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Abstract

Background—Lung cancer is the leading cause of cancer death, in part due to lack of early

diagnostic tools. Bronchoscopy represents a relatively noninvasive initial diagnostic test in

smokers with suspect disease, but has low sensitivity. We have reported a gene expression profile

in cytologically normal large airway epithelium obtained via bronchoscopic brushings that is a

sensitive and specific biomarker for lung cancer. Here, we evaluate the independence of the

biomarker from other clinical risk factors and determine the performance of a clinicogenomic

model that combines clinical factors and gene expression.

Methods—Training (n = 76) and test sets (n = 62) consisted of smokers undergoing

bronchoscopy for suspicion of lung cancer at five medical centers. Logistic regression models

describing the likelihood of having lung cancer using the biomarker, clinical factors, and these

data combined were tested using the independent set of patients with non-diagnostic

bronchoscopies. The model predictions were also compared with physicians’ clinical assessment.

Results—The gene expression biomarker is associated with cancer status in the combined

clinicogenomic model (p < 0.005). There is a significant difference in performance of the

clinicogenomic relative to the clinical model (p < 0.05). In the test set, the clinicogenomic model

increases sensitivity and NPV to 100%, and results in higher specificity (91%) and PPV (81%)

compared to other models. The clinicogenomic model has high accuracy where physician

assessment is most uncertain.

Conclusions—The airway gene expression biomarker provides information about the likelihood

of lung cancer not captured by clinical factors, and the clinicogenomic model has the highest

prediction accuracy. These findings suggest that use of the clinicogenomic model may expedite
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more invasive testing and definitive therapy for smokers with lung cancer and reduce invasive

diagnostic procedures for individuals without lung cancer.

Introduction

Lung cancer is the leading cause of cancer death in the U.S and the world, with over 1

million deaths worldwide annually1. Eighty-five to ninety percent of subjects with lung

cancer in the US are current or former smokers, with 10–20% of heavy smokers developing

this disease 2. Lack of effective tools to diagnose lung cancer at an early stage before it has

spread to regional lymph nodes or metastasized beyond the lung has resulted in a 5-year

mortality rate of 80 to 85%3.

Smokers are often suspected of having lung cancer based on abnormal radiographic findings

and/or symptoms that are not specific for lung cancer. Fiberoptic bronchoscopy represents a

relatively noninvasive initial diagnostic test to employ in this setting, with cytologic

examination of materials obtained via endobronchial brushings, bronchoalveolar lavage and

endo- and transbronchial biopsies of the suspect area4,5. While cytopathology is 100%

specific for lung cancer, the sensitivity of cytologic examination of materials obtained at

bronchoscopy ranges from 30% for small peripheral lesions to 80% for centrally located

endobronchial tumors6. Given the relatively low sensitivity of bronchoscopy, additional and

more invasive diagnostic tests are routinely needed which are costly, incur risk, and prolong

the diagnostic evaluation of patients with suspect lung cancer. Determining which suspect

lung-cancer patients with cancer-negative bronchoscopies should undergo these additional

diagnostic tests is currently a matter of clinical judgment. We have recently reported a gene

expression profile in cytologically normal large airway epithelial cells obtained via brushing

at the time of bronchoscopy that serves as a diagnostic biomarker for lung cancer7. This

biomarker is an accurate predictor of lung cancer at an early and potentially curable stage,

and the sensitivity of the biomarker could substantially reduce the number of individuals

requiring additional invasive diagnostic testing following a lung-cancer negative

bronchoscopy.

Many groups have developed gene expression profiles that can be used to distinguish

between different diagnostic and prognostic subgroups in a variety of cancers. An

unexplored issue for many of these biomarkers is whether the gene expression patterns are

independent of other clinical risk factors. If so, it presents an opportunity to create

clinicogenomic models that incorporate both clinical and gene expression predictors of

disease likelihood. There are several examples of such clinicogenomic approaches. Pittman

et al. have shown improved prediction accuracy for breast cancer recurrence through an

integrative clinicogenomic model8, Similarly, Li combined genomic and clinical data in a

survival model to predict the outcome of patients with diffuse large-B-cell lymphoma after

chemotherapy9. Stephenson et al integrated gene expression and clinical data using logistic

regression modeling to predict prostate carcinoma reoccurrence after radial prostatectomy,

and demonstrated that a combined model had the highest predictive accuracy10. In the near

future, diverse sources of data such as gene expression, genetic, proteomic, and clinical data

will likely be integrated to make accurate diagnoses or prognostic predictions for complex

diseases such as cancer11.
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With approximately 90 million former and current smokers in the U.S.12 and the emergence

of sensitive but nonspecific chest imaging technologies, patients increasingly present to

clinicians with abnormal radiographic findings concerning for the possibility of lung cancer.

