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Abstract

The efficient coding hypothesis posits that sensory systems maximize information transmitted to

the brain about the environment. We develop a precise and testable form of this hypothesis in the

context of encoding a sensory variable with a population of noisy neurons, each characterized by a

tuning curve. We parameterize the population with two continuous functions that control the

density and amplitude of the tuning curves, assuming that the tuning widths vary inversely with

the cell density. This parameterization allows us to solve, in closed form, for the information-

maximizing allocation of tuning curves as a function of the prior probability distribution of

sensory variables. For the optimal population, the cell density is proportional to the prior, such that

more cells with narrower tuning are allocated to encode higher probability stimuli, and that each

cell transmits an equal portion of the stimulus probability mass. We also compute the stimulus

discrimination capabilities of a perceptual system that relies on this neural representation, and find

that the best achievable discrimination thresholds are inversely proportional to the sensory prior.

We examine how the prior information that is implicitly encoded in the tuning curves of the

optimal population may used for perceptual inference, and derive a novel decoder, the Bayesian

population vector, that closely approximates a Bayesian least-squares estimator that has explicit

access to the prior. Finally, we generalize these results to sigmoidal tuning curves, correlated

neural variability, and a broader class of objective functions. These results provide a principled

embedding of sensory prior information in neural populations, and yield predictions that are

readily testable with environmental, physiological, and perceptual data.

1 Introduction

Many bottom-up theories of neural encoding posit that sensory systems are optimized to

represent signals that occur in the natural environment of an organism (Attneave, 1954;

Barlow, 1961). A precise specification of the optimality of a sensory representation requires

four components: (1) the family of neural transformations (specifying the encoding of

natural signals in neural activity), over which the optimum is to be taken; (2) the noise that

is introduced by the neural transformations; (3) the types of signals that are to be encoded,

and their prevalence in the natural environment; and (4) the metabolic costs of building,

operating, and maintaining the system (Simoncelli and Olshausen, 2001). Although optimal

solutions have been derived analytically for some specific choices of these components (e.g.,

linear response models and Gaussian signal and noise distributions (Atick and Redlich,

1990; Doi et al., 2012)), and numerical solutions have been examined for other cases (e.g., a
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population of linear-nonlinear neurons (Bell and Sejnowski, 1997; Karklin and Simoncelli,

2012; Tkačik et al., 2010)), the general problem is intractable.

A substantial literature has considered simple population coding models in which each

neuron’s mean response to a scalar variable is characterized by a tuning curve (e.g., Jazayeri

and Movshon, 2006; Ma et al., 2006; Pouget et al., 2003; Salinas and Abbott, 1994; Sanger,

1996; Seung and Sompolinsky, 1993; Snippe, 1996; Zemel et al., 1998; Zhang et al., 1998).

For these models, several authors have examined the optimization of Fisher information,

which expresses a bound on the mean squared error of an unbiased estimator (Brown and

Bäcker, 2006; Montemurro and Panzeri, 2006; Pouget et al., 1999; Zhang and Sejnowski,

1999). In these results, the distribution of sensory variables is assumed to be uniform, and

the populations are assumed to be homogeneous with regard to tuning curve shape, spacing,

and amplitude.

The distribution of sensory variables encountered in the environment is often non-uniform,

and it is thus of interest to understand how these variations in probability affect the design of

optimal populations. It would seem natural that a neural system should devote more

resources to regions of sensory space that occur with higher probability, analogous to results

in coding theory (Gersho and Gray, 1991). At the single neuron level, several publications

describe solutions in which monotonic neural response functions allocate greater dynamic

range to more frequently occurring stimuli (Laughlin, 1981; McDonnell and Stocks, 2008;

Nadal and Parga, 1994; von der Twer and MacLeod, 2001; Wang et al., 2012). At the

population level, optimal non-uniform allocations of neurons with identical tuning curves

have been derived for non-uniform stimulus distributions (Brunel and Nadal, 1998; Harper

and McAlpine, 2004).

