for new chemical entities (NCEs) to fill the drug

discovery pipelines of the pharmaceutical and biotechnology industries. We define

‘predictive bioanalytics’ as use of homology-driven methods at the atomic scale that

integrate heterogeneous biological data sources to identify multiscale relations between

biomolecules as interaction signatures, which can then be used to assess the probability of a

compound to become a drug for particular indication and or disease. The classic paradigm in

biology of inferring homology to transfer information is a key underlying concept for all our

research in drug discovery and the pathway and/or mechanism agnostic bioanalytics

approach of the CANDO platform represents an open, model-independent system for drug

discovery.

Vast amounts of data describing the protein and RNA products of genes as well as drugs and

compounds are being generated and it is now useful to think of such molecules as being

embedded within a data cloud (Fig. 2a), similar to the tag clouds commonly used to analyze

information on the Internet. Such molecular data clouds can be processed algorithmically to

predict the levels of interaction between different entities and, thus, generate molecular

interaction signatures (Fig. 2b). These can then be used to identify computationally potential

drug candidates in the context of 3D molecular docking and cross-database context analysis

can identify mechanisms of action. Armed with this information, the probability of a

compound to become a drug in treating specific indications can be digitally assessed.

Candidates with the most accurate molecular interaction signatures for particular indications

and/or diseases can be selected for experimental validation as candidate drug therapies for

eventual human use, thereby improving the rate of success for a compound to become a drug

from bench to bedside [20,36,41–43].

The first version of the CANDO platform (CANDO v1) is illustrative of this process (Fig.

2c), and has been successfully applied for discovering therapeutics against seven indications
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thus far, prospectively evaluating the efficacy of more than 82 compounds, with 49

successful in vitro hits and/or leads against dental caries, dengue, tuberculosis, malaria and

other indications. CANDO v1 identifies relations between 3733 human approved

compounds and 48,278 protein structures from more than one billion predicted interactions

(Fig. 2d).

Compound proteome interaction signatures are determined using predictive algorithms to

integrate evolutionarily conserved features of compound–protein structural complexes,

representing their evolutionary dynamics. Given that each of the predictive algorithms used

perform better than chance, the statistical nature of integrating multiple interaction data over

a large set of proteins enhances the signal:noise ratio and identifies functional signatures for

each compound that are highly accurate at depicting related compounds as proteomic

homologs (i.e. known drugs with compound–proteome signatures most similar to other

drugs approved for a particular indication). This results in an increased accuracy of the

CANDO platform with the number of proteins used to define the compound signature. Thus,

Fig. 2e shows that the level of benchmarking accuracy achievable by the CANDO platform

increases logarithmically with the size of the proteome set considered. Although Fig. 2e

shows the correlation obtained by applying the binary matrix to four proteomes using one

criterion, the correlations between accuracy and proteome size are always greater than 0.9

for all real matrices for up to a dozen proteomes and all five criteria used by researchers.

Fig. 3 shows results from hold-one-out benchmarking experiments (Chopra et al.,

unpublished; Sethi et al., unpublished) performed using 1439 indications with two or more

approved compounds. The benchmarking determines the ability of the CANDO platform to

identify accurately related compounds approved for the same indication. The criteria for a

compound to be labeled approved for, or associated with, therapeutic use was determined

based on US Food and Drug Administration (FDA) approval as well as data obtained from

the Comprehensive Toxicogenomics Database (http://ctdbase.org). Each compound is then

ranked relative to every other compound based on the similarity between compound–

proteome interaction signatures across 48,278 proteins using the root mean square deviation

(RMSD) of the interaction scores as the similarity detection metric.

The accuracy of the ranking for a compound approved for an indication is evaluated based

on whether another compound approved for the same indication falls within a particular

cutoff in the ranked list of similar compounds. Fig. 3 shows the benchmarking accuracies of

the CANDO platform, as well as prospective predictions, with an emphasis on seven

indications, the predictions for which are currently in the process of being validated in vitro

by our collaborators or contract research organizations (CROs), reflecting real-use cases.

Any researcher working on these indications can further validate these prospective

predictions. Predictions based on preliminary implementations of our approach for some

indications, such as malaria, have already been validated and described elsewhere [44,45].

Fig. 3 lists predictions of putative drugs with a confidence and/or concurrence score

assigned that can be validated by any researcher working on these indications.