While no definitive predictive model for lung cancer exists for use in this setting, numerous

clinical and radiographic variables have been associated with the likelihood of lung

malignancy: age13, smoking history14 (including number of pack-years, age started,

intensity of smoking and years since quitting), history of asbestos exposure, clinical

symptoms including hemoptysis and weight loss15, size of the nodule or mass and

radiographic appearance on chest imaging15,16, presence of lymphadenopathy, clinical or

radiographic evidence for metastatic disease, evidence of airflow obstruction on

spirometry16, and uptake of FDG on positron emission tomography (PET) scan17,18. Several

groups have developed predictive models using combinations of the above variables in the

setting of solitary pulmonary nodules15,19,20. Swensen et al. compared such a model for the

presence of solitary pulmonary nodules to predictions made by physicians and found that

there was no significant difference; though they suggested that the model had potential in

the management of patients with benign nodules21. In addition, risk prediction models for

lung cancer, including a recent large case-control study of never, former, and current

smokers, have been reported22.

In this study, we sought to evaluate whether the lung cancer predictions made by our large

airway gene expression biomarker are independent of other clinical risk factors; and if so, to

determine the relative performance of a clinicogenomic model that combines clinical risk

factors with the biomarker. We show that the biomarker provides information about the

likelihood of a patient having lung cancer beyond that which is contained in the available

clinical data, despite the clinical model predictions being highly associated with the

subjective clinical assessment of patient risk made by pulmonary physicians. Furthermore,

we find that the clinicogenomic model has better diagnostic accuracy than either the clinical

model or the gene expression biomarker alone. Our data suggest that the clinicogenomic

model could be efficacious in predicting the likelihood of lung cancer in those patients

where physicians are most uncertain about the likelihood of disease.

Methods

Patient Population

The present study cohort consists of patients who participated in our study to develop the

large airway gene expression biomarker7. In that study, we recruited current and former

smokers undergoing flexible bronchoscopy for clinical suspicion of lung cancer at four

tertiary medical centers between January 2003 and April 2005 as described previously7. All

subjects were greater than 21 years of age and had no contraindications to flexible

bronchoscopy. Never smokers and subjects who only smoked cigars were excluded from the

study. All subjects were followed, post-bronchoscopy, until a final diagnosis of lung cancer

or an alternative diagnosis was made (mean follow-up time = 52 days). 129 subjects (60

smokers with lung cancer and 69 smokers without lung cancer) who achieved final

diagnoses as of May 2005 and had high quality microarray data were included in the

primary sample set. Seventy-seven of these samples were randomly assigned to the training
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set. The training set for the current study (n = 76) excluded one of these training set samples

due to incomplete smoking history (Figure 1). After completion of the primary study, a

second set of samples (n=35) was collected prospectively from smokers undergoing flexible

bronchoscopy for clinical suspicion of lung cancer at five medical centers between June

2005 and January 2006. Inclusion and exclusion criteria were identical to the primary

sample set. The test set samples in the current study (n=87) combined both the remaining

samples from the primary sample set (n=52) and this prospective test set (n=35), but we

chose to limit the test set to the subset of patients that did not have a definitive diagnosis

following bronchoscopy (n = 62), as is shown in Figure 1 and described in more detail

below. Demographic information on all subjects is detailed in Table 1, and information

regarding the cell type, stage, and location of the lung tumors (n=78) in the study cohort is

shown in Table 2. The study was approved by the Institutional Review Boards of the five

medical centers at which patients were recruited (Boston University Medical Center, Boston,

MA; Boston Veterans Administration, West Roxbury, MA; Lahey Clinic, Burlington, MA;

and St. James’s Hospital, Dublin, Ireland, St. Elizabeth’s Medical Center, Boston, MA) and

all participants provided written informed consent

Large Airway Gene Expression Biomarker for Lung Cancer

Using the Affymetrix HG-U133A microarray, we have previously developed a gene

expression biomarker for lung cancer utilizing gene expression profiles in cytologically

normal large airway epithelial cells collected from brushing the right mainstem bronchus of

smokers undergoing bronchoscopy for suspicion of lung cancer (GEO accession number

GSE4115) 7. The biomarker was developed using the training set of the current study (n =

76) with the addition of one additional sample that did not have a complete smoking history

(Figure 1). The biomarker was constructed from the expression levels of 80 probesets (72

unique genes and 7 unknown transcripts) using the weighted-voting algorithm23 that

combines these expression levels into a biomarker score. A positive score is predictive of

cancer and a negative score is predictive of no cancer. In this study, we use the biomarker

score as a starting point for the following statistical analyses: (1) building three logistic

regression models to determine the likelihood of lung cancer using the clinical risk factors

alone, the biomarker alone, or the likelihood of lung cancer using the clinical risk factors

and biomarkers combined; (2) comparison of these three models using their predictive

values on a test set of patients not used in the initial model building phase; (3) comparison of

the clinical models with assessments made by expert clinicians.

