Skip to main content
. Author manuscript; available in PMC: 2014 Sep 18.
Published in final edited form as: Stat Med. 2013 Sep 6;33(4):650–661. doi: 10.1002/sim.5964

Table 3. Performance of τ under different gamma process priors.

Scenario Priora Mean(Bias)b ESEc MSEd CPe
η k0 c0
I 0.1 1 0.01 4.97 (0.45) 0.90 0.48 95
1 1 0.01 5.00 (0.04) 0.90 0.49 95
0.1 1 0.1 4.99 (0.11) 0.91 0.47 95
1 1 0.1 5.00 (.001) 0.90 0.50 95
0.1 1 5 4.93 (1.47) 1.08 0.50 97
1 1 5 5.02 (0.36) 0.90 0.47 96
0.1 1 10 4.84 (3.16) 1.13 0.59 96
1 1 10 5.00 (.008) 0.91 0.44 96
*0.9 1.33 0.1 4.99 (0.12) 0.88 0.46 96
*0.9 1.33 5 5.00 (0.09) 0.79 0.52 94
II 0.1 1 0.01 4.99 (0.11) 1.06 0.55 96
1 1 0.01 5.00 (0.04) 1.05 0.54 96
0.1 1 0.1 1.99 (0.23) 1.07 0.50 96
1 1 0.1 5.00 (0.09) 1.05 0.52 96
0.1 1 5 4.89 (2.20) 1.15 0.54 97
1 1 5 5.02 (0.34) 0.98 0.53 96
0.1 1 10 4.83 (3.42) 1.17 0.69 97
1 1 10 5.01 (0.26) 0.95 0.50 95
*1.1 0.8 0.1 4.99 (0.24) 1.05 0.51 96
*1.1 0.8 5 5.01 (0.17) 1.05 0.58 97
III 0.1 1 0.01 4.99 (0.21) 0.97 0.49 96
*1 1 0.01 5.00 (0.08) 0.97 0.54 96
0.1 1 0.1 5.01 (0.07) 0.98 0.52 95
1 1 0.1 4.99 (0.23) 0.98 0.51 95
0.1 1 5 4.92 (1.75) 1.11 0.53 97
*1 1 5 5.01 (0.28) 0.93 0.53 95
0.1 1 10 4.82 (3.43) 1.14 0.60 97
*1 1 10 5.00 (.007) 0.92 0.50 95
a

scenarios denoted by * are those when the prior matches the true distribution

b

average of the posterior means over 1000 data sets (bias is defined as |(Mean − 5)/5 × 100|)

c

average of the posterior standard deviation over 1000 data sets

d

mean square error

e

coverage of the 95 percentage HPD interval