The average accuracy of the benchmarking for all indications is as high as 20%, when the

criterion used is based on correctly identifying compounds with the same indication within
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the top 50 ranked compounds, approximately 12% when using the top ten ranked

compounds, and approximately 17% within the top 25 ranked compounds (Fig. 3). Although

the benchmarking protocol is applicable to 1439 indications with two or more approved

compounds, the CANDO platform is now capable of making prospective predictions for

2030 indications with at least one approved and/or associated compound for therapeutic use,

or any indication where the primary structure (sequence) of the proteome causing the

pathology is available (such as the proteome of a pathogenic organism). This latter aspect of

the CANDO platform has implications for personalized therapeutic development.

Overall, using a matrix derived from all 3733 FDA approved and other human ingestible

compounds against 48,278 different protein structures from multiple organismal proteomes

resulted in an accuracy rate two orders of magnitude greater than the random background,

and one order of magnitude greater than using the best-performing protein by itself,

indicating the power of the CANDO multiprotein signature approach. HTS approaches

(virtual or wet lab) to identify candidate drug leads against single or a handful of protein

targets do not consider compound interactions in a holistic manner and are unable to identify

accurately candidate drug leads for particular indications. The overlap of putative drug

predictions between multiple indications (Fig. 3 and Table S1 in the supplementary material

online) suggest that known human ingestible compounds can be repurposed on a large scale,

which should rejuvenate existing drug discovery pipelines. The results also indicate that

arbitrary compound–protein interaction data could be maximally explored via the paradigm-

shifting approach adopted by the CANDO platform to yield new therapeutics. Thus,

CANDO platform, even in its earliest version, is a powerful and accurate tool for predicting

potential drugs to treat hundreds of indications.

The relation between different compounds, protein classes and indications can be analyzed

using the interactome-based approach adopted by the CANDO platform by comparing and

contrasting benchmarking performance on different compound and/or protein subsets (as

evidenced by the best single protein control performance in Fig. 3). This enables us to

perform virtual surgery using small molecules to ask and answer fundamental biological

questions, such as identifying relations between indications at the molecular scale, mapping

of indications to identify novel protein targets, mechanisms of actions of putative drugs, and

so on. When coupled with machine-learning algorithms and an extensive network of

laboratory collaborators, the CANDO platform enables an infinite loop of ever-improving

drug discovery via digital means that enables researchers to improve iteratively the accuracy

of their predictions for the next round of prospective validations [14,44–55].

Meaningfully selected compounds for the treatment of specific indications in the context of

well-characterized human disease pathways (Fig. 4) are illustrative of the power of the

CANDO platform. The prediction of apernyl, cloquinate, prednisolone and prednisone in

treating of systemic lupus erythematosus (SLE) is particularly interesting and is illustrative

of this approach to contextualization of CANDO. Each of these compounds interacts with

proteins known to affect the interferon production components of the SLE pathway [56].

Furthermore, preliminary virtual docking using Autodock Vina [57] (Fig. 4) suggests that

apernyl bocks γ-interferon production via binding to the γ-interferon receptor B surface

protein [58] and that prednisolone and prednisone [56] block γ-interferon gene transcription
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through their interaction with the glucocorticoid receptor [59–62]. Together, the three drugs

currently in use for treatment of SLE act to block the inflammation characteristic of SLE via

different target proteins in different pathways. Contextualization of several interactions

indicates a high degree of effectiveness in predicting compound and/or drug candidates for

validation at the bench.

Further application of our group’s Pioneer Award efforts on translating atomic simulations

of ‘all’ protein structures against ‘all’ interacting molecules for use in drug discovery have

proven encouraging. Eight preliminary prospective studies (performed by collaborators) of

predicting putative drugs against different indications with preliminary versions of the

docking or drug discovery protocols used in earlier prototypes of the CANDO predictive

algorithms have proven successful, with 49 (82) hits (leads) identified by prospective in

vitro studies. Highlights include results for dental caries, where all ten of the top predictions

displayed bioactivity exactly as predicted in terms of inhibition of the caries pathogen

Streptococcus mutans, and for dengue (which currently has no approved therapy) where

three out of 12 compounds tested inhibited viral growth. Benchmarking with known drugs

suggests that this approach is applicable to at least over 650 diseases. The results from the

retrospective benchmarking and prospective validation studies in particular suggest that

CANDO works even with accuracies of docking methods and even with accuracies slightly

better than average, by taking advantage of statistical multiplier effects in much the same

manner seen in whole-genome shotgun sequencing. The hypothesis if biology itself works

the way CANDO does is one that merits further investigation. Given that this approach is

applicable to any compound (not just FDA-approved drugs), and also includes models of

mutations in protein structures to enable personalization, the proposed platform signifies a

fundamental paradigm shift in the way in which drug discovery is performed.