Construction of Logistic Regression Models

Logistic regression models to quantify the probability of a patient having lung cancer were

generated using the training set samples (n = 76). This training set included patients who had

cytopathology findings that either confirmed a diagnosis of lung cancer or alternate non-

cancer pathology. Patients with diagnostic bronchoscopies were included in the training set

to maximize the number of samples and because exclusion of these samples was

unnecessary to develop models capable of accurately predicting the lung cancer status of

patients with non-diagnostic bronchoscopies (data not shown). For the clinical and

clinicogenomic models, the available clinical variables (Table 1) included age and pack

years of smoking, and the following dichotomous variables: gender (Male=1, Female=0),
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race (Caucasian=1, 0 otherwise), smoking status (former smokers that quit greater than or

equal to 10 years ago=1, 0 otherwise), hemoptysis (presence=1, 0 otherwise),

lymphadenopathy (mediastinal or hilar lymph nodes greater than 1cm on CT chest scan=1, 0

otherwise), mass size (having a mass size greater than 3cm=1, 0 otherwise). PET scan

information was only available for 15 patients and was not included in the model. Backward

stepwise model selection using Akaike’s Information Criterion (AIC)24 was used to select

the optimal clinical model for the probability of a patient having lung cancer.

To create an integrated clinicogenomic model and determine the independence and

magnitude of the contribution of the gene expression biomarker after adjusting for the

effects of the clinical variables, we first added the biomarker to the optimal clinical model.

The biomarker scores and all of the available clinical variables were then used with

backward stepwise model selection by AIC to select the optimal model. Both approaches

yielded the same combined model. In order to verify that the biomarker score performs

similarly in logistic regression as in the weighted-voting prediction algorithm used in our

previous work7, the accuracy, sensitivity, specificity, positive predictive value, and negative

predictive value were compared for the weighted-voting predictions and the predictions

made by a logistic regression model that included only the biomarker score across the

independent test samples.

Comparison of Model Performance on Independent Patients

The performance of the logistic regression models (clinical, biomarker, and clinicogenomic)

was initially evaluated on the subset of patients in the training set (n = 76) in which the

cytopathology of materials obtained at bronchoscopy were non-diagnostic (n = 56) (Figure

1). We chose to focus on non-diagnostic bronchoscopies so as to specifically assess the

utility of the gene expression biomarker and clinical parameters in the setting of patients that

require further diagnostic evaluation for lung cancer. More importantly, we also tested the

models in the non-diagnostic bronchoscopy test set (n = 62) (Figure 1). For each of the

models, patients that had a probability of lung cancer greater than or equal to 0.5 were

classified as having lung cancer, and patients with a probability less than 0.5 were classified

as not having lung cancer. Receiver Operating Characteristics (ROC) curves were also used

to compare the clinical model to the clinicogenomic model in the training set patients with

non-diagnostic bronchoscopies, the independent test set, and combined set of all patients

with non-diagnostic bronchoscopies (n=118). In order to assess whether or not two ROC

curves based on the same set of samples were significantly different, methods developed for

comparing ROC curves derived from the same cases were used25,26. To compare ROC

curves based on different sample sets, we used a two-sample z-test. The ROC curves serve

as a common scale for evaluating the additional merit of variables added to the model as

odds ratios for two different variables may not be comparable27. The accuracy, sensitivity,

specificity, positive predictive value, and negative predicate value were also calculated

across the independent test set for the clinical model, the biomarker model, and the

clinicogenomic model.
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Subjective Clinical Assessment

Three independent pulmonary clinicians practicing at a tertiary medical center, blinded to

the final diagnoses, evaluated each patient’s clinical history at the time of bronchoscopy.

The history included but was not limited to age, smoking status, cumulative tobacco

exposure, co-morbidities, symptoms/signs, radiographic findings, and PET scan results if

available. Based on this information, the clinicians classified each patient into one of three

risk groups: low (<10% assessed probability of lung cancer), medium (10–50% assessed

probability of lung cancer) and high (>50% assessed probability of lung cancer). The final

subjective assignment for each subject was decided by choosing the median opinion. The

interrater reliability for the clinical classification of patients’ non-diagnostic bronchoscopies

was significant indicating that the level of agreement between the clinicians was greater then

would be expected by chance as measured by the kappa statistic (κ= 0.57; p < 0.001)28.

Comparison of Subjective Clinical Assessment to the Clinicogenomic Model

The sample size for building a comprehensive clinical model to predict the risk of having

lung cancer was limited as was the scope of variables that were available for inclusion in the

clinical and clinicogenomic model. We therefore sought to determine if the clinical model

performs similarly to the subjective clinical assessment made by pulmonary specialists as

this assessment is (1) “trained” on the large number of patients seen over each clinician’s

career and (2) considers all of the information contained within a patient’s medical records.