Here, we examine the influence of a sensory prior on the optimal allocation of neurons and

spikes in a population, and the implications of this optimal allocation for subsequent

perception. Given a prior distribution over a scalar stimulus parameter, and a resource

budget of N neurons with an average of R spikes/sec for the entire population, we seek the

optimal shapes, positions, and amplitudes of the tuning curves. We parameterize the

population in terms of two continuous functions expressing the density and gain of the

tuning curves. As a base case, we assume Poisson-distributed spike counts, and optimize a

lower bound on mutual information based on Fisher information. We use an approximation

of the Fisher information that allows us to obtain a closed form solution for the optimally

efficient population, as well as a bound on subsequent perceptual discriminability. In

particular, we find that the optimal density of tuning curves is directly proportional to the

prior and that the best achievable discrimination thresholds are inversely proportional to the

prior. We demonstrate how to test these predictions with environmental, physiological, and

perceptual data.

Our results are optimized for coding efficiency, which many have argued is a reasonable

task-independent objective for early stages of sensory processing, but seems unlikely to

explain more specialized later stages that are responsible for producing actions (Geisler et

al., 2009). Nevertheless, if we take seriously the interpretation of perception as a process of

statistical inference (Helmholtz, 2000), then these later stages must rely on knowledge of the
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sensory prior. Although such prior information has been widely used in formulating

Bayesian explanations for perceptual phenomena (Knill and Richards, 1996), the means by

which it is represented within the brain is currently unknown (Simoncelli, 2009; Stocker and

Simoncelli, 2006). Previous studies have either assumed that sensory priors are uniform

(Jazayeri and Movshon, 2006; Zemel et al., 1998), or explicitly represented in the spiking

activity of a separate population of neurons (Ma et al., 2006; Yang et al., 2012), or implicitly

represented in the gains (Simoncelli, 2003), the sum (Simoncelli, 2009), or the distribution

of preferred stimuli (Fischer and Peña, 2011; Girshick et al., 2011; Shi and Griffiths, 2009)

of the tuning curves in the encoding population.

Our efficient coding population provides a generalization of these latter proposals,

embedding prior probability structure in the distribution and shapes of tuning curves. We

show how these embedded probabilities may be used in inference problems, and derive a

novel decoder that extracts and uses the implicit prior to produce approximate Bayesian

perceptual estimates that minimize mean squared error. We demonstrate (through

simulations) that this decoder outperforms the well-known “population vector” decoder

(Georgopoulos et al., 1986), which has been previously shown to approximate Bayesian

estimation under strong assumptions about the encoding population (Fischer and Peña,

2011; Girshick et al., 2011; Shi and Griffiths, 2009; Wei and Stocker, 2012a). We also show

that our decoder performs nearly as well as a Bayesian decoder that has explicit access to

prior information. Finally, we generalize our formulation to consider a family of alternative

optimality principles (which includes Fisher bounds on estimation error and discriminability

as special cases), sigmoidal tuning curves, and non-Poisson correlated spiking models.

Portions of this work were initially presented in (Ganguli, 2012; Ganguli and Simoncelli,

2010, 2012).

2 Efficient Sensory Coding

2.1 Encoding Model

We begin with a conventional descriptive model for a population of N neurons responding to

a single scalar variable, denoted s (e.g., Jazayeri and Movshon, 2006; Ma et al., 2006;

Pouget et al., 2003; Salinas and Abbott, 1994; Sanger, 1996; Seung and Sompolinsky, 1993;

Snippe, 1996; Zemel et al., 1998; Zhang et al., 1998). Assume the number of spikes emitted

in a given time interval by the nth neuron is a sample from an independent Poisson process,

with mean rate determined by its tuning function, hn(s) (section 4.3 provides a generalization

to non-Poisson correlated neuronal variability). The probability distribution of the

population response can be written as:

(1)

We assume that the total expected spike rate, R, of the population is limited, which imposes

a constraint on the tuning curves:
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(2)

where p(s) is the probability distribution of stimuli in the environment. We refer to this as a

sensory prior, in anticipation of its use in solving Bayesian inference problems based on the

population response (see section 3).