Translating atomic-level mechanistic understanding to personalized

clinical care

The use of predictive bioanalytics at the molecular level has several advantages over more

conventional computational approaches, such as molecular docking simulations. Chief

among these is that the models upon which the molecular interaction signatures do not have

an underlined assumption, in that, they do not require that the putative drug prediction treats

an indication because it binds to the protein target of interest. This allows for a mechanism-

and hypothesis-free exploration of potential drug interactions and, furthermore, makes

possible the discovery of more complex and nuanced drug–target interactions [42,43]. This

also opens the door for novel approaches, such as phage antimicrobials [63], immune system

reprogramming [64] and regenerative medicine [65]. Additionally, predictive bioanalytical

tools could also make use of vast data sets of biomedical data, enhancing the repurposing of

drugs already approved by the FDA for human use. The repurposing of FDA-approved

drugs is particularly attractive, because it might enable researchers to minimize the size and

cost of clinical studies for the new uses of such drugs. In combination with large data, so-

called ‘Big Data’ [26,30,31], studies of the ‘off-label’ use of such drugs in the general

population could further lead to novel approaches to drug safety that are more rapid and cost

efficient than existing drug discovery pipelines. The predictions of candidate drugs could
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also be tailored to specific individuals based on available information regarding their

proteome (from single nucleotide polymorphism data obtainable from companies such

23andme, or even whole-genome sequencing), to minimize adverse effects and cost, as well

as increasing efficacy.

Current limitations and future directions

Although the proteomic approach has better performance than the single protein approach,

to explore the space, we have had to make various compromises using a heuristic

hierarchical approach. For example, we currently do not examine interfaces of protein–

protein and protein–nucleic acid complexes, which might be attractive targets of inhibition

on a pathway level. Currently, the CANDO compound database contains only human-

approved compounds and solved or easily modeled protein structures, which can be

expanded to include any arbitrary compound and molecule. As computing power increases,

we will be able to increase prediction accuracy by making refinements at each of these steps

to encompass ever-increasing search spaces. In addition, the platform can be parameterized

to improve accuracy, as the results from the validations of predictions are made available.

Our early work has provided proof of principle for using a predictive bioanalytics approach

at the molecular level, and now opens the door to include other types of molecular

interaction, including small molecules interacting with nucleic acids, lipids and

carbohydrates. Nucleic acid interactions, protein–nucleic acid and protein–protein and

protein–drug mechanisms are also possible through the molecular predictive bioanalytics

approach. Furthermore, predictions will be based on more than physical interactions,

including data from the peer-reviewed scientific literature, Phase 4 and 5 clinical studies

along with electronic medical records could also be incorporated into the predictive

algorithms in future versions of the CANDO platform. As an example, we have used

integration of ongoing clinical trial compounds for beta thalassemia using as proteomic

homologs (i.e. have similar compound–proteome signatures to compounds being tested for

beta thalassemia in clinical trials). Finally, the CANDO platform can provide detailed

biological understanding of small-molecule drug–protein interaction at the atomic level and

also includes models of mutations in protein structures to enable personalized medicine at

the proteomic level using individual genomic sequence information and along with

epigenetic data, the CANDO platform could provide for the development and production of

personalized pharmacotherapeutics.

Although predictive bioanalytics tools such as the CANDO platform carry the potential to

increase massively the number and types of candidate drug molecule, the process of bench

validation and testing currently remains a bottleneck. In this regard, new technologies

applying the lessons of the digital information technology revolution are coming into play in

biological research, and the tools of the new field of digital biology [6,11] could transform

the current artisanal techniques into scalable industrial tools that might vastly increase speed

and accuracy of the validation and testing component while substantially decreasing its cost.

