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Abstract

The following findings concerning the structure of the cytochrome b6f complex and its component

polypeptides, cyt b6, subunit IV and cytochrome f subunit are discussed:

1. Comparison of the amino acid sequences of 13 and 16 cytochrome b6 and subunit IV

polypeptides, respectively, led to (a) reconsideration of the helix lengths and probable

interface regions, (b) identification of two likely surface-seeking helices in cyt b6 and one

in SU IV, and (c) documentation of a high degree of sequence invariance compared to the

mitochondrial cytochrome. The extent of identity is particularly high (88% for conserved

and pseudo- conserved residues) in the segments of cyt b6 predicted to be extrinsic on the

n-side of the membrane.

2. The intramembrane attractive forces between trans-membrane helices that normally

stabilize the packing of integral membrane proteins are relatively weak.

3. The complex isolated in dimeric form has been visualized, along with isolated monomer,

by electron microscopy. The isolated dimer is much more active than the monomer, is the

major form of the complex isolated and purified from chloroplasts, and is inferred to be a

functional form in the membrane.

4. The isolated cyt b6f complex contains one molecule of chlorophyll a.

5. The structure of the 252 residue lumen-side domain of cytochrome f isolated from turnip

chloroplasts has been solved by X-ray diffraction analysis to a resolution of 2.3 Å.
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INTRODUCTION ANDGENERAL CONSIDERATIONS

The cytochrome2 b6f complex is one of the three integral oligomeric membrane protein

complexes involved in linear or noncyclic electron transport in the chloroplast thylakoid and
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cyanobacterial membrane systems that participate in oxygenic photosynthesis. It is located

electrochemically and in the pathways of electron transport between the two reaction center

complexes (Cramer et al., 1991), and its photosynthetic electron transfer reactions can occur

in the dark. It is phylogenetically related to the cytochrome bc1 complex of mitochondria

and photosynthetic bacteria (Widger et al., 1984), with which there are many structure-

function similarities.

Reviews have recently appeared on sequence-structure-function of the mitochondrial bc1

complex (Degli Esposti et al., 1993), mutational and mutagenesis studies of the bacterial bc1

complex (Gennis et al., 1993), and aspects of the function of the cytochrome b6f complex of

oxygenic photosynthesis (Hope, 1993). The present article concerns the cytochrome b6f

complex, new structural information on the complex, reconsideration of the larger number

of compiled sequences of cytochrome b6 and subunit IV, and a discussion of the crystal

structure determination of the cytochrome f subunit. It does not consider questions of

structure-function related to the Rieske iron-sulfur protein subunit of the complex, aspects of

which have been recently considered for the mitochondrial protein (Graham et al., 1993;

Link et al., 1993). The present article has the underlying viewpoint that the set of data

obtained on cytochrome bc1 complexes is not sufficient to describe all important properties

related to the function of the b6f complex in oxygenic photosynthesis.

The four major (Mr > 15,000) subunit polypeptides of the cytochrome b6f complex that are

readily detected using SDS-PAGE are cytochrome f (285 residues in spinach chloroplasts;

MW = 31,372), cytochrome b6 (214 residues; MW = 24,038), the Rieske iron-sulfur protein

(180 residues; MW = 18,922), and subunit IV (160 residues; MW = 17,444) (MW data for

subunits from different sources compiled in Widger and Cramer, 1991). There are also 4–5

small (Mr < 5,000) subunits in the complex, one of which has been identified as a 37-residue

pet G subunit V (Haley and Bogorad, 1989), whose function is not known.

SEQUENCE COMPARISONS AND STRUCTURAL INFERENCES FOR CYT b6

AND SUBUNIT IV

The assumption of major subunit and prosthetic and redox group similarity of the

cytochrome b6f complex of oxygenic photosynthetic membranes to the cytochrome bc1

complex of mitochondria and purple photosynthetic bacteria (Hauska et al., 1983) was

extended by the demonstration of significant amino acid sequence identity and hydrophobic

segment alignment of the cyt b polypeptides (Widger et al., 1984). Hydropathy graphs

derived from the amino sequence of the long hydrophobic putative membrane-spanning

segments in the N-terminal half of the approximately 400-residue cyt b(bc1) could be

aligned by cross-correlation analysis (Shiver et al., 1989) with a similar graph derived from

the 214-residue spinach chloroplast cyt b6 sequence to (i) identify the four histidine residues

apparently conserved and involved in heme coordination, and (ii) infer that cytochrome b6 is

analogous to the hemebinding domain of cytochrome b of the bc1 complex, and subunit IV

to its C-terminal half (Widger et al., 1984). This also implied that the information in the

single cyt b gene product of the bc1 complex is contained in the split gene products, cyt b6

and subunit IV, of oxygenic photosynthesis. These genes are contiguous or close in higher
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plant chloroplasts and cyanobacteria, but separated by a large distance in the green alga

Chlamydomonas (Büschlen et al., 1991).

The involvement of the same four histidine residues in ligation of the two hemes was also

inferred from their conservation in six mitochondrial sequences (Saraste, 1984). The original

models for folding of the cytochrome b heme binding domain across the membrane bilayer

contained five trans-membrane helices, with heme coordination involving the second and

fifth helices from the N-terminus (Widger et al., 1984; Saraste, 1984). It was subsequently

proposed that the fourth helix in this model was not trans-membrane, but rather a surface-

bound amphiphilic helix (Crofts et al., 1987). Support for the revised four-helix model of the

cytochrome b heme-binding domain was provided for cyt b(bc1) by: (i) the consistent

mapping pattern of cytochrome b mutants resistant to inhibitors known to act primarily at

the quinone binding site on the n- (e.g., antimycin, funiculosin) and p- (e.g., stigmatellin,

mythathiazol) sides (cf. discussion of notation in legend to Fig. 1) of the membrane (diRago

and Colson, 1988; Howell and Gilbert, 1988; Daldal et al., 1989; Gennis et al., 1993); (ii)

the location of both polypeptide termini of cyt b6 on the n-side of the membrane using

protease accessibility of epitopes for peptide-directed antibodies (Szczepaniak and Cramer,

1990).

