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Abstract

Recently, there has been increasing interest in the development and characterization of patient

derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the

principal histological and genetic characteristics of their donor tumor and remain stable across

passages. These models have been shown to be predictive of clinical outcomes and are being used

for preclinical drug evaluation, biomarker identification, biological studies, and personalized

medicine strategies. This paper summarizes the current state of the art in this field including

methodological issues, available collections, practical applications, challenges and shortcoming,

and future directions, and introduces a European consortium of PDX models.
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INTRODUCTION

The use of preclinical models is a core component in every aspect of translational cancer

research ranging from the biological understanding of the disease to the development of new

treatments (1, 2). With regard to drug development, the use of human cancer models for

drug screening began at the National Cancer Institute (USA) in the 70s following a nearly

three-decade period in which screening of new drugs was performed in rapidly growing

murine models. Over the last 40 years, a number of studies have established basic

methodology and a systematic approach for preclinical testing of anticancer agents both in

vitro and in vivo (1, 2). Currently, the NCI-60 cancer cell line panel represents the best

characterized and most frequently used collection of human cancer models utilized for in

vitro drug screening and development (3). These cells were derived from cancer patients and

have been adapted to grow indefinitely in artificial culture conditions. Xenografts developed

by growing these cell lines subcutaneously in immunodeficient mice are the most commonly

used in vivo platform in preclinical drug development.

These so-called conventional cell lines, while convenient and easy to use, have important

limitations in preclinical drug development. The most relevant is their lack of predictive

value with regards to activity in specific cancer types in clinical trials. While in general,

agents active in at least one third of the preclinical models explored to date showed activity

in phase II clinical trials, there has been poor prediction for activity in specific disease

entities, except in lung cancer (4). While the underlying cause of this limited predictive

value is not fully understood, evidence suggests that the process of generating cancer cell

lines results in major and irreversible alterations in biological properties, including gain and

loss of genetic information, alteration in growth and invasion properties, and loss of specific

cell populations (5, 6). In addition, cell lines are usually established only from the more

aggressive tumors and hence are not representative of complex tumor heterogeneity evident

in the clinic. For all these reasons, the establishment of cell lines is not an appropriate

strategy for personalized medicine applications. Novel approaches, such as short-term

primary cultures or organoids, are being developed, although important validation studies

are still required prior to any application in conventional preclinical screening projects.

In an attempt to circumvent these issues, there has been an increasing interest in the

application of more advanced preclinical cancer models including patient derived tumor

xenografts (PDX) as well as genetically engineered mouse (GEM) models. PDX models are

not new, and studies conducted in the 80s already showed a high degree of correlation

between clinical response to cytotoxic agents in adult patients with lung cancer and response

to the same agent in PDX models generated from these patients (7). Similar observations

were made in studies of childhood rhabdomyosarcomas (8). In addition, PDX models have

been used to conduct preclinical phase II studies with classic chemotherapeutics (9). In

recent years there has been renewed interest in the development of PDX models from

different tumor types. Indeed, these models are becoming the preferred preclinical tool in

both industry and academic groups in an attempt to improve the drug development process

(10-12). Currently, there are several collections of extensively characterized PDX models in

use for different translational research applications. These collections broadly represent the

complex clinical tumor heterogeneity and molecular diversity of human cancers. In this
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paper we review current methodology for the generation of PDX models, provide a

summary of presently available collections of these models, list current applications and

major contributions of PDX models to cancer therapeutics and personalized medicine, and

highlight important issues for the future development of this approach. Finally, we introduce

a European initiative aimed at establishing an academic consortium of laboratories having

established collections of PDX models with the goal of triggering scientific collaboration,

conducting multicenter preclinical trials and developing new models. As studies demonstrate

the significant heterogeneity of human cancer, large collections of PDX models, not

affordable by individual groups but through the set up of collaborative networks, are key to

tackle the challenge of precision medicine.

METHODOLOGICAL ASPECTS

The process of generating PDX models in mice from fresh primary or metastatic human

cancer is extensively described in the literature (10, 13). While individual groups have

developed specific methodological approaches, the fundamentals are common. Table 1

provides a summary of approaches used to generate the most comprehensive PDX

collections currently available. Briefly, pieces of primary or metastatic solid tumors

maintained as tissue structures are collected by surgery or biopsy procedures. Some studies

have also used fluid drained from malignant ascites or pleural effusions. Tumors are

implanted as pieces or single cell suspensions, either alone or in some studies coated with

matrigel or mixed with human fibroblasts or mesenchymal stem cells. The most common

site of implantation is on the dorsal region of mice (subcutaneous implantation), although

implantation in the same organ as the original tumor may be an option (orthotopic

implantation, i.e. pancreas, oral cavity, ovary, mammary fat pad, brain, etc.). In addition,

independently of the tumor origin, several approaches have implanted primary tumors in the

renal capsule in an effort to increase engraftment success rates. A variety of mouse strains

having different degrees of immunosuppression have been used in these studies.

Supplementary Table 1 lists the principal characteristics of the most commonly used mouse

strains including their level of immune suppression as well as advantages or disadvantages.

For hormone sensitive tumors, some studies have used hormone supplementation with the

intent of increasing engraftment rates.