Additive manufacturing [66], also known as 3D printing (3DP), promises to revolutionize

both the design and prototyping of manufactured goods as well as the distribution of such

goods. This technology has been applied to biomedicine, and is being used to successfully
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‘print’ organs and tissues in regenerative medicine [65,67,68] as well as to ‘print’

pharmaceutical drugs [69–72]. Prototypes of devices called digital biological converters

(DBCs) are now being used to ‘print’ biologic drugs, personalized medicines and vaccines

[6,11]. Integrating such DBC devices, along with cell chips [73,74], induced pluripotent

stem cells (iPSCs) [75], biological simulation algorithms [9] and cell-free protein synthesis

(CFPS) systems [76] into the CANDO platform could relieve the testing and validation

bottleneck and also provide a powerful tool for rapid and inexpensive pharmaceutical

discovery, development and distribution on both the population and personal medicine

levels.

Concluding remarks

The first version of the CANDO platform has demonstrated the power of predictive

bioanalytics at the molecular level in the search for new pharmacotherapeutics. In particular,

it has shown that it is possible to create a computationally driven model-independent

approach to identifying candidate small-molecule drugs, and demonstrated the relatively

easy repurposing for FDA-approved and tested drugs and compounds. We have validated 82

compounds using in vitro assays against seven diseases and/or indications and 49 of them

(60%) have shown inhibitory activity comparable to or better than existing compounds when

available and/or with micromolar (μM) inhibition of the causal agent, including cases where

significant inhibition was observed for indications currently without any approved drugs.

The CANDO platform has been used to make putative drug predictions for 2030 indications

that can be validated at the bench and the clinic. We have benchmarked the platform for

1439 indications with more than one approved compound, producing an average accuracy of

approximately 20% over 1439 indications at picking out similar compounds within the top

50 ranked compounds (approximately 12% within the top ten ranked compounds, and

approximately 17% within the top 25 ranked compounds). This work represents the first

comprehensive assessment of a computational platform to make putative drug predictions,

covering 3733 compounds, 48,278 proteins, and 2030 indications in total, including ‘leave

one out’ benchmarking of the platform for 1439 indications with at least two approved

compounds. Our approach enables an ‘open’ system for drug discovery, where the

interaction signature of any arbitrary compound may be compared to those in our library,

and similarly allows for greater understanding of the mechanisms of action for drugs and

compounds that are poorly characterized.

Novel devices such as DBCs coupled with a predictive analytic tool such as the CANDO

platform could speed up the discovery, development, testing and deployment of drugs and

other therapeutics while lowering the costs and risks effectively laying the foundation in the

pharmaceutical industry for a Moore’s Law-like curve and spelling the end of the era where

Eroom’s Law kept the development of pharmacotherapeutics on a curve of ever-decreasing

effectiveness and ever-increasing cost (Fig. 5). The CANDO platform, with its evolutionary

basis, coupled with such tools as personalized genomics and additive manufacturing also

provides the foundation for an new era of truly personalized medicine in a cost- and time-

effective manner, with ‘smart drug development’ for every one of the billions of unique

human phenotypes on the planet.

Minie et al. Page 9

Drug Discov Today. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Minie et al. Page 14

Drug Discov Today. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1016/j.drudis.2014.06.018
http://dx.doi.org/10.1016/j.drudis.2014.06.018


FIGURE 1.
Traditional virtual drug-screening methodology. A traditional cycle of how virtual and/or

rational compound screening is performed for drug discovery. Candidate small molecules

are subjected to simulated molecular docking with the structures of target proteins and

selected based on binding strength. Candidates are then subjected to modification via

chemical synthesis, if necessary, followed by in vitro validation of binding. The resulting

wet lab information is used iteratively to perform further simulations until maximal

efficiencies to particular single target proteins are achieved. By contrast, the Computational

Analysis of Novel Drug Opportunities (CANDO) approach (Figs. 2 and 3) considers binding

to all available proteins simultaneously to achieve better ranking of candidate drugs for

particular indications, in effect inferring homology of compound and/or drug behavior at a

proteomic level.
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FIGURE 2.
Predictive analytics of biomolecular data cloud. (a) The Computational Analysis of Novel