The original calculations of the approximate location and identity of the hydrophobic trans-

membrane helices (Widger et al., 1984; Saraste, 1984; Crofts et al., 1987) could not predict

the orientation of the cyt b polypeptide in the membrane. For cyt b(bc1), the orientation was

subsequently established through (i) the distribution of sites of resistance for the n- and p-

side inhibitors mentioned above, and (ii) for cyt b of the complex in the bacterium Rb.

sphaeroides, the sites of fusion to alkaline phosphatase (Yun et al., 1991). (iii) For cyt b6,

the orientation shown in Fig. 2A was determined by protease accessibility to specific

epitopes (Szczepaniak and Cramer, 1990), also mentioned above, and is consistent with the

statistical cis- positive rule of Von Heijne (1992) [cf. Gavel et al. (1991) for a specific

application to thylakoid membrane proteins]. This rule states that for intrinsic membrane

proteins the number of positively charged residues located on the side of the membrane (cis)

from which the protein is imported is larger than the number on the opposite (trans) side

(i.e., the translocation of positively charged residues across biological membranes is

energetically costly).

The number of (Arg + Lys) residues on the n-(cis) and p-(trans) sides of cyt b6 is 8 and 5

(not including the intramembrane Arg-86), and for SU IV it is 8 and 3. This identity of the

basic residues participating in this asymmetric distribution is essentially conserved in both

cyt b6 and SU IV. All of the basic residues are conserved in the 13 cyt b6 sequences shown

in Table I with the exception of the substitution of Asn (N) for Lys (K) at position 111 in

Proto- chorothrix hollandica. In the case of SU IV, the identity of 8 of the 11 residues

contributing to the (+) charge bias is conserved (Table IB), P. hollandica has the two

changes R-15 → L and K-20 → Q, the cyanobacterium A. quadruplicatum is also changed

at the latter position, and 4 of 14 sequences are changed at position 367. [Note that the cis-

positive rule does not apply to cytochrome f and the Rieske iron-sulfur protein of the cyt b6f

complex because in each of these subunits the peripheral segment of the protein exceeds 60

residues (Von Heijne, 1992); in the case of the Rieske protein, there is also a question as to
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whether it has a membrane span or is totally extrinsic (Gonzalez-Halphen et al., 1988;

Breyton et al., 1994).]

The four-helix model applied to cytochrome b6 is shown in Fig. 1A along with the folding

model for SU IV. The helices of cyt b6 (Fig. 1A; in the rectangular boxes) and subunit IV

(Fig. 1B) are designated A–D and E–F, respectively, and the n- and p-side extrinsic linking

peptide segments “ab,” “bc,” and “cd” (segments of cyt b6), and “ef,” “fg” (segments of SU

IV) according to the notation of Crofts et al. (1990). The models of Fig. 1A, B differ from

earlier models of cyt b6 and SU IV (Widger and Cramer, 1991) by (i) inclusion of the

tendency of the p-side surface segments “ab,” “cd” (cyt b6), and “ef” (SU IV) to form

amphiphilic helices. The hydrophobic moments of helices “ab,” “cd,” and “ef” are 0.39,

0.53, and 0.45, respectively, using a segment length of 15 residues and the amino acid

hydrophobicity data base of Eisenberg (1984), as in Shiver et al. (1989). This amphiphilic

character has been noted previously for the “cd” helix of cyt b(bc1) (Crofts et al., 1987), and

the latter amphiphilic helix has been explicitly included in models of the p-side quinone

binding site (Robertson et al., 1990). Asp-155 or Glu-166 in the “cd” segment have been

proposed to bind DCCD and to facilitate H+ translocation to the membrane surface

associated with p-side quinol oxidation (Beattie, 1993). The “ef” segment in SU IV contains

seven proline residues, three of which have been included in an “ef” helix because of its

pronounced amphiphilicity. Precedents for such a helix are provided by surface helices in

the photosynthetic bacterial reaction center: the “ab” helix with three or two (Rb.

capsulatus), and the “cd” helix with three or two (C. aurantiacus) proline residues. (ii) The

length of the F, G helices of SU IV has been extended one turn in order to take into account

the tendency of basic residues Lys-333 and R-339, R-340 to provide punctuation for TM

helices. (iii) The tendency of aromatic residues, and tryptophans in particular, to be found

near the aqueous interface (Deisenhofer and Michel, 1989; Jacobs and White, 1989) was

taken into account by placing Trp-79 on the p-side of helix B, and Trp-246 on the n-side of

helix E in contact with the bilayer phase.

The orientation of the “fg” helix of subunit IV inferred by Li et al. (1991) from trypsin

accessibility studies was opposite to that shown in Fig. 1B. The distribution of (Arg+Lys) in

a SU IV with an orientation reversed from that shown in Fig. 1B would be decidedly

opposite to that predicted by the cis-positive rule.

Two striking features of the comparison of sequences of the 13 cyt b6 and 16 SU IV

polypeptides are (a) the high degree of overall sequence identity, as noted in a comparison

of an initial set of three complete, and two partial b6-SU IV sequences (Hauska et al., 1988),

and (b) the higher extent of identity on the n-side compared to the p-side of the membrane.