2.2 Objective function

What is the best way to represent values drawn from p(s) using these N neurons, and

limiting the total population response to a mean of R spikes? Intuitively, one might expect

that more resources (spikes and/or neurons) should be locally allocated to stimuli that are

more probable, thereby increasing the accuracy with which they are represented. But it is not

obvious a priori exactly how the resources should be distributed, or whether the optimal

solution is unique.

To formulate a specific objective function, we follow the efficient coding hypothesis, which

asserts that early sensory systems evolved to maximize the information they convey about

incoming signals, subject to metabolic constraints (Attneave, 1954; Barlow, 1961).

Quantitatively, we seek the set of tuning curves that maximize the mutual information, I(r⃗;

s), between the stimuli and the population responses:

(3)

The term H(s) is the entropy, or amount of information inherent in p(s), and is independent

of the neural population.

The mutual information is notoriously difficult to compute (or maximize) as it requires

summation/integration over the high-dimensional joint probability distribution of all

possible stimuli and population responses. For analytical tractability, we instead choose to

optimize a well-known lower bound on mutual information (Brunel and Nadal, 1998; Cover

and Thomas, 1991):

(4)

where If (s) is the Fisher information, which can be expressed in terms of a second-order

expansion of the log-likelihood function (Cox and Hinkley, 1974):

The bound of Eq. (4) is tight in the limit of low noise, which occurs as either N or R increase

(Brunel and Nadal, 1998). The Fisher information quantifies the accuracy with which the

population responses represent different values of the stimulus. It can also be used to place
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lower bounds on the mean squared error of an unbiased estimator (Cox and Hinkley, 1974),

or alternatively, the discrimination performance of a (possibly biased) perceptual system

(Seriès et al., 2009). We later generalize our analysis to handle a family of objective

functions which includes these bounds as special cases (see section 4.1).

For the independent Poisson noise model, the Fisher information can be written as a function

of the tuning curves (Seung and Sompolinsky, 1993),

(5)

where  is the derivative of the nth tuning curve. Substituting this expression into Eq. (4)

and adding the resource constraint of Eq. (2), allows us to express the full efficient coding

problem as:

(6)

Even with the substitution of the Fisher bound, the objective function in Eq. (6) is non-

convex over the high-dimensional parameter space (the full set of continuous tuning curves),

making numerical optimization intractable. To proceed, we introduce a compact

parameterization of the tuning curves which allows us to obtain an analytical solution.

2.3 Parameterization of a heterogeneous population

To develop a parametric model of tuning curves, we take inspiration from theoretical and

experimental evidence that shows: (1) for many sensory variables, physiologically measured

tuning curves exhibit significant heterogeneity in their spacings, widths and amplitudes; and

(2) even if one assumes tuning curves of fixed width and amplitude, heterogeneous spacings

are optimal for coding stimuli drawn from non-uniform prior distributions (Brunel and

Nadal, 1998; Harper and McAlpine, 2004). We add to these observations an assumption that

adjacent tuning curves in our idealized population should overlap by some fixed amount,

such that they uniformly “tile” the stimulus space. The intuitive motivation is that if there is

a degree of overlap that is optimal for transmitting information, this should hold regardless

of the spacing between curves. In practice, constraining the tuning widths also greatly

simplifies the optimization problem, allowing (as shown below) a closed-form solution. We

enforce this assumption by parameterizing the population as a warped and re-scaled

convolutional population (i.e., a population with identical tuning curves shifted to lie on a

uniform lattice, such that the population tiles), as specified by a cell density function, d(s),

and a gain function, g(s), as illustrated in Fig. 1. The tuning widths in the resulting

heterogeneous population are proportional to the spacing between tuning curves,

maintaining the tiling properties of the initial homogeneous population. Intuitively, d(s) and

g(s) define the local allocation of the global resources N and R, respectively.
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To specify the parameterization, we first define a convolutional population of tuning curves,

identical in form and evenly spaced on the unit lattice, such that they approximately tile the

space:

(7)

The tiling property has been assumed in previous work, where it enabled the derivation of

maximum likelihood decoders (Jazayeri and Movshon, 2006; Ma et al., 2006; Zemel et al.,

1998). Note that this form of tiling is inconsistent with sigmoidal tuning curves, so we

handle this case separately (see section 4.2). We also assume that the Fisher information of

this population (Eq. (5)) is approximately constant:

(8)

where ϕ(s − n) is the Fisher information of the nth neuron. The value of the constant, Iconv,

is dependent on the details of the tuning curve shape, h(s), which we leave unspecified. As

an example, Fig. 1(a–b) shows through numerical simulation that a convolutional population

of Gaussian tuning curves, with appropriate width, has approximately constant Fisher

information.