Drug Opportunities (CANDO) platform constructs a molecular data cloud where a given

molecule (protein, RNA or compound) is associated with data from a vast number of

sources, including the scientific literature, curated databases with structural and interaction

network information, chemoinformatics data and more. (b) Molecular interaction signatures

are computed using state-of-the-art algorithms, which have been tested prospectively, to

annotate positive and negative interactions between target molecules and compounds of

interest. (c) The digital loop-schematic represents the CANDO platform as a hybrid

computational and/or experimental pipeline that generates a compound–proteome

interaction matrix and indication-specific protocols to rank compounds that can be

repurposed for particular indications. The first version (v1) of the platform comprised 3733

human approved compounds × 48,278 protein structures, resulting in more than 1 billion

predicted interactions. A total of 1439 indications with more than one approved compound

were used for benchmarking and candidate drug predictions have been made for a total of

2030 indications. We rank the candidate compounds based on ‘contextualization’ of specific

indications, in that the predicted interactions are evaluated in the context of biomolecular

data from a wide variety of existing data repositories in an indication specific manner. These

candidate compounds are subjected to bench validation via in vitro binding, functional and

cellular assays, followed by in vivo assays where animal models for a particular indication

are available, and direct application to informed human clinical studies. The loop shows that

the computational methods are iteratively improved based on insights (success and failures)

obtained by wet lab data resulting in an integrative drug discovery pipeline. (d) The

CANDO platform generates a network of interactions (represented as a matrix for

simplicity) between small molecule compounds and multiple proteins in a mechanism
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agnostic manner, and indicates the degree of negative and positive interactions between

these entities. (e) The log linear increase in percent accuracy of CANDO v1 over all 1439

indications as a function of number of proteins considered to define the binary signature of

each approved compound for the indications. Given that the compound proteome

interactions are determined by recursion on evolutionary information using

chemoinformatics, bioinformatics and computational biology techniques, it is expected that

the prediction, or accuracy, of the resulting CANDO matrix compared with random

compound protein signatures (random control) will increase and this accuracy increases with

the number of proteins used from human and other proteomes. All of the above considers

the data-driven predictive bioanalytics loop of the CANDO platform in its earliest stages of

development and provides a powerful and accurate computational means of identifying

small molecule compound–proteome interactions with an ability to aid in the repurposing of

US Food and Drug Administration-approved drugs and other human ingestible compounds.
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FIGURE 3.
Computational Analysis of Novel Drug Opportunities (CANDO) platform benchmarking

accuracies and putative drug predictions. Percent accuracies based on large-scale

benchmarking of the CANDO platform are shown for seven out of a possible 1439

indications with two or more approved drugs. The putative drug predictions with the highest

confidence are shown in purple (concurrence ≥ 5) or blue (concurrence = 4) as compound

names over each accuracy bar, and PubChem IDs for others are shown within each of the

four concurrence score categories. The percent accuracy measure reflects the ability of the

platform to recognize related approved drugs in the top 25 ranked predictions for an

indication based on inferring homology between compound–proteome signatures, where

each signature comprises interaction scores between a compound and 48,278 proteins, and

there are 3733 compounds. The concurrence score represents the number of occurrences of

particular compounds in each set of top 25 predictions generated for all of the drugs

approved for a particular indication (number indicated by brown circles in the middle of

each accuracy bar). The resulting predictions are drugs approved for other indications but
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represent proteomic homologs (i.e. have similar compound–proteome signatures to drugs

approved for the indication considered). The red medical plus sign on right-hand side

signifies the threshold accuracies of prediction for particular numbers of indications: 14

indications have 100% benchmarking accuracy in terms of identifying related drugs

approved for the same indication; 20 indications have 80% accuracy or more; 75 indications

have 60% accuracy or more; 254 indications have 40% accuracy or more; 543 indications

have 20% accuracy or more; and 657 indications had some measure of success in terms of

benchmarking (i.e. greater than 0% accuracy). The solid black lines represent the average

accuracies of the CANDO platform for all 1439 indications (17%) and for the 657

successful indications (36%) based on the top 25 predictions. These particular seven

indications were selected because they are among those for which validations are being

undertaken by collaborators and contract research organizations; however, our prospective

predictions could be validated by any researcher working on these indications and, thus,

reflect real-use cases of the CANDO platform. By contrast, with respect to randomly

devised controls, the accuracy never exceeds 0.2% (small dashed line) even when the