The degree of conservation of the 13 sequences of the 214 cyt b6 polypeptide (Table IA) is

69% and 79% for identical and pseudo-identical (K↔R, D ↔ E, and S ↔ T) residues, and is

53% and 63%, respectively, for the 160 residue subunit IV (Table IB). These levels of

identity appear to far exceed those seen in cyt b of the mitochondrial bc1 complex (Hauska

et al., 1988; Degli Esposti et al., 1993). In the 18 mitochondrial sequences compiled by

Hauska et al. (1988), 10% of the residues are invariant (Degli Esposti et al., 1993). Degli

Esposti et al. (1993) have also noted that the result of sequence analysis of the cytochrome b
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protein from more than 800 species, the most extensive analysis for any integral membrane

protein, is that there are only 9 invariant amino acids (Table II).

Table II summarizes (a) the position in the sequence of cyt b6-SU IV, and (b) the likely or

proposed function of the 24 most highly conserved residues in the mitochondrial

cytochrome b (Degli Esposti et al., 1993). Sixteen of the 24 residues are in cyt b6, according

to Degli Esposti et al. (1993). Eight are in SU IV, of which three are the consecutive Pro

291-Glu 292-Trp 293. Five of the residues listed as most highly conserved by Degli Esposti

et al. (1993) are different although conserved in cyt b6, where they are Val-132 (p-side, C

helix), Gly-143 (p-side, “cd” loop), Lys-148 (p-side, “cd” helix), Ile-149 (p-side, “cd”

helix), and Arg-206 (n-side, C-terminal segment). No such residues occur in SU IV. Thus,

four of the 16 most conserved residues in cyt b6, and four of the five that break the

invariance of the superfamily, are in the “cd” segment of cyt b6. The fifth residue that breaks

the invariance, Arg-206, is analogous to His-202 that is otherwise completely conserved in

the mitochondrial and photosynthetic bacterial cytochrome. In the latter, it is His-217. The

mutation His 217 → Arg in the bacteria results in an inhibition of the rate of heme bn

oxidation by a factor of 3–4 (Gray and Daldal, 1993; Hacker et al., 1993). The fact that the

Arg residue that results in inhibition of bacterial heme bn (cf. discussion of notation in

legend of Fig. 1) oxidation is conserved in cyt b6 can be conservatively interpreted as

indicating that the putative quinone binding site on the n-side of the membrane (Qn site) has

a different structure compared to that in the mitochondria and bacteria. Arg 206-Lys 207

have also been shown to be accessible to trypsin in thylakoid membranes (Szczepaniak and

Cramer, 1990). This implies that the heme coordinated by His-201 is close (ca. 7 – 9 Å ) to

the n-side interface, in contrast to heme bn of the mitochondrial cytochrome that was

inferred from EPR experiments with external paramagnetic complexes (Ohnishi et al., 1989)

and electrochromic msec “slow” phase measurements (Glaser and Crofts, 1984; Robertson

and Dutton, 1988) to be appreciably removed (approximately 25 Å) from the n-side

interface. One other Arg residue that is uniquely conserved in the cyt b6 sequences is Arg-86

adjacent to His-85 in the B helix. It is the only conserved residue that carries a nominal

charge in the designated trans-membrane helices of the cytochrome b polypeptides.

The difference in sequence and probable structure of the n-side of cyt b6 compared to cyt

b(bc1) is further illustrated by the extremely high level of sequence identity of the n-side

peripheral segments of cyt b6, 78% and 87% for invariance and pseudo-invariance (Table

IA, Fig. 1). These levels are higher than the corresponding values of 61% and 73% for the p-

side domains. Thirteen of the last fifteen residues in cyt b6, Met-200 to Leu-214 on the n-

side of helix D, are invariant, with Arg-206 approximately in the middle of this segment.

The greater invariance on the n-side of the membrane is a bias opposite to that in

cytochrome b of the bc1 complex (Degli Esposti et al., 1993). The n-side of the b6fcomplex

is known to be characterized by the lack of a high-affinity binding site for quinone-analogue

inhibitors (Widger and Cramer, 1991; Hope, 1993). The lack of such a site for a potent n-

side inhibitor such as antimycin A is one of the obvious differences between the b6f and bc1

complexes, and has been a major point in discussions about the possibility of different

properties of the b6f complex compared to cyt b(bc1) (Cramer et al., 1991; Rich et al.,

1992). [The inhibitors NQNO (Selak and Whitmarsh, 1982; Rich et al., 1991; Kramer and
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Crofts, 1992) and MOA-stilbene (Rich et al., 1992) may be weakly binding n-side inhibitors

of cyt b6; see Hope (1993) for a discussion of some inconsistencies in this interpretation

regarding NQNO.] How- ever, when contrasted with mitochondria, the higher extent of

sequence identity of the n-side of cyt b6 and SU IV implies that (i) a much higher degree of

sequence invariance is required to establish a binding site of plastoquinone to allow the

same Q-cycle mechanism that has been documented for mitochondria and bacterial

chromatophores (Crofts, 1985; Trumpower, 1990); (ii) alternatively, the n-side extrinsic

regions of cyt b6 and SU IV are responsible for essential functions in addition to, or instead

of, the Q cycle function. One such function might be the docking of redox proteins [e.g., the

“G” protein component of Joliot and Joliot (1988)] that can supply reducing equivalents to

heme bn from the n-side aqueous phase.