Some approaches may have theoretical advantages with regard to higher and faster

engraftment rates and generation of models that better recapitulate human tumors and are,

therefore, more predictive. However, it is important to mention that very few studies have

properly addressed comparative implantation methods for these endpoints. Studies in which

PDX models have been generated simultaneously from primary tumors and metastatic

lesions suggest that metastases have a higher engraftment rate (14, 15). Defining the most

appropriate host mouse strains to generate PDX models is an important consideration. It is

assumed that more severely immunosuppressed models such as non-obese diabetic/severe

combined immunodeficiency disorder (NOD/SCID) or NOD/SCID/IL2λ-receptor null

(NSG) models are better suited for PDX generation due to higher engraftment rates. Indeed,

these are the preferred rodent strains for many groups. However, in human breast cancer

(HBC) where this question has been robustly interrogated, implantation in NOD/SCID

versus NSG mice yielded similar take rates (16). In addition, host supplementation with
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estradiol pellets increased engraftment rates from 2.6 to 21.4 % while, for reasons that are

unclear, co-implantation with immortalized human fibroblasts decreased engraftment rate

(16). In contrast, in another study, a mixture of irradiated and non-irradiated human

fibroblasts provided improved results (17). Likewise orthotopic tumor implantation

(“orthoxenografts”, (18)) may also confer a translational advantage, as the tumor develops in

the same anatomical microenvironment. Generation of orthoxenografts is more labor-

intensive, requires complex surgery, is more expensive and often requires imaging methods

to monitor tumor growth. However, for several tumor types (e.g. ovarian cancer or lung

cancer), this approach substantially increases tumor take rates (19). In this vein, orthotopic

implantation in the testis is essential for the growth of testicular germ cell tumors. As for

tumor implantation in the renal capsule, it yielded an impressive 90 % engraftment rate in

non-small cell lung cancer (NSCLC) as compared to 25% following subcutaneous

implantation, although these results were not obtained from a single comparative study (20,

21). Furthermore, renal cell capsule implantation shortens time to engraftment, which is one

of the most important variables for studies seeking to implement real time PDX data for

personalized cancer treatment (20).

SALIENT FEATURES OF PDX MODELS

As mentioned, the principal limitation of conventional pre-clinical models (“in vitro” cell

line studies as well as “in vivo” xenograft models generated by implanting these cells in

immunodeficient mice) is their poor predictive value with regard to clinical outcome (4).

The reasons why conventional cancer models have such poor predictive power are not

completely understood. However, variations in the basic biology of the models as they

evolve are likely a key factor. The process of adaptation to in vitro growth conditions leads

to changes in the biological circuits of the cancer cell that differ from the host derived entity.

These include modifications in key properties such as genetic content, invasive capabilities,

maintenance of a heterogeneous cell population and the reliance on specific growth and

survival pathways (6).

The rationale for developing PDX models is based on the expectation that these models will

represent enhanced preclinical tools and will be more predictive of human cancer biology

and patient response to treatments. In addition, PDX models offer the potential for

personalizing patient cancer treatment. Proving the value of PDX models may be

approached from different perspectives: one such approach is to compare the

histopathological, biological and genetic features of a PDX model with its donor tumor (also

called ‘validation’). The underlying hypothesis is that PDX models will retain key

characteristics of the donor tumor and that these characteristics will be maintained through

successive mouse-to-mouse passages in vivo. Table 2 summarizes the data from different

studies in which PDX models have been compared to donor tumors using a variety of

methods. In general, these studies show that PDX models retain the principal characteristics

of donor tumors, including fine tissue structure and subtle microscopic details such as gland

architecture, mucin production or cyst development. At the biological level, most studies

also show good concordance between tumors and the models derived from them. Analysis

of gene expression profiles shows that there are no substantial changes between donor tumor

and their corresponding PDX, with only genes involved in the stromal compartment and

Hidalgo et al. Page 4

Cancer Discov. Author manuscript; available in PMC 2015 March 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



immune function being less represented in models, due to the replacement of the human

stroma by murine elements. Indeed, using unsupervised clustering analysis, paired donor

tumor and PDX model cluster together in most of the studies. Analyses of copy number

alterations (CNAs) and exome sequencing data also show extraordinary concordance

between paired samples, with a trend towards higher frequency of genomic alterations in the

PDX model likely as a result of increased human tumor DNA purity in the PDX model.

Indeed in PDX, the cross-contamination by normal DNA from the human stromal tissue is

avoided. A recent study reports whole genome sequencing of several trios (primary tumors,

lymphocytes and PDX) in breast cancer, showing that PDX have relatively stable genomes

without a significant accumulation of DNA structural rearrangements but with some

enrichment for PDX-unique single-nucleotide variants (22). These PDX-unique mutations

could be the result of adaption to transplantation into the new microenvironment, but could

also be present in the original tumor below detectable limits. A study showed that many

CNA changes found in sarcoma PDX are frequently observed in sarcoma patients,

suggesting that xenografts may in some way represent the genomic rearrangement intrinsic

to tumor progression (23). This was also suggested in another study describing that many of

the mutations detected in the breast PDX were also observed in brain metastases derived

from the same patient (24). Furthermore, mouse-to-mouse propagation does not

substantially change the functional characteristics of the grafted tumor. Studies that have

compared the response to drug treatments of PDX models from different passages (up to

ten) show stable response rates across generations, further supporting the phenotypic

stability of these models (25, 26). In contrast, an interesting study compared the gene

expression profiles of a donor tumor with those of PDX models and cell lines developed

from that tumor, both in vitro and in vivo in conventional xenograft models. The data show

that while the gene expression profile of PDX models is similar to the original tumor, cell

lines developed from the same specimen display a different expression profile that is not

restored by in vivo subcutaneous propagation in mice (27).