A Wilcoxon test was used to assess whether or not the clinical model-derived probability of

having lung cancer varied between samples classified as low, medium, or high cancer risk

by the clinicians.

Statistical Analysis

All statistical analyses were conducted using R statistical software v 2.2.1.

Results

Evaluating the Gene Expression Biomarker as an Independent Predictor of Lung Cancer

The demographic and clinical characteristics as well as the mean and standard deviation for

the biomarker scores stratified by cancer status and membership in the training or test sets

are shown in Table 1. Age, race, pack years of smoking, lymphadenopathy, mass size, and

the biomarker score were significantly different (p < 0.001) between patients with and

without lung cancer. The test and training sets, however, were well balanced for the

variables used in the analyses (though the incidence of having a mass size greater than 3 cm

was somewhat lower in the test set compared to the training set; p = 0.047). Information

about the cell type, stage, and location of the tumors in the cancer patients, as well as the

fraction of diagnostic bronchoscopies for each subgroup is shown in Table 2. Effect

estimates and derived odds ratios (OR) for the variables in each of the three logistic

regression models are shown in Table 3. We found that the optimal clinical model for this

cohort did not include pack years. This is likely due to the strong correlation between age

and pack years (r = 0.56, p< 0.001) in the training set. A clinical model constructed with

pack years instead of age yielded similar results when tested on the independent test set
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(n=62), with an accuracy of 84% and 85%, and area under ROC curves of 0.94 and 0.86,

respectively. The optimal clinical model did not include smoking status (former vs. current

smokers) regardless of how time since quitting was dichotomized. In addition,

dichotomizing mass size using a threshold value of 2cm (instead of 3cm) produced clinical

and clinicogenomic models with similar overall accuracy.

A logistic regression model describing the likelihood of having lung cancer derived from the

biomarker score produced equivalent results to the weighted-voting algorithm predictions of

lung cancer status described previously(4), resulting in 8 versus 7 incorrect classifications,

indicating that the biomarker score is an accurate way to model the original biomarker

prediction algorithm in the clinicogenomic model. The biomarker score is a significant

predictor of lung cancer likelihood in both the biomarker only model (p < 0.001) and in the

clinicogenomic model (p < 0.005). In the clinicogenomic model, the coefficients of the

clinical variables are largely unchanged from the clinical model, and the coefficient of the

biomarker is largely unchanged from the biomarker only model. These data suggest that the

gene expression biomarker and the clinical variables are independent predictors of lung

cancer risk.

Evaluating the Performance of the Clinicogenomic Model

The three models were used to predict the cancer status of a subset of the training samples

with non-diagnostic bronchoscopies (n=56), the independent test samples (n=62), and these

two sets combined (n=118). ROC curves were used to compare the performance of the

clinical model to the clinicogenomic model (Figure 2). The clinicogenomic model had better

performance than the clinical model in all three sample sets. While this difference in

performance does not reach statistical significance in the test set, when the training and test

sets were combined, there was a significant difference in the area under the curve between

the clinicogenomic and clinical models (p < 0.05). The performance of the models in the

training set samples does not appear to be any better than in the test set samples (p = 0.25,

for the difference in the area under the ROC curves; the AUC difference is 0.065; 95% CI:

−0.046–0.174). This suggests that the models do not overfit the training data and that it is

therefore reasonable to combine the training and test sets to assess the significance of the

difference in the performance of the clinical and clinicogenomic models.

The sensitivity, specificity, and positive and negative predictive values for each of the three

models were evaluated across the test set (Figure 3). The combined clinicogenomic model

increases the sensitivity and negative predictive value to 100% and results in higher

specificity and positive predictive value compared to the other models. Cancer subjects with

peripheral lesions were well represented in the test set (70.6%), and the clinicogenomic

model was equally accurate among peripheral or central lung tumors. The clinicogenomic

model also accurately predicted lesions with a mass size less than 3 cm as well as poorly

defined radiographic infiltrates in the test set (Table 4). In addition, the performance of the

clinical and clinicogenomic models does not appear to be specific to samples with non-

diagnostic bronchoscopies as these models had sensitivities of 90% and 95% on independent

samples with diagnostic bronchoscopies (n = 25). Finally, training the clinical and

clincogenomic models across only the training samples with non-diagnostic bronchoscopies
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(n=56) resulted in similar accuracies in the test set (82% and 91%, respectively) and a

significant difference in the area under the ROC curves between the models (p < 0.05).

Comparing the Clinicogenomic Model to the Clinical Subjective Assessment

In order to evaluate whether or not the clinical model is comprehensive given the relatively

small number of variables it contains, we assessed whether it correlates with the median

subjective assessment of three pulmonary physicians. There was an association between the

clinical model predictions and the clinical subjective assessment across the test set samples

(Figure 4). The clinical model probabilities were significantly different between the three

physician-assessed risk groups (p < 0.01).