WEAKNESS OF HELIX–HELIX INTERACTIONS

The b6fcomplex is extracted from the membrane as an integral membrane protein complex

in detergents such as cholate, MEGA-9, or β-D-dodecylmaltoside. As a membrane protein

complex, the b6fcomplex has the unusual property that the subunits can be separated from

the complex and from each other at alkaline pH (ca. 10.5–11.5) [Fig. 2; Szczepaniak et al.,

1991; Cramer et al., 1992]. This implies that, unlike membrane proteins such as

bacteriorhodopsin (Popot and Engelman, 1990) and the glycophorin dimer (Lemmon et al.,

1992), the attractive forces arising from intramembrane hydrophobic, hydrogen bond, and

van der Waals interactions between the subunits are relatively weak. As a consequence, the

electrostatic repulsive force exerted between the subunits at alkaline pH, arising from net

excess negative charge on the peripheral polypeptide segments, is sufficient to cause the

subunits of the complex to separate in the membrane. The fact that the subunits of the

spinach chloroplast b6f complex do undergo lateral separation in the membrane at high pH is

inferred from the separate and sequential release of the subunits of the complex as a function

of increasing pH. A satisfying explanation does not exist as to why the subunits are not just

separated, but also extruded from the membrane. One may speculate that the release from

the merebrane is a consequence of the partial deprotonation and neutralization of the basic

residues that are proposed to form the defined “stops” for the predicted trans-membrane α-

helices A, B, and D of cyt b6 (Fig. 1A) and E, F, and G of SU IV (Fig. 1B). Once the “stops”

are lost, the positions of the helices in the membrane would have fewer thermodynamic

constraints, and more freedom to move in the direction normal to the plane of the

membrane.

The relative weakness of the attractive intramembrane forces between the subunits of the b6f

complex may be partly a consequence of prosthetic groups such as the helix-bridging heroes

(Fig. 1C) providing spacers between these helices that prevent close packing between some

of the trans-membrane helices.

THE b6f COMPLEX AS A STRUCTURAL AND FUNCTIONAL DIMER

The relatively weak intramembrane forces between subunits could also facilitate

interconversion of monomer and dimer forms of the complex. The existence of a dimer form

of isolated cyt b6f reconstituted in vitro was indicated from its geometric cross-section in
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electron micrographs (Mörschel and Staehelin, 1983). The presence of both monomer and

dimer forms in isolated cyt b6f complex was inferred from (a) the presence in a sucrose

density gradient of two fractions of unknown, but different, relative molecular weight, (b)

the conversion of the higher to the lower Mr form after longer centrifugation times or in

higher Triton detergent concentrations, (c) inhibition of this conversion by cross-linking

reagents, and (d) the generation of different cross-linked Mr forms from the high- and low-

Mr fractions (Chain and Malkin, 1991). Mr values and distinct sizes and geometries

corresponding to monomer and dimer forms of cyt b6f complex isolated from spinach

thylakoids were determined by (a) FPLC molecular chromatography in β-D-

dodecylmaltoside, (b) native gel electrophoresis according to the method of Schägger and

von Jagow (1991), and (c) averaged images obtained by electron microscopy of negatively

stained single particles (Huang et al., 1993). The dimer was shown to be much more

abundant (80–90% of the total complex) than the monomer when assayed by native gel

electrophoresis (Huang et al., 1993). When isolated by FPLC molecular sieve

chromatography which, compared to the native gel technique, resulted in a higher fraction (≤

30% of the total) of monomer, the dimer was also much more (~ 5-fold) active in electron

transfer from plastoquinol-2 to plastocyanin. The level of activity of the monomer was low

enough that it could be attributed to residual dimer (Huang et al., 1993). Single-particle

images of the monomer and dimer are shown in Fig. 3. A discussion of structure

determination by electron microscopy is presented elsewhere in this volume by Boekema et

al.

The existence of the dimeric form as the predominant form of the purified mitochondrial

cytochrome bc1 complex is well established (Weiss and Kolb, 1979; Von Jagow and Sebald,

1980; Leonard et al., 1981; Nalecz and Azzi, 1985), although the functional significance of

this dimer is still unclear (de Vries et al., 1983; Schmitt and Trumpower, 1990; Bechmann et

al., 1992; Nieboer and Berden, 1992). It is known that oligomeric structures of membrane

proteins are statistically likely in the two-dimensional space of the membrane (Grasberger et

al., 1986), and that a dimeric structure and dimer–monomer transitions of the respective

receptors are important in the mechanism of trans-membrane signaling in at least several

systems (Pakula and Simon, 1992; Bormann and Engelman, 1992). Two of the more

thoroughly studied examples include the bacterial aspartate chemoreceptor (Milburn et al.,

1991), and the epidermal growth factor receptor-tyrosine kinase (Canals, 1992) signaling

systems. We make the admittedly speculative suggestion that the cytochrome b6f and bc1

complexes are primitive trans-membrane signaling systems. In the case of the b6f complex,

this is suggested by its apparent association with a protein kinase, the LHCP kinase, on the

n-side of the membrane, and the ability of p-side quinone analogue inhibitors to block kinase

activity (Gal et al., 1990a, b).