An additional way to examine model fidelity as compared to the original tumor is to focus

on well-known disease-based genomic alterations rather than directly comparing individual

donor versus PDX characteristics. In PDX models of squamous cell carcinoma of the head

and neck (SCCHN) for example, the prevalence of TP53 and NOTCH mutations is similar to

those reported in human tumors (25). Similar results have been observed in colorectal cancer

(CRC) and pancreatic cancer (PDAC) models in which the frequency of mutations in genes

such as TP53 or RAS closely mirrors the frequency of these mutations in human samples

(26, 28, 29). In HBC PDX models, several studies using gene expression profiles have

shown that intrinsic breast cancer phenotypes are well represented and in concordance with

the original tumors (16, 30, 31). Nevertheless ER+ subtypes are under-represented, in

particular the recently described ER+ subtypes with good prognosis. Furthermore, when

examining metabolism, the metabolic profiles as detected by high resolution magic angel

spinning MR spectroscopy are remarkably similar when comparing patient material and

tissue from orthotopically growing basal-like and luminal-like breast cancer (32).

A complementary approach to determine the value of PDX models in cancer research

(discussed and illustrated below) is by analyzing the predictive value of the data obtained
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from PDX studies with regards to drug efficacy, biomarker analysis, and patient outcome. In

this sense, a similar level of activity as observed in the clinic has consistently been shown in

studies in which clinically applied drugs or regimens have been tested in PDX models. Table

3 provides a summary of studies in which PDX models from different cancer types have

been treated with agents used in the clinical care of these patients. While the analysis of data

is complicated by different response criteria used, in general there is remarkable similarity

between the activity of agents such as cetuximab in CRC models and gemcitabine in PDAC

models and respective clinical trial data (28, 29, 33). Of even greater relevance is the

remarkable one to one concordance in studies that compare the individual donor patient

response to conventional anticancer agents with that of his/her PDX (16, 21, 33, 34).

Furthermore, analysis of clinically validated biomarkers such as KRAS mutations and

resistance to EGFR inhibitors in PDX studies reached the same conclusions as clinical trials,

as discussed in more detail below (28). Finally, emerging studies in which patients have

been treated with drugs selected for their activity against their PDX counterparts show a

high predictive power, further supporting the notion that response in PDX models correlates

with clinical outcome (35).

APPLICATIONS OF PDX MODELS IN CANCER RESEARCH

Drug Screening and Biomarker Development

It is well known that one of the major issues in oncology drug development is the low

success rate of new agents (36). Many compounds are advanced to large phase III studies,

which consume considerable resources, to end up failing because of a lack of efficacy. Part

of the reason for these poor results is that conventional preclinical models utilized to screen

new agents for clinical development have poor predictive value (4). In addition, new drugs

were tested but biomarkers for these particular drugs were not included in these studies in

the absence of suitable biomarkers for patient selection and response monitoring. Thus,

strategies to diminish this high attrition rate are needed. In this regard, the availability of

preclinical models with high predictive value is of major interest, as it will permit the

conduction of preclinical phase II studies to select potential indications for subsequent

clinical trials.

The rationale for implementing PDX models to achieve this objective relies on the fact that

these models are predictive of clinical outcome. This has been shown in several

retrospective studies and more recently in prospective clinical trials. As listed in Table 3, a

number of reports in CRC, NSCLC, SCCHN, HBC and renal cell cancer (RCC) have tested

the response rate of drugs used as standard of care in medical oncology in PDX models.

These experiments show that the response rates in PDX models correlate with those

observed in the clinic, both for targeted agents and for classic cytotoxics. For example, an

extensive analysis of the EGF receptor inhibitor cetuximab in 47 unselected CRC PDX

models showed a 10.6 % response rate, which is identical to the response rate observed with

this agent in patients with this disease (28). Similar data have been also published for

SCCHN, the other indication in which cetuximab is commonly used (25). MEK and PI3K/

mTOR inhibitors proved to be poorly effective in a panel of 40 KRAS mutant CRC PDX

models, again in accordance with clinical data from phase I trials (37). In RCC, PDX models
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showed response to the mTOR inhibitor sirolimus and the angiogenesis inhibitors sunitinib

and dovitinib, but not to erlotinib as was also observed in clinical trials (15). With regards to

conventional chemotherapy, studies in NSCLC, HBC, CRC and PDAC demonstrated that

response rates to clinically used agents such as paclitaxel, carboplatin, gemcitabine, 5-

fluorouracil, irinotecan and adriamycin, among others, are comparable between PDX models

and clinical data (Table 3).