Now consider adjusting the density and gain of the tuning curves in this population as

follows:

(9)

The gain, g, modulates the maximum average firing rate of each neuron in the population.

The density, d, controls both the spacing and width of the tuning curves: as the density

increases, the tuning curves become narrower, and are spaced closer together so as to

maintain their tiling of stimulus space. The effect of these two parameters on Fisher

information is:

The second line follows from the assumption of Eq. (8).

We generalize density and gain parameters to continuous functions of the stimulus, d(s) and

g(s), which define the local allocation of the resources of neurons and spikes:
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(10)

Here, , the cumulative integral of d(s), warps the shape of the prototype

tuning curve. The value sn = D−1(n) represents the preferred stimulus value of the (warped)

nth tuning curve (Fig. 1). Note that the warped population retains the tiling properties of the

original convolutional population. As in the uniform case, the density controls both the

spacing and width of the tuning curves. This can be seen by rewriting Eq. (10) with a first-

order Taylor expansion of D(s) around sn:

which is a natural generalization of Eq. (9).

We can now write the Fisher information of the heterogeneous population of neurons by

substituting Eq. (10) into Eq. (5):

(11)

(12)

In addition to assuming that the Fisher information is approximately constant (Eq. (8)), we

have also assumed that g(s) is smooth relative to the width of ϕ(D(s) − n) for all n, so that

we can approximate g(sn) as g(s) and remove it from the sum. The end result is an

approximation of Fisher information in terms of the two continuously variable local

resources of cell density and gain (Fig. 1(e)). As earlier, the constant Iconv is determined by

the precise shape of the tuning curves.

The global resource values N and R naturally place constraints on d(s) and g(s), respectively.

In particular, we require that D(·) map the entire input space onto the range [0, N]. Thus, for

an input space covering the real line, we require D(−∞) = 0 and D(∞) = N (or equivalently,

∫ d(s) ds = N). The average total firing rate R places a constraint on the tuning curves (Eq.

(2)). Substituting Eq. (10), assuming g(s) is sufficiently smooth relative to the width of

h(D(s) − n), and including the assumption of Eq. (7) (the warped tuning curves sum to unity

before multiplication by the gain function), yields a simple constraint on the gain: ∫ p(s)g(s)

ds = R.

2.4 Objective function and solution for a heterogeneous population

Approximating Fisher information as proportional to squared density and gain (Eq. (12))

allows us to re-write the objective function and resource constraints of Eq. (6) as
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(13)

The optima of this objective function may be determined using calculus of variations and the

method of Lagrange multipliers. Specifically, the Lagrangian is expressed as:

The optimal cell density and gain that satisfy the resource constraints are determined by

setting the gradient of the Lagrangian to zero, and solving the resulting system of equations,

Solving yields the optimal solution:

(14)

The optimal cell density is proportional to the sensory prior, ensuring that frequently

occurring stimuli are encoded with greater precision, using a larger number of cells with

correspondingly narrower tuning (Fig. 2(a,b)). The optimal population has constant gain,

and as a result, allocates an approximately equal amount of stimulus probability mass to

each neuron, analogous to results from coding theory (Gersho and Gray, 1991). This implies

that the mean firing rate (in fact, the full distribution of firing rates) of all neurons in the

population is identical. Note that the global resource values, N and R, enter only as scale

factors. As a result, if one or both of these factors are unknown, the solution still provides a

unique specification of the shapes of d(s) and g(s), which can be readily compared with

experimental data (Fig. 2(c–e)). Finally, note that the optimal warping function D(s) is

proportional to the cumulative prior distribution, and thus serves to remap the stimulus to a

space in which it is uniformly distributed, as suggested in earlier work (Stocker and

Simoncelli, 2006; Wei and Stocker, 2012a,b). This is intuitively sensible, and is a

consequence of the invariance of mutual information under invertible transformations

(Cover and Thomas, 1991): warping the stimulus axis (and associated prior) should result in

a concomitant warping of the optimal solution. In section 4.1, we derive a family of

solutions that optimize alternative functionals of the Fisher information, for which this

property does not hold.