MOLECULE OF CHLOROPHYLL a IN b6f COMPLEX

The presence of chlorophyll in the spectrum of the cytochrome b6f complex isolated from

spinach chloroplasts was noted in a benchmark paper on the purification and properties of

the complex (Hurt and Hauska, 1983). The cyt b6f complex from the cyanobacterium

Synechocystis PCC 6803, which was isolated in the monomeric form, was found to contain a

single chlorophyll a molecule that was determined by linear dichroism analysis to be
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oriented in the complex (Bald et al., 1992). Electron microscopic analysis of this complex

was carried out by Bald et al. (1992) and is reviewed in the present volume of this journal by

Boekema et al. Analysis of the isolated b6f complex from spinach chloroplasts showed a

chlorophyll a:cytochrome f stoichiometry > 1, but a smaller value close to 1 when the dimer

was further purified from the complex by FPLC molecular sieve chromatography (Huang et

al., 1993). The latter stoichiometry appeared to be the minimum value because it was not

decreased further by an additional chromatographic step, implying that the one chlorophyll a

molecule was not bound adventitiously.

CYTOCHROME f STRUCTURE: BIOCHEMICAL AND CELL BIOLOGICAL

CONSEQUENCES

The understanding of structure/function of cytochrome f was advanced recently by the

determination of its X-ray structure at a resolution of 2.3 Å (Martinez et al., 1991, 1992,

1993). The structure that was solved was that of the soluble 252-residue lumen-side domain

of the 285-residue (MW = 31, 298 in turnip chloroplasts) mature polypeptide that spans the

membrane once (Fig. 4C).

The use of the lumen-side polypeptide of the cytochrome arose from attempts to prepare

intact cytochrome f from spinach chloroplast thylakoid membranes for crystallization. These

attempts were abandoned because the cytochrome tended to aggregate. This had been noted

previously by Ho and Krogmann (1980) who determined a molecular weight of 285,000 for

the aggregate that approximately corresponded to an octamer. Preparations of cytochrome f

from cruciferous plants, however, were reported to be soluble and monomeric with an Mr

value of 27,000 instead of 32,000–33,000 (Gray, 1978). It was suggested that the decrease in

apparent molecular size might arise from proteolysis at the C-terminus because the N-

terminal sequence of cytochrome f from the cruciferous plant, rape, was found to be

identical to that of spinach and pea (Willey et al., 1984). It was also inferred that the

tendency of the spinach cytochrome f to aggregate in aqueous solution might arise from the

20-residue hydrophobic segment (residues Nos. 251–270, underlined in Table III) near the

C-terminus, and that removal of the hydrophobic domain near the C-terminus might explain

the water-soluble monomeric nature of the cruciferous cytochrome f fragment. Therefore, it

was decided to purify cruciferous cytochrome f for structural analysis.

Cytochrome f was purified from turnip leaves and found to display an Mr value of 31,000 on

SDS-PAGE, compared to 33,800 in the turnip thylakoid membrane (Fig. 5). After promising

crystals had been obtained, truncation of the turnip cytochrome f near the C-terminus during

purification was confirmed by C-terminal sequencing of the turnip cytochrome polypeptide

with carboxypeptidases Y and A. Three of the last four residues were found to be Leu 249-

Arg 250-Val 251 (Martinez et al., 1991). The fourth C-terminal residue was inferred to be a

serine at position 252, instead of the glutamine that was conserved in the several chloroplast

cytochrome f sequences known at that time. It was therefore thought that the explanation of

the susceptibility of cytochrome f to lumen-side cleavage by an endogenous protease was a

Gin → Set substitution at residue 252 (Martinez et al., 1991). Determination of the

nucleotide sequence of the turnip cytochrome f gene by J. C. Gray showed that residue 252

is, in fact, a glutamine in the turnip (Brassica campestris) cytochrome f (Gray, 1992).
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Therefore, the explanation of the “natural” proteolysis in the Cruciferae cytochrome f is the

existence of a protease in chloroplasts from these plants that is activated or made accessible

to the lumen-side of the cytochrome f during its extraction from the thylakoid membranes.

The same cleavage was subsequently reported for cytochrome f from charlock (Gray, 1992).

It is perhaps interesting that the cleavage predominantly occurs two residues into the 20-

residue, hydrophobic trans-membrane α-helix. This suggests that the protease might be

related to a processing or leader peptidase. The thylakoid processing peptidase of

cytochrome f is known to be membrane-bound (Johnson et al., 1991), and the active site of

that for plastocyanin is on the lumen side of the membrane (Kirwin et al., 1991). On the

other hand, the cleavage site of a processing protease should be unique, whereas analysis of

the charlock (Gray, 1992) cytochrome f polypeptide by ESMS showed that the C-terminus is

somewhat ragged, with small populations of fragments resulting from cleavage at residues

adjacent to Glu-252. Preliminary ESMS of the turnip cyt f fragment indicated that it is ≥

90% of the fragment population (D. Huang, D.L. Smith, and W.A. Cramer, unpublished

data). The residue closest to the C-terminus for which electron density can be resolved in the

structure is Leu-249 adjacent to Arg-250 (Fig. 6).

The successful crystallization of the soluble turnip cyt f polypeptide that contains a small

part (Val 251-Gln 252) of the putative hydrophobic membrane-spanning helical domain

suggests a strategy for the systematic genetic engineering for purposes of crystallization of

redox proteins such as cytochrome c1 or the Rieske iron-sulfur protein that have the same

kind of general topography: generate a polypeptide fragment of the peripheral soluble

fragment that is as long as possible to allow proper folding of the protein. This fragment

could include a few residues of the hydrophobic helical domain, in order to increase the

chances for correct folding of the fragment without affecting solubility.

The turnip cytochrome f polypeptide was crystallized at 5°C in the reduced form in the

presence of dithioerythreitol using 40–42% acetone as the precipitant (Martinez et al.,

1992). The structure has been solved by multiple isomorphous replacement and anomalous

scattering to a resolution of 2.3 Å (Martinez et al., 1993). Some of the major features of the

structure are:

1. Unlike the prototypical structure of soluble cytochrome c that has one mostly α-

helical domain, the elongate (25 × 35 × 75 Å) cytochrome f structure is made of

two domains whose major secondary structure motif is a β-sheet.