More recently, the role of PDX models as potential screening platforms for clinical trials has

been also shown in a prospective study in PDAC. This work showed that the combination of

nab-paclitaxel and gemcitabine is effective in PDX models of PDAC, a finding that

correlated with the clinical efficacy of this combination. In fact, this regimen has recently

been demonstrated to provide a survival benefit for patients with advanced PDAC in a

randomized phase III study, and is likely to become a standard of care in this setting (38).

Likewise, failure to exert antitumor efficacy in PDX models correlates with negative clinical

results. This is illustrated in PDAC for agents such as the Src inhibitor saracatinib and the

mTOR inhibitor sirolimus, for which lack of efficacy in unselected PDX preclinical studies

predicted failure of the same strategy in the clinic (39, 40). Based on these data, PDX

models have now become an integral part of the preclinical screening of new anticancer

agents.

One critical aspect of large preclinical studies in PDX models is that they not only help to

prioritize potential clinical indications, but they may also facilitate the identification of

potential drug efficacy biomarkers. The concordance between PDX models and human trials

with regard to biomarkers of drug susceptibility and drug resistance is indeed notable. In

CRC for example, it has been clearly shown in a number of studies that KRAS mutant PDX

models do not respond to cetuximab. KRAS wild-type status is now a well-documented

clinical biomarker for this targeted therapy (28, 29). Similar data were observed in NSCLC

(21). In fact, it could be argued that if these preclinical studies had been conducted prior or

in parallel to the clinical development of cetuximab, the discovery, validation and approval

of KRAS mutation as a marker of resistance would have been expedited. In PDAC, PDX

studies with gemcitabine identified expression of the gemcitabine activating enzyme

deoxycytidine kinase as a predictor of drug efficacy. A subsequent analysis of this marker in

clinical samples confirmed these results (26, 41). Likewise, PDX models have been used to

identify metabolic as well as imaging biomarkers (42, 43).

Equally important is the discovery of resistance biomarkers that may help to design

combination clinical trials. In CRC it has been shown that tumors resistant to EGFR

inhibition harbor amplifications of other genes such as HER2 and MET (28, 44). Preclinical

combination studies with agents targeting these genes showed promising preclinical efficacy

resulting in clinical translation. Likewise, in SCCHN, activating mutations in the PIK3CA

gene confer resistance to EGFR inhibitors that can be modulated by agents that inhibit the

PI3K pathway (25). PDX models are also versatile tools for simulating resistance when

exposed to treatment strategies used in the clinical setting. This has been shown for example

in ovarian cancer, in which prolonged exposure to cisplatin results in induction of resistance

to this agent in a platinum-sensitive model, similar to what is observed in the clinical setting.

This model has been used to explore new agents, with a goal to select drugs to be tested in
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platinum-resistant patients such as the DNA minor groove binder lurbinectedin (18).

Interestingly, cisplatin-sensitive and -resistant ovarian orthoxenografts recapitulate

characteristic features of primary human tumor response, such as the histopathological

tumor regression criteria associated with patient treatment response (36). Resistance to

targeted drugs, such as vemurafenib, has been induced in melanoma PDX models. Not only

a mechanism of resistance was identified, but also a novel drug administration strategy

applicable to the clinic was proposed to overcome resistance that is clinically applicable has

been identified (45). Until now, no published work compared PDX models established from

primary and recurrent tumor samples from the same patient.

Preclinical testing in PDX models can also facilitate optimization of clinical trial design.

This is perhaps best illustrated in studies with cancer stem cell (CSC) therapeutics such as

inhibitors of the Sonic Hedgehog, Nodal/Activin, TGFβ and Notch pathways (46-49). In

PDX studies, these agents failed to induce synergistic tumor regression responses when

combined with chemotherapy but resulted in tumor growth delay and, importantly, in a

decrease in tumor initiation and relapse. In addition, in re-implantation studies, it was shown

that administration of an agent directed at CSCs prevented re-engraftment of treated tumors

when excised and reinjected in host mice (49). The use of PDX models in this context is

crucial to assess and understand the effect of pharmacological compounds on CSCs. These

findings may have further implications for clinical trial design, as it would suggest that

treatment of minimal residual disease (such as during the postoperative period, or after

debulking chemotherapy) and using a time to event endpoint, may be an appropriate setting

in which to apply this approach.

Based on these data, PDX models may play an important role in drug-response studies to

help select populations of patients most likely to be sensitive to a new agent, as well as to

prioritize the development of new biomarkers. Figure 1 depicts a proposed path for

integration of PDX models in new drug development. For agents that are selected for

clinical studies we propose to perform PDX testing in parallel to phase I safety and

pharmacological studies. PDX preclinical testing should be done in tumor types of interest

selected by prior preclinical data both with regard to disease type but also in molecularly

defined groups as in basket-type trials. Indeed, one of the advantages of the existing PDX

model collections is that they have been extensively characterized at the histological,

molecular and genomic level. Based on the type of agent, studies can be adapted to test

single agents or clinically meaningful combinations, using appropriate endpoints such as

response rate (short-response assay) or tumor growth delay (long-term response). Agents

showing activity in initial screens can be further studied in a larger group of models using

statistical methodologies similar to two-stage clinical trial design. Once again, the

availability of a larger collection of models through the collaboration of academic and non-

profit organizations would enable these larger screens. Biological and genetic comparisons

between sensitive and resistant models can be explored for the prioritization of biomarkers

for inclusion in clinical studies.
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Co-clinical Trials

Once a drug enters clinical trials there are limited opportunities to, on a real-time basis,

analyze and integrate information that may be useful for the development of that agent (50).