Given the association between the clinical model and subjective clinical assessment, we

examined the predictions made by the clinicogenomic model stratified by cancer status and

subjective clinical assessment category in the test set samples (Figure 5). The physician’s

opinion is the most uncertain based on the all the clinical data for the 11 samples in the

medium risk category. The clinical model is able to classify 7 out of the 11 samples

correctly; however, the clinicogenomic model correctly classifies all 11 samples.

Discussion

A previous study by our group reported a gene expression biomarker capable of

distinguishing cytologically normal large airway epithelial cells from smokers with and

without lung cancer7. These cells can be collected in a relatively noninvasive manner from

bronchial airway brushings of patients undergoing bronchoscopy for the suspicion of lung

cancer. The cytopathology of cells obtained during bronchoscopy is 100% specific for lung

cancer, but has a limited sensitivity of between 30 and 80% depending on the stage and

location of the cancer, with early stage disease and peripheral cancers having the lowest

sensitivity6. As a result, physicians are confronted with a difficult decision as to how to

manage the care of patients with potentially early-stage curable disease, when bronchoscopy

does not return any cells with aberrant cytopathology. Often the decision about whether to

proceed with more sensitive and often more invasive diagnostic procedures or to determine

if the initial suspicious radiographic finding resolves in subsequent repeat imaging studies, is

based on a subjective assessment of the patient’s clinical and radiographic risk factors for

lung cancer. As the large airway gene expression biomarker uses material that can be easily

collected at the time of bronchoscopy (prolonging the procedure by only 2–3 additional

minutes), this test could be a useful component of this decision making process if the

biomarker captures information about lung cancer risk that is otherwise occult.

Our results suggest that the pattern of gene expression in large airway epithelial cells reflects

information about the presence of lung cancer that is independent of other clinical risk

factors. This interpretation results from a comparison of models that contain either clinical

variables or the biomarker to a combined clinicogenomic model. The comparison shows that

the biomarker is significantly associated with the probability of having lung cancer in both

the biomarker and clinicogenomic models and that the importance of each of the variables in

the combined clinicogenomic model is similar to their importance in the initial uncombined

models.
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Given the independence of the biomarker and clinical models, it is not surprising that the

clinicogenomic model is a better predictor of lung cancer than either of the initial models in

an independent test set. ROC curve analysis shows that the clinicogenomic model performs

significantly better than the clinical model. Furthermore, the clinicogenomic model

increases the sensitivity, specificity, positive and negative predictive value of the clinical

model, and its accuracy does not appear to be influenced by the size or location of the lesion.

However, these findings need to be validated in larger patient cohorts. One way to

accomplish such validation would be to incorporate gene expression measurements into

large epidemiological studies investigating lung cancer risk or lung cancer screening trials

involving high-risk smokers.

Despite the limitations of a small sample size and limited clinical parameters, we are

encouraged that subjective clinical assessment based on a patient’s complete medical record

is associated with the clinical model probabilities. This is particularly important given that

certain variables, such at PET scan findings, were not included in the clinical model as these

studies were performed on only a small number of the subjects in our cohort. All available

data, such as PET scan findings, were however considered by the pulmonary physicians as

part of their subjective assessment of lung cancer likelihood. Further, the clinicogenomic

model appears to correctly classify patients assigned to the medium risk subgroup by the

clinical subjective assessment. This subgroup of patients is one that is likely to be especially

challenging to manage clinically as almost a third of these patients went on to have a final

diagnosis of lung cancer.

Our data suggest that a clinicogenomic model that combines gene expression with clinical

risk factors for lung cancer has high diagnostic specificity and positive predictive value

among patients with non-diagnostic bronchoscopies, including those with small and/or

peripheral lesions on chest imaging. This model might therefore serve to identify those

patients who would benefit from further invasive testing (e.g. lung biopsy) to confirm the

presumptive lung cancer diagnosis and thereby expedite the diagnosis and treatment for their

underlying malignancy. In addition, the clinicogenomic model also results in modest

increases in diagnostic sensitivity and negative predictive value. Utilization of this

clinicogenomic diagnostic might therefore also result in a reduction in the number of

individuals without lung cancer who are subjected to additional and more invasive

procedures to rule out a lung cancer diagnosis following a non-diagnostic bronchoscopy. If

the ultimate sensitivity and negative predictive value of the clinicogenomic model remains

close to 100%, this would allow clinicians to confidently use less invasive and less costly

approaches (e.g. repeat CT scan in 3–6 months) to follow patients with a low

clinicogenomic lung cancer risk score.