2. The heme is near the interdomain interface in the larger domain, the Fe 45 Å from

the C-terminus of Arg-250 that is connected to the TM α-helix.

3. The smaller domain, consisting of residues 169–231, contains Lys-187, previously

shown to cross-link to Asp-44 of plastocyanin (Morand et al., 1989; cf. Redinbo et

al., this volume), that is solvent-exposed and 28 Å from the heme Fe (Fig. 6).

Lys-187 is in a positively charged region that includes Lys-185 and Arg-209 on the

small domain. Lys-66, Lys-65, and Lys-58 are neighboring basic residues on the

large domain.

4. The axial sixth heme ligand is the α-amino group of the N-terminal tyrosine

residue. A number of spectroscopic studies had noted similarities between spectra
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of cytochrome f and soluble mammalian cytochrome c at alkaline pH (> 10) in

which the methionine ligand is exchanged for a lysine (Siedow et al., 1980; Davis

et al., 1988; Rigby et al., 1988; Simpkin et al., 1989). The conserved Lys-145 was

proposed as the axial sixth ligand (Davis et al., 1988). However, the ε-amino group

of Lys-145 is 33 Å from the heme iron. The amino group function inferred from the

spectroscopic studies can be fulfilled by the tyrosine α-amino group, and in one

respect is fulfilled even more readily because the pK of the latter is close to

neutrality.

5. Unlike mammalian cytochrome c, the heme is insulated from the aqueous phase by

a shield including three aromatic residues of which one is Tyr-1. This may explain

why the midpoint redox potential of cyt f is approximately 100 mV more positive

than that of mammalian cyt c.

Because the structure of plastocyanin is known (Gross, 1993; Redinbo et al., this volume),

the question immediately arises as to its competent binding configuration with cytochrome f.

Information on the sites of interaction was provided by covalent cross-linking of

plastocyanin to cytochrome f using the water-soluble 1-ethyl-3-[3-(dimethyl-

amino)propyl]carbodiimide (EDC). One site of linkage involved Asp-44 of plastocyanin and

Lys-187 of cyt f. A second linkage involved Glu-59 and/or 60 to an unknown, presumably

basis, residue on cyt f. As noted above, Lys-187 is in a basic “patch” of residues (Fig. 6).

The transfer of electrons from cytochrome f to plastocyanin is thought to be mediated as

well by the Tyr-83 residue of plastocyanin which is exposed on the surface of PC and whose

ring is approximately 9–10 Å and 10 Å from Asp-44 and the Cu atom, respectively. The

distance of Asp-44 from the copper is 20 Å. With cyt f in the orientation shown in Fig. 6, PC

would bind through its acidic regions (residues 42–45 and 59–61 of spinach plastocyanin)

on the side of the barrel to the basic region of cyt f around Lys-187, the copper would be at

the bottom of the PC barrel in this binding geometry, and Tyr-83 would then be located

closer to the heme than Asp-44. It should be noted that covalent cross-linking of the PC–cyt

f pair renders it incompetent for intermolecular electron transfer (Qin and Kostic, 1993), and

the PC inactive in the reduction of photosystem I (Morand et al., 1989).

Orientation of Cytochrome f Relative to the Membrane Surface

It would seem that interaction of cytochrome f with the Rieske protein would be facilitated if

the long axis of the large domain of cyt f was oriented with not too large an angle relative to

the plane of the membrane. Interaction between the proposed surface “cd” helix of

cytochrome b and the analogous cytochrome c1 is implied by the existence of a second site

suppressor mutation in cyt c1 to a primary inhibitor-resistant mutation in the “cd” loop of cyt

b(bc1) of Rb. capsulatus (F. Daldal, personal communication). It has been observed in EPR

studies on magnetically oriented chloroplast membranes (Bergstrom and Vanngard, 1982;

Crowder et al., 1982) and dehydrated two-dimensional lattices of cytochrome b6f complex

oriented after centrifugation on Mylar sheets (Riedel et al., 1991) that the cyt f heme has a

broad (Bergstrom and Vanngard, 1982; Riedel et al., 1991) or narrow (Crowder et al., 1982)

distribution of orientations relative to the membrane surface. The most probable orientation

of the heme plane in both kinds of distributions would have it sharply tilted at an angle of

approximately 25–30° relative to the plane of the membrane. Although there may be some

Cramer et al. Page 10

J Bioenerg Biomembr. Author manuscript; available in PMC 2014 September 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



flexibility in the orientation of cyt f, the most probable orientation of the protein appears to

be favorable for interaction with surface-bound or extrinsic segments of the Rieske iron-

sulfur protein and cyt b6.

Sixth Heme Ligand of Cytochrome f: Consequences for Protein Translocation and
Assembly

The consequence of the sixth heme ligand being the α-amino group of the N-terminal Tyr

residue of the mature protein is that the complete ligation of the heme that results in

formation of the low-spin coordination state, and assembly of the final folded state of the

protein, cannot occur until the signal peptide of the intermediate translocated preprotein has

been cleaved by the processing peptidase. This peptidase is believed to be located on the

lumen side of the membrane (Johnson et al., 1991; Kirwin et al., 1991). This implies that the

protein folding could not be completed until translocation has proceeded at least to the point

where a significant part of the cytochrome including Tyr-1 and His-25 has crossed the

membrane. In addition, the ligation of the heme and associated folding, as in the

translocation pathway of apocytochrome c (Planner and Neupert, 1990), may provide

additional free energy needed to complete the translocation process.