CANDO matrix is swapped out with more than 1000 matrices constructed by randomly

swapping all compound and all protein interaction values. Likewise, the best single protein

control (Argonaut), defined as the best performing protein when each of the 48,278 proteins

is considered individually by the CANDO platform, yields 2% average accuracy for all

indications (long dashed line). This not only indicates the value of using multiple proteins to

increase the accuracy of drug predictions, but also points to the potential of the CANDO

platform in dissecting the roles of particular proteins and protein classes in disease using

small molecules approved for treatment of particular indications as probes. The PubChem

IDs marked with asterisks represent high confidence drug predictions across multiple

indications; 91/105 high confidence drug predictions are shared between indications (see

Table S1 in the supplementary material online), indicating the complex relation between

small molecules, proteomes, and indications, such as Alzheimer’s disease, type 2 diabetes

mellitus and systemic lupus erythematous. Our results indicate that our holistic compound–

proteome signature homology inference-based drug discovery could yield significantly

higher success rates than blind high-throughput screening focused on singular disease

etiologies. The CANDO approach is applicable to any disease pathology that can be

localized to a group of proteins (including whole-pathogen proteomes), as well as 2030

indications associated with at least one US Food and Drug Administration approved drug.
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FIGURE 4.
Multiscale modeling of complex molecular, cellular, and physiological systems using

Computational Analysis of Novel Drug Opportunities (CANDO) for application in

medicine. Proteins with high interaction scores for the top predicted CANDO compounds

are mapped against KEGG human pathways and analyzed for possible mechanisms and/or

context of action. For illustrative purposes, the interactions of apernyl with interferon

gamma receptor 1 (IFNGR1) and the corticoid drugs prednisolone and prednisone with

glucocorticoid receptor (NR3C1) are considered above. Mapping of predicted CANDO

molecular interaction signatures to KEGG pathways revels that both compounds interact

with proteins involved with γinterferon (γIFN) regulation, and might have a role in the

systemic lupus erythematous (SLE) disease pathway. Moreover, these compounds might

have inhibitory activity via distinct mechanisms with apernyl acting to block γIFN activity

by potentially interfering with γIFN binding to its cognate receptor, whereas prednisolone

and/or prednisone might act by suppressing γIFN gene transcription via the glucocorticoid

transrepression mechanism. The two compounds are well-known drugs that are used in the

treatment of SLE, indicating CANDO results representing a retrospective prediction.

However, given that the CONTEXTUALIZATION process of the CANDO platform

suggests heretofore unknown mechanisms of action by combining publically available

structural, regulatory and expression information, the power of this approach, which is

pathway agnostic with regards to mechanism of action, strongly points towards specific lines

of testing and validation of multiple mechanisms of action of putative drugs to treat an

indication.
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FIGURE 5.
The Computational Analysis of Novel Drug Opportunities (CANDO) platform enables

Moore’s law in drug discovery. (a) Integration of digital biological converter [6,11,69–

72,77–79], cell and/or organ chips [6,67,73,74,80,81] and cell-free protein synthesis (CFPS)

[76,82,83] into the CANDO platform, enabling a potentially rapid and cost-effective

pharmacotherapeutic drug prototyping, development, distribution and production system. (b)
Moore’s versus Eroom’s law (Moore’s law backwards): the power of computing per unit

costs doubles every 18 months under Moore’s Law, whereas the unit cost of drug

development has increased to the point where drug development has become nearly cost

ineffective, following an inverse of Moore’s law (Eroom’s law). It is not inconceivable that

one of the reasons for the current lack of success in finding new pharmacotherapeutics in a

time- and cost-effective manner is the current model-driven memes in the industry.

Although the information technology industry has doubled its effectiveness per unit cost

every 18 months since the beginning of the digital age during the late 1950s, following

Moore’s law, the pharmaceutical industry, even with the advent of biotechnology, has

doubled its cost for the development of new drugs every decade since the 1950s. Today, it is

nearly impossible to develop a new drug in less than a decade and for less than US$1 billion

[32], whereas powerful and inexpensive hand-held computing devices (i.e. smartphones) are

now owned and used today by nearly 60% of the people on Earth. Integration of biological

hardware with the CANDO platform seems essential for faster, safer, better and cheaper

drug discovery much in the same way as the microprocessor was for the computer industry

and information systems.
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