2.5 Implications for perceptual discrimination

The optimal solution limits the best achievable discrimination performance of a perceptual

system that bases its responses on the output of the population. Specifically, the Fisher
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information may be used to provide a lower bound on discriminability, even when the

observer is biased (Seriès et al., 2009):

(15)

The constant Δ is determined by the threshold performance level in a discrimination task.

Substituting the optimal solutions for d(s) and g(s) into Eq. (12), and substituting the

resulting Fisher information into Eq. (15), gives the minimum achievable discrimination

threshold:

(16)

This predicts that perceptual sensitivity (inverse discriminability) is proportional to the prior,

such that more frequently occurring stimuli are easier to discriminate. The proportionality

depends on the available resources {N, R}, the experimental conditions under which the

thresholds were measured (Δ) and knowledge of the tuning curve shapes and tiling

properties (Iconv). Even when these are not known, the shape of δmin(s) can be readily

compared to experimental data (Fig. 2(f)). As a special case, note that variables with

distributions that fall approximately as 1/s (a pseudo-prior, since it is not integrable) lead to

discriminability δmin(s) ∝ s, which corresponds to the perceptual behavior commonly known

as Weber’s law.

3 Inference and Decoding with Efficient Neural Populations

The structure of the efficient population has direct implications for Bayesian theories of

perceptual inference, in which human observers are hypothesized to combine their noisy

sensory measurements and prior knowledge of the environment to infer properties of the

physical world (Knill and Richards, 1996; Simoncelli, 1993). A critical, but often

overlooked issue in such models, is the means by which the brain obtains and represents

prior knowledge (Simoncelli, 2009). The optimally efficient population developed in this

article provides a potential substrate for answering this question, since the prior is implicitly

represented in the arrangement of the tuning curves. In this section, we show that this

implicit prior encoding provides a natural means of approximating posterior densities in a

form that is readily integrated to compute expected values. Specifically, we derive a novel

decoder – which we call the Bayesian population vector – that properly extracts and uses the

implicit prior information to approximate the Bayes Least Squares estimate (i.e., the mean of

the posterior). We demonstrate through simulations that the Bayesian population vector

outperforms the standard population vector, converging to the true Bayesian estimator as N

increases.

3.1 Posterior and Bayesian Population Vector

Probabilistic inference generally relies on the posterior distribution, p(s|r⃗), which may be

written using Bayes’ rule as:
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The likelihood, p(r⃗|s), is interpreted as a function of s evaluated for a single observation of r⃗,

and the denominator is a normalizing constant.

In solving perceptual problems, the posterior is typically used in one of two ways. First,

posterior distributions of a common variable that arise from independent measurements are

combined multiplicatively (generally referred to as cue combination (Knill and Richards,

1996)). Products of likelihood functions are readily achieved with populations of neurons

with Poisson spiking: the log likelihoods are linearly encoded in the spike counts of two

neural populations, and the product of likelihoods is computed by pairwise addition of the

spikes arising from corresponding neurons in the two populations (Ma et al., 2006). The

optimal populations derived here can exploit the same computation to obtain a posterior

distribution conditioned on both cues. Suppose the posterior of each cue individually is

represented in a heterogeneous population, and that the tuning curves of the two populations

are arranged identically to reflect the prior. The posterior conditioned on both cues

(assuming the cues provide independent information) may be computed using a third

heterogeneous population with the same tuning curve arrangement, that simply adds spikes

from corresponding neurons in the two single-cue populations. The summed spikes

represent the log of the product of likelihoods. But note that the priors of the two single-cue

populations are not multiplied: the prior in the combined population is again encoded

(implicitly) in the sampling of the tuning curves.