The ability of gene expression profiles within cytologically normal airway epithelium to

serve as a biomarker for lung cancer raises questions as to the underlying biology of the

cancer-specific molecular changes observed in these cells. The high diagnostic accuracy for

the biomarker in the setting of small peripheral lung lesions suggests that changes in airway

gene expression between smokers with and without lung cancer are unlikely to be a direct

effect of the tumor. The presence of antioxidant and inflammation-related genes in the gene

expression biomarker7 raises the possibility that the biomarker detects an airway-wide
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cancer-specific difference in response to tobacco-smoke exposure. Given the hypothesis that

this field of injury may provide information about the host-carcinogen interaction,

alterations in gene expression could precede the development of lung cancer, and explain the

somewhat lower specificity of the biomarker relative to its sensitivity. If this is true, the

biomarker might potentially be a useful tool to identify smokers at highest risk for disease

who may benefit from chemopreventative strategies.

Conclusion

The gene expression pattern of histologically normal large airway epithelial cells collected

at the time of bronchoscopy can be used as a biomarker that provides information that is

independent from clinical parameters about lung cancer risk. In the setting of patients with

suspect lung cancer that do not have a definitive diagnosis after routine cytology/pathology

of materials retrieved by bronchoscopy, a clinicogenomic model that combines both clinical

factors and the large airway gene expression biomarker results in improved sensitivity,

specificity, positive and negative predictive values over the clinical model alone. This

suggests that the integrative clinicogenomic model may help expedite invasive diagnostic

testing for those smokers with underlying lung tumors, and decrease the number of

individuals without lung cancer requiring further invasive diagnostic testing to rule out

suspicion of disease.
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Figure 1.
Training and test sample sets. The training and test samples were derived from a previously

published study assaying airway epithelial gene expression from current and former smokers

undergoing bronchoscopy for the clinical suspicion of lung cancer7. (A.) We previously

constructed a gene-expression biomarker that predicts the presence of lung cancer using a

training set of 77 patients. For the current study, one of these samples was removed due to

incomplete smoking history, resulting in the logistic regression models being trained with

data from 76 patients. The models were subsequently tested on the subset of training

samples (n=56) that had cytopathology that was non-diagnostic of lung cancer. (B.) The

biomarker was also tested on the subset of independent samples with non-diagnostic

cytopathology (n =62) from the combined test and prospective validation sample sets (n =

87) used in our previous study.
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Figure 2.
ROC curves for the clinical model and the clinicogenomic model across the different sample

sets. The clinical model (gray line) includes the following variables: age, mass size, and

lymphadenopathy, while the clinical and biomarker model includes the above variables and

the biomarker score (black line). Both models were derived using the training set samples

(n=76). (A.) ROC analysis of the non-diagnostic training set samples (n = 56). The AUC for

the clinical and clinicogenomic model is 0.84 and 0.90, respectively. (B.) ROC analysis of

the test samples (n = 62). The AUC for the clinical and clinicogenomic model is 0.94 and

0.97, respectively. (C.) ROC analysis of the combined training and test sets (n = 118). The

AUC for the clinical and clinicogenomic model is 0.89 and 0.94, respectively, which

represents a significant difference between the two curves (p <0.05).
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Figure 3.
Performance of three logistic regression models across the test set samples. Samples with

model derived probabilities of having lung cancer greater than or equal to 0.5 were classified

as cancer, and samples with probabilities less than 0.5 were classified as non-cancer.

Samples with a final diagnosis of cancer are indicated in orange while samples with a final

diagnosis of no cancer are indicated in blue. The saturation of the colors is representative of

the proportion of each final diagnosis group classified as having cancer or no cancer by each

of the models. For each model, the sensitivity (Sens), specificity (Spec), positive predictive

value (PPV), and the negative predictive value (NPV) are shown. (A.) The Clinical Model

(B.) The Biomarker Model (C.) The Clinicogenomic Model. The Clinical Model and the

Biomarker Model each perform similarly with accuracies of 84% and 87%, respectively.

The Clinicogenomic Model has a greater accuracy (94%), specificity, and PPV than either of

the other two models.
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Figure 4.
Association between the probability of having lung cancer as predicted by the clinical model

and physician’s subjective assessment across the test set samples (n=62). The model derived

probabilities are shown on the y-axis and the subjective clinical assessment on the x-axis.

Red circles indicate complete agreement among 3 clinicians, black indicates agreement of 2

clinicians, and green indicates no agreement. There are significant differences (Wilcoxon

test; p < 0.01) between the probabilities in the low versus medium group, the medium versus

high group, and the low versus high group.
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Figure 5.
The clinicogenomic model-derived lung cancer predictions stratified by cancer status and

the physician’s subjective assessment across the test set samples (n=62). Dark gray

represents a final diagnosis of cancer and light gray represents a final diagnosis of non-

cancer. Squares represent correct clinicogenomic model predictions and circles represent

incorrect model predictions. Each of the samples classified as having a medium risk of lung

cancer by physicians was predicted correctly by the clinicogenomic model.