Even in studies that select patients based on molecular abnormalities and that incorporate

tumor tissue, normal tissue and imaging-based pharmacodynamic endpoints, there are few

options for real-time integration and exploitation of the observed information in the trial.

This is in part due to the intrinsic nature of clinical trials in which patients are treated with

one drug or regimen at a time and followed under very specific criteria, but also to the lack

of sufficient and easily accessible materials for more in depth studies of clinical

observations. Thus, patients may develop extreme responses or rapid resistance but it is in

general difficult to study the underlying mechanisms in detail.

To solve some of these issues, the concept of co-clinical trials has been proposed. In their

original format, these studies refer to the use of GEM models of cancer to determine patient

selection strategies as well as to discover mechanisms of resistance to treatment approaches

(51, 52). PDX models have been used in this context in parallel studies in rodent models and

patients, and have indeed been useful in identifying potential biomarkers (39, 53).

Moreover, PDX models may also be used in another application of the co-clinical trial

concept, as depicted in Figure 2. In this approach, a personalized PDX model, so-called

‘Avatar’ model, is developed from a patient enrolled in a clinical trial and treated with the

same experimental agents to emulate clinical response. This strategy permits assessment of

drug response simultaneously in the patient and mouse model, providing an interesting

platform to investigate biomarkers of susceptibility and resistance, as well as interrogation

of novel combination strategies to overcome emergent resistance pathways.

Personalized Medicine

The field of oncology is rapidly evolving from an ‘all comers’ approach to cancer therapy to

an era in which patient’s tumors are profiled in greater detail to select the most appropriate

treatment (54). CRC, NSCLC and HBC tumors to name a few, are now routinely profiled to

aid in the treatment decision-making process (55). Furthermore, cell free circulating tumor

DNA is now also analyzed to direct patients to appropriate clinical trials with molecularly

targeted agents (56). While this tailored strategy represents a significant advance in

translational cancer research, further advances are required. One such outstanding advance

requires consideration of patients for whom despite extensive testing, no biomarkers of drug

efficacy are detected. These patients cannot have their treatment personalized. The opposite

situation is also true: as cancer profiling evolves and becomes more comprehensive, multiple

potential targets are identified in some patients confounding the selection of the most

appropriate one.

Avatar mouse models have been used to personalize cancer treatment (57). Interest in using

these models emerges from studies such as those listed in Table 3 that have demonstrated a

remarkable correlation between drug response in PDX models and clinical response. In

NSCLC for example, PDX models have been used to test the efficacy of three of the most

commonly used first-line chemotherapy regimens in this setting. The results of this study

show that approximately two thirds of NSCLC patients is sensitive to first-line
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chemotherapy while one third is resistant. Interestingly, patients are not sensitive to all

regimens equally and some patients are sensitive to one but resistant to another, suggesting

that there is potential to personalize regimen selection (20). In another study, investigators

used Avatar models from patients with advanced cancer to screen a large battery of

anticancer agents and select the most effective agent to treat the donor patient. The results of

this trial show that when all factors involved are correctly aligned, the response in Avatars

and patients is highly correlated. However, in most patients the approach is not feasible for

reasons such as failure of the tumor to engraft, lack of effective agents, and length of time

required for a complete study (33, 35). Thus, strategies to optimize these issues, as discussed

below, are needed.

It is likely that the contribution of PDX models to personalized cancer treatment will

increase by their integration in more global personalized medicine approaches like the one

represented in Figure 3, rather than as a stand-alone platform. The significant revolution in

cancer genetics is permitting, for the first time, the gathering of enormous amounts of

genomic information, including assessment of a complete cancer genome, to aid in clinical

decision-making (55, 58). In many oncology clinics, it is now becoming common practice to

analyze a set of 50-100 relevant cancer genes for hundreds of mutations. From this

approach, numerous potential targets have emerged for individual patients that may

potentially be linked to clinical response. In addition to bioinformatics and in silico

prediction data from cancer cell line data, personalized PDX models may now be useful in

this setting as they facilitate testing of candidate regimens in the patient’s own tumor to

select for the most efficacious treatment approach (3, 59). Furthermore, the integration of

observed responses in mice with the tumor genetic information would eventually lead to the

discovery of new biomarkers of drug efficacy. For patients whose tumors do not take in

mice or those that require a long time to be established and characterized, an alternative to

the Avatar strategy could be to orientate treatment choice based on drug response of a

similar PDX. Primary tumors or metastases biopsies would be molecularly characterized and

compared to available PDX collections from the same pathology, for which responses to

chemotherapies and targeted agents have been previously determined (Supplementary

Figure 1).