The use of the Tyr-1 α-amino group as the sixth heme ligand can be viewed as a control

mechanism to ensure a proper delay in the timing of protein refolding, and is an example of

the general principle of membrane protein translocation that the protein to be translocated be

unfolded (Verner and Schatz, 1988; Pfanner and Neupert, 1990). Although the use of amino

terminal ligation thus seems to be a rational mechanism, it appears that it is not necessarily

ubiquitous for metalloproteins even for the closely related cytochrome c1 protein: (i) in the

nitrogen-fixing microaerobic endosymbiont, Bradyrhizobium japonicum, cytochromes b and

c1 can be made by mutagenesis as a single two-domain polyprotein connected by a 31-

residue internal signal peptide (Thony-Meyer et al., 1991). Although it was shown in the

latter work that covalent binding of the c1 heme was required for formation of the bc1

polyprotein, cleavage of the internal signal peptide was not. The use of a sixth ligand

different from the N-terminal α-amino group, for at least some cytochromes c1, is also

suggested by the appearance of a normal reduced α-band spectrum in a mutant of yeast

cytochrome c1 that is blocked in cleavage of the signal peptide (Yang and Trumpower,

1993).
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Fig. 1.
Folding pattern across the thylakoid membrane of (A) cytochrome b6 and (B) subunit IV

predicted by the distribution and conservation in the 13 and 16 sequences shown in Table

IA, B of long (ca. 20 residue) hydrophobic segments. The hydrophobic membrane bilayer is

delineated by the rectangular boxes. Hatched circles represent residues that are not invariant

or pseudo-invariant. (C) Molecular model (stereo view) of heme-bridged helices B and D of

spinach cyt b6. The amino acid sequences of these helices are: B helix, NH2 (p-side)-

SVHRWSASMMVLMMILHVF-COOH; D helix, NH2 (p-side)-

FYSLHTFVLPLLTAVFMLMHFLMI-COOH. Nomenclature: (1) The two sides of the

membrane are designated n- and p-, the electrochemically negative and positive sides, which

correspond to stroma and lumen, respectively, in the case of chloroplast thylakoid

membranes. This notation is chosen instead of i and o proposed in the recent review of Degli

Esposti et al. (1993) because it is conceptually simple, which is important for teaching

purposes, allows comparative discussion of bacteria, chloroplasts, and mitochondria without

reference to the definition of all of the respective extramembrane compartments (lumen,

matrix, cytoplasmic, stroma, intermembrane, periplasmic), and is unambiguous, unlike i and

o which can readily be mistaken by nonspecialists for “inside” and “outside.” (2) Putative

trans-membrane helices and connecting peripheral domains are labeled A – G and ab…fg,

respectively, according to the proposal of Crofts et al. (1990). (3) Cytochrome b hemes on

the n- and p-sides of membrane coordinated by His-99 and His-201 and His-85 and His-186,

respectively, bridging helices B and D, are designated hemes bn and bp, respectively. The

notation is preferred over that of bh and bl, for high- and low-potential hemes, proposed by

Degli Esposti et al. (1993) because (a) there is experimental disagreement for cyt b6 in situ

concerning the existence of experimentally resolvable high- and low-potential b hemes, and
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(b) the redox titration of cyt b of the bc1 complex from the PS3 thermophilic bacterium,

which shows some similarity to the b6f complex, does not show a discernible difference in

Em of the two hemes (Kutoh and Sone, 1988). Regarding (a), two reports (Furbacher et al.,

I989; Rich et al., 1991) show that the Em values of the two hemes are not separately

resolved (ΔEm < 50mV) in thylakoid membranes in the presence of Mg2+; one (Kramer and

Crofts, 1990) showed potentiometric resolution (bh = −15 mV, bl = −110 mV, ΔEm = 95

mV) of the two hemes. The latter result was obtained in the absence of Mg2+ but is in close

agreement with the heme potentials measured in the isolated b6f complex (Hurt and Hauska,

1983; Nitschke et al., 1988). It was proposed (Kramer and Crofts, 1990) that the use of a

continuous high-measuring light intensity in the redox titrations of Girvin and Cramer

(1984) and Furbacher et al. (1989) might account for the discrepancy, but the intensity (0.6

μE · m−2 sec−1) found by Kramer and Crofts (1990) to cause cytochrome oxidation was at

least 30 times that used (10–20 nE · m−2 · sec−1) by the latter authors.
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Fig. 2.
Schematic diagram of the major subunits of the cytochrome b6f complex (A) as an organized

cluster at neutral ambient pH, and (B) after lateral separation of the subunits in the

membrane at alkaline pH (Cramer et al., 1992; figure reproduced with permission of The

American Society for Biological Chemistry and Molecular Biology).
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Fig. 3.
Electron micrographs of negatively stained (left) monomer and (right) dimer forms of the

cytochrome b6f complex. Monomer and dimer images were computed as the average of 58

and 59 single-particle images, respectively (Huang et al., 1993). Size bar = 10 nm.
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Fig. 4.
(A, B) Model for processing and assembly of intermediate forms of cyt f and (C) membrane

topography of mature form. The schematic shows that complete heme ligation involving the