Beane et al. Page 17

Cancer Prev Res (Phila). Author manuscript; available in PMC 2014 September 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Beane et al. Page 18

T
ab

le
 1

D
em

og
ra

ph
ic

, C
lin

ic
al

, a
nd

 B
io

m
ar

ke
r 

C
ha

ra
ct

er
is

tic
s 

St
ra

tif
ie

d 
by

 C
an

ce
r 

St
at

us
 o

r 
m

em
be

rs
hi

p 
in

 th
e 

tr
ai

ni
ng

 a
nd

 te
st

 s
et

s.
 D

at
a 

ar
e 

m
ea

ns
 ±

 s
ta

nd
ar

d

de
vi

at
io

ns
 f

or
 c

on
tin

uo
us

 v
ar

ia
bl

es
 a

nd
 p

ro
po

rt
io

ns
 w

ith
 p

er
ce

nt
ag

es
 f

or
 d

ic
ho

to
m

ou
s 

va
ri

ab
le

s.

F
ac

to
r

O
ve

ra
ll 

(n
 =

 1
63

)
C

an
ce

r 
(n

 =
 7

8)
N

o 
C

an
ce

r 
(n

 =
 8

5)
p†

T
ra

in
 (

n=
76

)
T

es
t 

(n
=6

2)
p†

A
ge

58
.1

 ±
 1

4.
3

64
.5

 ±
 9

.6
52

.3
 ±

 1
5.

4
<

 0
.0

01
57

.3
 ±

 1
4.

0
57

.5
 ±

 1
5.

3
0.

91

M
al

e
12

2/
16

3 
(7

4.
8)

60
/7

8 
(7

6.
9)

62
/8

5 
(7

2.
9)

0.
59

59
/7

6 
(7

7.
6)

42
/6

2 
(6

7.
7)

0.
25

C
au

ca
si

an
11

0/
16

3 
(6

7.
5)

67
/7

8 
(8

5.
9)

43
/8

5 
(5

0.
6)

<
 0

.0
01

52
/7

6 
(6

8.
4)

36
/6

2 
(5

8.
1)

0.
22

Sm
ok

ed
 W

it
hi

n 
10

 Y
ea

rs
13

0/
16

3 
(7

9.
8)

60
/7

8 
(7

6.
9)

70
/8

5 
(8

2.
4)

0.
44

62
/7

6 
(8

1.
6)

47
/6

2 
(7

5.
8)

0.
53

P
ac

k 
Y

ea
rs

44
.9

 ±
 3

2.
0

54
.9

 ±
 2

6.
8

35
.7

 ±
 3

3.
7

<
 0

.0
01

45
.8

 ±
 3

0.
2

39
.9

 ±
 3

5.
4

0.
3

D
ia

gn
os

ti
c 

B
ro

nc
ho

sc
op

y
45

/1
63

 (
27

.6
)

40
/7

8 
(5

1.
3)

5/
85

 (
5.

9)
<

 0
.0

01
20

/7
6 

(2
6.

3)
0/

62
 (

0)
<

0.
00

1

C
an

ce
r

78
/1

63
 (

47
.9

)
78

/7
8 

(1
00

.0
)

0/
85

 (
0.

0)
<

 0
.0

01
40

/7
6 

(5
2.

6)
17

/6
2 

(2
7.

4)
0.

00
3

L
ym

ph
ad

en
op

at
hy

43
/1

63
 (

26
.4

)
36

/7
8 

(4
6.

2)
7/

85
 (

8.
2)

<
 0

.0
01

17
/7

6 
(2

2.
4)

10
/6

2 
(1

6.
1)

0.
4

H
em

op
ty

si
s

15
/1

63
 (

9.
2)

6/
78

 (
7.

7)
9/

85
 (

10
.6

)
0.

6
10

/7
6 

(1
3.

2)
2/

62
 (

3.
2)

0.
07

M
as

s 
Si

ze
 >

 3
 c

m
48

/1
63

 (
29

.4
)

43
/7

8 
(5

5.
1)

5/
85

 (
5.

9)
<

 0
.0

01
24

/7
6 

(3
1.

6)
10

/6
2 

(1
6.

1)
0.

04
7

B
io

m
ar

ke
r

−
0.

35
 ±

 8
.9

3
4.

65
 ±

 7
.0

4
−

4.
94

 ±
 7

.9
8

<
 0

.0
01

0.
34

 ±
 8

.9
7

−
2.

72
 ±

 9
.1

2
0.