LIMITATIONS OF PDX MODELS

While the incorporation of PDX models in cancer research brings some improvements as

detailed above, it is clear that they still have important limitations that need to be addressed

to improve their use in translational cancer research. Some of these limitations are technical

in nature and include several issues, such as (i) consideration of the most appropriate tissue

from which to generate a PDX model and the processing of this tissue. Most of the

published studies have relied on surgical specimens that naturally provide large quantities of

tissues. While this approach is useful to generate PDX collections, smaller samples, such as

tumor biopsies or fine needle aspirations are better suited for personalized medicine

applications. (ii) It is important to define the best strategy of engraftment in mice

(subcutaneous vs. orthotopic implantation) for different tumor types. (iii) Delay between

engraftment time in mice and clinical schedules for patients’ treatment is also a limiting

factor for real-time personalized medicine applications. It normally takes 4-8 months to
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develop a PDX model ready for a preclinical study, a time frame that many patients do not

have. (iv) Another problem is engraftment failure which is still high for some tumor types

with particular phenotypes, such as hormone receptor positive HBC. For personalized

medicine strategies it is mandatory to improve tumor take rates to an acceptable 60-70%,

this being one of the main aspects requiring improvement. This is not only a problem in

personalized medicine, as most patients do not have a linked PDX model, but also in drug

screening studies as current PDX collections are skewed towards certain cancer subtypes

and do not broadly represent the disease heterogeneity.

One key aspect in PDX research is the need to use immunodeficient host strains for tumor

engraftment and propagation. These mice lack functional elements of the immune system

(Table 2) to avoid rejection of foreign tissues and permit engraftment of the tumor. For this

reason, PDX models are of limited use in screening immune mediating agents such as

vaccines, immune modulators (e.g. anti-PD1) or agents that function by activating immune

elements such as anti-CD40 antibodies.

Another critical aspect is the substitution of human tumor by murine stroma throughout

tumor growth in mice. In different studies in which this aspect has been addressed, it has

been consistently shown that the human cancer stroma included in the tumor pieces

implanted is rapidly replaced by murine stroma, so that after 3-5 passages when the models

can be used for drug testing, stroma is in essence murine. This includes the extracellular

matrix, cancer associated fibroblasts, blood vessels and inflammatory and immune

mediating cells such as leukocytes and macrophages. This new murine stroma probably

results in changes in paracrine regulation of the tumor as well as in physical properties such

as interstitial pressure, that may limit the study of agents directed against this tumor

compartment (50, 60).

An important use of preclinical models in cancer research is for drug screening.

Traditionally, this has been done using established cell lines that, as mentioned above, have

very poor predictive value and are over permissive. Using PDX models for this application

would be ideal, although at the present time, cost and resources required make this approach

unfeasible. As an alternative, some groups are using short-term single cell suspensions and

short-term culture in organoid bioreactors.

The process of generating a PDX model clearly results in the selection of tumors that engraft

and propagate in mice. This has been shown across multiple studies with the general

impression that more aggressive tumors have higher take rate. In breast cancer for example,

hormone receptor negative tumors have a higher take rate than hormone sensitive tumors

and are overrepresented in the existing PDX collections (16, 30, 34). HBC, RCC, PDAC and

uveal melanoma patients whose tumors successfully engraft show the worst prognosis,

indicating that there is a selection toward more aggressive higher metastatic tumors (14, 15,

22, 30, 33, 61). In addition, and while this is still poorly understood, it is possible that

tumors which engraft do so by propagation of selected clones that divide actively to form a

new tumor in the host mice that is not necessarily identical to the parental tumor. Thus,

while in general there are close similarities in global genetic surveys such as unsupervised

clustering analyses between a PDX model and the original patient tumor, there are still most
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probably changes in more specific genes and drug targets. In that sense, some studies have

shown that there are discrepancies in the expression of selected drug targets and subtle

variations in the expression of gene signatures reflecting stromal, immune infiltrate or

angiogenesis components. Indeed, several studies have reported that the gene expression

profile and genetic characteristics of PDX models are reminiscent of the cancer metastasis

and relapse environment (15, 24, 33).

FUTURE DIRECTIONS

Over the last few years there has been a growing interest in developing PDX collections and

using them for different cancer research applications (11, 12). While there has been

important progress in the field, there are several crucial areas that will benefit from

additional research. These include such diverse issues as: implantation procedures,

consideration of mouse host strain, post engraftment manipulations, robust application of

translational imaging modalities in the assessment of PDX models towards the elucidation

of imaging response biomarkers, and nomenclature and harmonization in study design and

reporting. Furthermore, because of significant expansion in the field, organized and

collaborative efforts will also be needed to optimize the use of existing collections and the

generation of new ones.

As mentioned above, the process of generating PDX models is, in general, well established

and implemented in a consistent fashion by most research groups (10, 13). However, each

research group has developed its own approach and few comparative methodological studies

are available. Issues such as the minimum sample size needed, best preservation media, the

need to add other components such as matrigel or mesenchymal cells, site of implantation

(subcutaneous, orthotopic or renal cell capsula), and time spent on processing the specimen

for better results are currently unknown. Of major importance, particularly for personalized

medicine applications, is the development of methods to increase engraftment rates and to

generate models from difficult-to-engraft cancer types such as prostate or hormone

dependent HBC. Of great interest in this sense are newer three-dimensional models of

glioblastoma, CRC and HBC for example. These tissue-originated spheroids are generated

by digesting and growing primary tumor cells under controlled culture conditions (62).