α-amino group of Tyr-1 cannot occur until the 35-residue leader peptide (LP) has been

removed by the processing peptidase that is believed to reside on the lumen side of the

membrane (Johnson et al., 1991; Kirwin et al., 1991).
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Fig. 5.
SDS-PAGE of cytochrome f purified from turnip thylakoid membranes (lane A), compared

to that of the cytochrome in membranes that were dissolved in SDS and run on the get

without prior extraction (lane B). ΔMr = 3,000 between the two bands that correspond to

polypeptides with (A) the 252 residue turnip cyt f fragment (arrow) and (B) the complete

turnip cyt f polypeptide with 285 residues. The molecular weight of the 252-residue

polypeptide is 27,500 including the covalently bound heme. The purification procedure was

essentially as described by Gray (1978), except for the use of PMSF (0.5 mM), benzamidine

(2 mM), and ε-aminocaproic acid (2 mM) (Martinez et al., 1992, 1993). For electrophoresis,

the cytochrome was solubilized in 50 mM Tris-HCl, pH 8.6, 4 M urea, 4% SDS, 10%

glycerol, and 5% β-mercaptoethanol, and run with a gel system containing 15% acrylamide

(Piccioni et al., 1982).
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Fig. 6.
α-Carbon model of the lumen-side extrinsic polypeptide of turnip (French, “le navet”;

German, “die Steckrübe” or “der Kohlrabi”) cytochrome f (SDS-PAGE in Fig. 5) showing

the large and small domains of the cytochrome, the heme, and residues Lys-145 and

Lys-187 in the large and small domains, and Arg-250 at the C-terminus that are separated by

33, 28, and 45 Å, respectively, from the heme iron.
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Table I

Compilation of Aligned Amino Acid Sequences of (A) Cytochrome b6 and (B) Subunit IVa

J Bioenerg Biomembr. Author manuscript; available in PMC 2014 September 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Cramer et al. Page 25

J Bioenerg Biomembr. Author manuscript; available in PMC 2014 September 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Cramer et al. Page 26

a
AGMEN (Agmenellum quadruplicatum. Brand et al., 1992); NOSTOC (Cyanobacterium Nostoc strain PCC 7906. Kallas et al., 1988);

HOLLANDICA (Prochlorothrix hollandica. Greer and Golden, 1992); BARLEY (Hordeum vulgare. Reverdatto et al., 1989); SPINACH (Spinacia
oleracea, Heinemeyer et al., 1984); WHEAT (Triticum aestivum. Hird et al., 1991); MAIZE (Zea mays. Rock et al., 1987, PROTOTHECOI
(Chlorella protothecoides. Reimann and Kueck, 1989); RICE (Oryza sativa. Cote et al., 1988; Hiratsuka et al., 1989); TOBACCO (Nicotiana
tabacum. Shinozaki et al., 1986); GRACILIS (Euglena gracilis. Schlunegger and Stutz, 1984); S. 6803 (Synechocystis sp. PCC 6803. Osiewacz,
1992); EUGAMETOS (Chlamydomonas eugametos. Tunnel et al., 1989); REINHARDTII (Chlamydomonas reinhardtii. Büschlen et al., 1991);
LVWORT (Marchantia polymorpha. Fukuzawa et al., 1987); PEA (Pisum sativum. Phillips and Gray, 1984); S. obliquus (Scenedesmus obliquus.
Kück, 1989).
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Table II

Summary of Residues of Cyt b6 and SU IV in Sequence Compilations of Tables IA, B and Figs. 2A, B That

Are Most Highly Conserved (Degli Esposti et al., 1993)

Residue Invariance Location (Figs. 2A, B) Function

Cytochrome b6

Gly 36 Completeb n-side, A helix Heme pocketa

Gly 50 Essentially completeb A helix —

Gly 78 Essentially completeb “ab” region Turn between “ab” and B helices

Arg 82 (+) Residue essentially completeb p-side interface, B helix Stop transfer, B helix

His 85 Completeb p-side, B helix Ligand of p-side hemec,d

Ser 90 Incompleteb B helix —

His 99 Completeb n-side, B helix Ligand of n-side hemec,d

Arg 102 (+) Residue completeb n-side interface, B helix Stop transfer, B helix

Trp 117 Completeb n-side, C helix —

Gly 120 Essentially completeb n-side, C helix —

Gly 134 Essentially completeb p-side, C helix —

Tyr 135 Incompleteb p-side, C helix —

Trp 145 Incompleteb p-side, “cd” helix —

Thr 178 Essentially completeb p-side interface—“cd” helix —

His 186 Completeb p-side, D helix Ligand of p-side hemec,d

His 201 Completeb n-side, D helix Ligand of n-side hemec,d

One extra residue between two His ligands on D helixc

SU IVe

Asp 249 Essentially completeb n-side interface, E helix —

Ile 289 Incompleteb p-side, “ef” loop —

Pro 291 Completeb p-side, “ef” loop —

Glu 292 Essentially completeb p-side, “ef” loop —

Trp 293 Essentially completeb p-side, “ef” loop —

Leu 302 Essentially completeb p-side, “ef” loop —

Lys 308 Incompleteb p-side interface, F helix Stop transfer, F helix

Gly 311 Essentially completeb p-side interface, F helix Turn between “ef” and F helix

a
Tron et al., 1991; Yun et al., 1991;

b
Degli Esposti et al., 1993;

c
Widger et al., 1984;

d
Saraste, 1984;
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e
note that the numbering of SU IV is different from that used by Degli Esposti et al. (1993) who omitted the first 30 residues of the SU IV

sequence. Use of the numbering system of the latter authors would cause overlap of numbering with the cyt b6 sequence from residue 195–214.

The basis of the numbering system used in the present work is based on the concept that SU IV is a functional extension of cyt b6.
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Table III

Amino Acid sequence of Turnip Cytochrome f (Gray, 1992).
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