05

† p-
va

lu
es

 a
re

 f
or

 th
e 

co
m

pa
ri

so
n 

of
 p

at
ie

nt
s 

w
ith

 c
an

ce
r 

an
d 

pa
tie

nt
s 

w
ith

ou
t c

an
ce

r.
 T

w
o-

sa
m

pl
e 

t-
te

st
s 

w
ith

 u
ne

qu
al

 v
ar

ia
nc

es
 w

er
e 

us
ed

 f
or

 c
on

tin
uo

us
 v

ar
ia

bl
es

; F
is

he
r’

s 
ex

ac
t t

es
t w

as
 u

se
d 

fo
r

di
ch

ot
om

ou
s 

va
ri

ab
le

s.

Cancer Prev Res (Phila). Author manuscript; available in PMC 2014 September 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Beane et al. Page 19

Table 2

Cell type, stage, and location information for lung cancer samples (n=78). The percentage of samples in each

grouping where bronchoscopy yielded diagnostic cytopathology for lung cancer is reported. “Other” refers to

cases that cannot be characterized as central vs. peripheral.

Cell Type n % of Samples with Diagnostic Bronchoscopy

SCLC 14 64.3%

NSCLC (unknown subtype) 15 60.0%

Squamous 27 55.6%

Adenocarcinoma 18 33.3%

Large Cell Carcinoma 4 25.0%

Stage

Unknown 1 0.0%

1 14 35.7%

2 2 50.0%

3 25 52.0%

4 22 54.5%

Location

Central 28 71.4%

Peripheral 49 40.8%

Other 1 0.0%

Cancer Prev Res (Phila). Author manuscript; available in PMC 2014 September 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Beane et al. Page 20

T
ab

le
 3

L
og

is
tic

 R
eg

re
ss

io
n 

M
od

el
s 

Fi
tte

d 
on

 T
ra

in
in

g 
Se

t S
am

pl
es

. T
he

 r
an

ge
, r

eg
re

ss
io

n 
co

ef
fi

ci
en

ts
, o

dd
s 

ra
tio

, 9
5%

 c
on

fi
de

nc
e 

in
te

rv
al

 f
or

 th
e 

od
ds

 r
at

io

(9
5%

 C
I)

, a
nd

 th
e 

p-
va

lu
e 

(p
) 

of
 th

e 
va

ri
ab

le
s 

ac
ro

ss
 th

e 
tr

ai
ni

ng
 s

et
 s

am
pl

es
 (

n=
76

) 
is

 r
ep

or
te

d.

M
od

el
R

an
ge

C
oe

ff
ic

ie
nt

O
dd

s 
R

at
io

95
%

 C
I

p

B
io

m
ar

ke
r 

A
lo

ne

In
te

rc
ep

t
N

A
0.

07
N

A
N

A
0.

77
6

B
io

m
ar

ke
r

(−
18

.8
8,

16
.9

1)
0.

13
1.

14
(1

.0
6,

 1
.2

1)
0.

00
01

7

C
lin

ic
al

 V
ar

ia
bl

es
 A

lo
ne

In
te

rc
ep

t
N

A
−

5.
01

N
A

N
A

0.
00

3

A
ge

(2
3,

 7
9)

0.
07

1.
07

(1
.0

2,
 1

.1
3)

0.
00

8

M
as

s 
Si

ze
(0

,1
)

2.
19

8.
91

(2
.0

8,
 3

8.
25

)
0.

00
3

L
ym

ph
ad

en
op

at
hy

(0
,1

)
2.

09
8.

12
(1

.4
5,

 4
5.

63
)

0.
01

7

B
io

m
ar

ke
r 

+
 C

lin
ic

al
 V

ar
ia

bl
es

In
te

rc
ep

t
N

A
−

4.
9

N
A

N
A

0.
01

4

B
io

m
ar

ke
r

(−
18

.8
8,

16
.9

1)
0.

13
1.

13
(1

.0
4,

 1
.2

4)
0.

00
5

A
ge

(2
3,

 7
9)

0.
07

1.
07

(1
.0

0,
 1

.1
4)

0.
03

6

M
as

s 
Si

ze
(0

,1
)

1.
85

6.
38

(1
.3

9,
 2

9.
34

)
0.

01
7

L
ym

ph
ad

en
op

at
hy

(0
,1

)
2.

75
15

.6
9

(2
.2

3,
 1

10
.2

8)
0.

00
6

Cancer Prev Res (Phila). Author manuscript; available in PMC 2014 September 18.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Beane et al. Page 21

Table 4

The accuracy of the clinicogenomic model stratified by cancer status and mass size or tumor location in the

test set (n=62). “Other” refers to cases that cannot be characterized as central vs. peripheral.

Mass Size

Cancer No Cancer

n Accuracy n Accuracy

>3cm 9 100.0% 1 0.0%

<=3cm 5 100.0% 37 91.9%

Poorly Defined Infiltrate 3 100.0% 7 100.0%

Location

Central 5 100.0% 3 100.0%

Peripheral 12 100.0% 17 76.5%

Other 0 NA 25 100.0%
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