Spheroids can survive for several days under in vitro conditions, can be subjected to ex vivo

manipulation and can generate full tumors, of even well differentiated histology, when

implanted in mice (63). Likewise, flow cytometry strategies to purify tumor-initiating cells

prior to implantation in mice can improve engraftment rates (64).

Once a PDX model has been developed, there is also interest in generating cell lines to

facilitate high-throughput drug screening and functional studies (65). However, as discussed

above, any ex-vivo manipulation may pre-empt significant modifications in fundamental

biological properties of the tumor, thus compromising the translational value of the models

(27).

It is now well established that cancer is genetically heterogeneous in an inter- and intra-

individual manner and that there is a genetic evolution in cancer as the tumor progresses

(66-68). Thus, a PDX model generated from one individual lesion at a single time point is
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indeed a snapshot view of a tremendously dynamic process and may not be representative of

the full diversity of the disease. Furthermore, the process of PDX generation, as discussed in

detail above, selects for more aggressive tumors and likely for more aggressive clones, with

metastatic features, within the tumor. At present, there are no solutions to this issue.

However, recent studies attempting to generate PDX models from circulating tumor cells

have shown promising early results (69). One approach to at least partially overcome this

problem is the generation of models from rapid autopsy programs that permit sampling of

multiple lesions from the same cancer (70). In addition to their role in studies of cancer

evolution, these models also are a better representation of end-stage disease, which is where

new drugs are ultimately tested. Furthermore it is to be expected that the more rigorous

grafting of tumors before, during and after treatments, as it is being performed nowadays,

will also result in novel PDX models from paired clinically drug-sensitive and -resistant

tumors.

One key aspect in PDX research is the host mouse model used. With the premise that

immunodeficient hosts are required to allow engraftment, investigators have used different

mouse strains to generate PDX collections. These strains differ with regards to their immune

system deficiencies and provide different permissive environments (Supplementary Table

1). The prevailing notion that a more severely immunodeficient mouse is a better host has

not been properly assessed. While this question may not be relevant for small-scale

experiments, large preclinical studies, which use hundreds of mice, would benefit from the

use of cheaper and less delicate strains. Of major interest, however, is the development of

mouse models with reconstituted immune systems from the donor individual, or models able

to replicate human, rather than murine stroma (71). A “personalized immune” mouse, with a

robust immune reconstitution with hematopoietic stem cells (HSCs) aspirated from bone

marrow of an individual cancer patient, may provide a new model to observe the role of the

autologous immune response in the PDX setting of the same cancer patient. These models

would permit the testing of agents directed against the immune system or the stromal

component.

Another critical requirement is the ability to non-invasively and longitudinally monitor PDX

tumor growth kinetics and response to therapies. Small animal imaging techniques such as

computed tomography, magnetic resonance imaging and positron-emission tomography

allow for detailed appraisal of tumor anatomy, vascularization and metabolic activity (72).

Nevertheless these approaches are limited with respect to high-throughput implementation,

require costly equipment and infrastructure, and a high level of technical expertise.

Conversely, bioluminescence imaging (BLI) requires ectopic transduction of a light-emitting

enzyme (usually luciferase) in tumor cells, but represents a cost-effective and relatively high

throughput and facile preclinical imaging modality (73). Recent studies have reported

efficient expression of exogenous proteins, including luciferase, by infecting patient derived

tumor cell suspensions and spheroid cultures with lentiviral particles (74). While these

advances attest to the feasibility of genetic modification of PDX tumor preparations for

imaging purposes, their utility in the routine implementation of BLI to follow PDX tumors

in vivo remains to be seen.
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Efforts to harmonize and standardize study design and data analysis are also needed. For

PDX preclinical studies to be fully integrated in clinical development pipelines, there first

needs to be a consensus in the design of preclinical studies. This includes areas such as the

number of models representing the tumor heterogeneity of the majority of tumor types, and

the number of mice per model required for robust statistical interrogation, as per a clinical

trial. Another important question is the homogeneity of the batch of mice in which a drug

will be assayed, important when a large number of mice are needed. A key question is the

efficacy endpoint selected and the degree of efficacy required for a positive result. For

example, when testing conventional cytotoxic agents, tumor regression may be the preferred

endpoint, while if testing agents against the cancer stem cell compartment endpoints such as

growth delay and latency to growth after retransplantation may be favored. Regardless of the

selected endpoint, a consensus is needed in reference to the level of activity considered

sufficient to advance an agent to clinical development.

As the number of groups, both in industry and in academia, working on developing PDX

collections increases, efforts to develop collaborative networks are ongoing. These networks

will likely house thousands of models with well-annotated biological, clinical and drug

response data. With proper confidentiality and data protection systems, this information can

be shared to permit rapid assessment of model availability, which will be particularly

important for rare molecularly-defined tumor types. Furthermore, these networks will allow

the conduction of multicenter preclinical trials as done for patients under a single protocol

with rapid accrual and data generation.

In that sense, within Europe a consortium of centers having interest and significant expertise

in PDX models, has now emerged: EurOPDX is an initiative of translational and clinical

researchers across Europe having the common goal to create a network of clinically relevant

and annotated models of human cancer, and in particular PDX models. The primary goal of

our initiative is to share PDX models in diverse cancer pathologies, in order to constitute a

unique collection reproducing the heterogeneity of human cancer. Supplementary Table 2

provides a summary of the models and the level of characterization of those models

currently available across the EurOPDX Consortium.

A shared database with harmonized annotation of models will be established and integrative

systems-based analyses developed to elucidate novel therapeutic strategies and uncover

predictive biomarkers for personalized cancer treatment. Annotation of the models will

include anatomo-pathological data, clinico-pathological data from the patients the PDX were

derived from, deep molecular profiling in particular with gene expression, copy number

alterations and proteomics platforms, as well as pharmacogenomic data corresponding to

current anticancer therapies. Additional technologies such as imaging are increasingly being

used and the ideal database will also include such data as well as scanned images of

pathology slides (75). In this way the Consortium will be able to quickly include any newly

developed multimodal prognostic and predictive tool in the analysis pipeline. Making the

data available for the analysis is not a trivial task as it implies standardization of platforms

used for molecular characterization, data acquisition, data curation, normalization and

quality control. Moreover, and as discussed above, harmonization and standardization of

working practices for the implementation and use of PDX models, and in particular for the
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performance of more reproducible and predictive multicenter preclinical trials, will be a key

objective of the network.

Hypotheses will then be validated in proof-of-concept collaborative multicenter xenopatient

trials within molecularly defined tumor subsets and on a population scale, as a prelude for

prospective clinical trials in humans. The consortium will be in absolute compliance with

European rules for the use of experimental animals. A coordinated and rational design of the

experiments, troubleshooting and sharing of positive and negative results across the various

centers will enable a reduction in the overall number of experimental animals utilized and

optimize the use of each precious patient sample, avoiding unnecessary replicas of

experiments, while maximizing the statistical significance and robustness of the data.

Finally, the performance of research programs among this academic consortium will allow

to address the current limitations of the PDX models described above and advance their use

as clinically relevant cancer models.

Through the building of this network and its collaboration with pharmaceutical companies

and SMEs, the EurOPDX initiative will accelerate the emergence of novel therapeutic

strategies with a real impact on quality of life and overall survival of cancer patients through

more predictive preclinical or “co-clinical” data, ultimately reducing attrition rate in

oncology clinical trials in Europe.

CONCLUSIONS

Over the last decade there has been an interest in developing and characterizing collections

of PDX models from different cancer types, which are now available at academic and non-

profit organizations. These models are becoming an integral part of the drug development

arena, including drug screening and biomarker development. In addition, PDX models bear

the promise of assisting clinical trial designs as well as being integrated in personalized

medicine strategies. It is envisioned that PDX models will eventually play a broader role in

the drug development process and become a must-have element in that process. At present,

however, there are still some critical issues that must be addressed to make this platform

more useful and informative. This includes increasing the take rate and time to model

generation, recapitulation of the human stroma and immune-related elements, as well as

strategies to develop models more representative of different cancer entities, tumor

heterogeneity and chemorefractory patients. Finally, initiatives to harmonize nomenclature,

study designs and procedures are needed. We propose that the new European EurOPDX

initiative, which represents a PDX collaborative consortium, will offer a unique opportunity

to address translational challenges in oncology research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STATEMENT OF SIGNIFICANCE

PDX models are increasingly used in translational cancer research. These models are

useful for drug screening, biomarker development and the preclinical evaluation of

personalized medicine strategies. This review provides a timely overview of the key

characteristics of PDX models and a detailed discussion on future directions in the field.
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Figure 1. Proposed Preclinical Screening and Biomarker Study in PDX models
This figure graphically illustrates some of the key elements of a preclinical study in PDX

models. These studies are likely to be more informative late in preclinical development or in

parallel to phase I safety and pharmacology testing. Models can be selected based on tumor

types or on predefined molecular subtypes if that information is known and of interest, or

both. We propose a two-step approach. In Step 1, a limited number of models can be tested

with the agent at doses and schedules known to be effective and pharmacologically active in

earlier preclinical studies. Study endpoints need to be carefully selected based on the agent’s

mechanism of action. Data from Step 1 can be used to proceed to Step 2 and to redefine

model selection based on molecular understanding of responsive models. In Step 2, a larger

repertoire of models can be treated. At the conclusion of the study a decision needs to be

made to proceed to clinical development and prioritize biomarkers to be explored in the

clinical phase.
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Figure 2. Co-clinical trial approach with PDX models
A new version of the co-clinical trial concept is presented in which a PDX model is

developed from a patient enrolled and treated in a clinical trial with a novel agent. This

approach permits to have models with validated clinical outcome data that can be used to

interrogate mechanisms of response and resistance as well as strategies to increase response

and overcome resistance, for example, combination strategies.
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Figure 3. Personalized medicine strategy
Depicted in this figure is a strategy for individualizing medicine that integrates genomic

analysis of a patient tumor with testing in Avatar mouse models. The genomic analysis of a

patient tumor is likely to show tens of potential therapeutically targetable mutations. Mining

of genomic-drug response databases such as the CCLE or the NCI60 as well as knowledge

of these mutations is likely to result in several potential therapeutic regimens for a given

patient. The Avatar model can be used to test and rank these potential treatments to be

administered to the patient. A post hoc analysis of this information can be added to existing

data to further feed into the existing databases.
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