A second operation commonly performed on a posterior density is to integrate it, either for

purposes of computing expected values, or of marginalization (partially integrating over

some variables). The latter does not present any fundamental obstacle for the current

framework, but is not relevant in the case of a one-dimensional (scalar) stimulus. For the

former, we’ll first consider the particular case of the mean of the posterior, which

corresponds to the Bayes least squares (BLS) estimator (also known as the minimum mean

squared error estimator) of the variable s, given the noisy population response. The BLS

estimate may be expressed as:

(17)

The continuous integrals in Eq. (17) can be approximated with discrete sums,

for any discrete set of stimulus values, sn, where δn is the spacing between adjacent values.

The sums converge to their corresponding integrals in the limit as δn → 0. Assuming an
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efficient encoding population with sn the preferred stimuli of the tuning curves, the

separation between curves is inversely proportional to the prior: .

Substituting this discretization into the expression above yields an approximation of the BLS

estimator that correctly uses the prior information embedded in the population:

(18)

This approximation of the integral may be seen as a deterministic form of “importance

sampling” (deterministic, because it uses the fixed values sn as the samples, rather than

drawing them stochastically from the prior). Note that in this simple form, the prior is

implicitly captured in the spacing/sampling of the tuning curves, and that the posterior

expectation of any function f(·) can be approximated by replacing the sn in the numerator by

f (sn). The use of non-uniform population sampling to embed priors for Bayesian decoding

was first proposed in Shi and Griffiths (2009), and has been used to explain the relationship

between the distribution of tuning preferences in neural populations and perceptual

discrimination performance (Fischer and Peña, 2011; Girshick et al., 2011). More recently, it

has been proposed as an explanation of perceptual biases that can arise in low signal-to-

noise conditions (Wei and Stocker, 2012a).

It is worth noting that this discrete approximation exhibits a striking similarity to the

population vector (PV) decoder (Georgopoulos et al., 1986), which computes a response-

weighted average of the preferred stimuli of the cells:

(19)

By inspection, if one assumes rn ∝ p(r⃗|sn), then the population vector can be seen to

approximate the BLS estimate (Fischer and Peña, 2011; Shi and Griffiths, 2009). However,

this assumption is clearly violated by the Poisson response model of Eq. (1).

To derive a version of the BLS estimator that does not rely on this incorrect assumption, we

expand the likelihood weights, p(r⃗|sn) according to Eq. (1), and substitute them into Eq. (18)

to obtain:

(20)

In the second step, we use the tiling property of the efficient population, 

to cancel these common terms in the numerator and denominator. The term 

does not depend on n, and therefore also cancels in the numerator and denominator.
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The term hm(sn) represents the mean response of the mth neuron to the stimulus preference

of the nth neuron. Using Eq. (10), and the fact that the gain is constant for the optimal

population, we see that hm(sn) ∝ h(D(sn) − m) = h(n − m). As a result, the term

 can be expressed as a convolution of the neural responses with a fixed

discrete linear filter, wm = log h(m) (to avoid log of zero, we can assume h(m) includes an

additive constant representing the spontaneous firing rate of the neurons). Incorporating this

into Eq. (20), we obtain an expression for the discrete approximation to the Bayes least

squares estimator, which we call the Bayesian population vector (BPV):

(21)

Note that this has the form of the standard population vector (Eq. (19), except that the

responses are filtered and exponentiated. These operations convert the spike counts in r ⃗,

which are linearly related to the log likelihood (Jazayeri and Movshon, 2006; Ma et al.,

2006), back into a form that is effectively proportional to the posterior probability.

The computation of the posterior density, and the expectation of any function over this

posterior, can be implemented in a compact neural circuit (Fig. 3). Each downstream neuron

linearly combines the spiking responses of neurons in the efficient population that have

similar stimulus preferences, and the result is then exponentiated and normalized. These

responses represent a sampled version of the posterior density. This set of operations – linear

filtering, a rectifying nonlinearity, divisive normalization – have been implicated as

canonical neural computations for hierarchical sensory processing (Carandini and Heeger,

2012; Kouh and Poggio, 2008). The expectation over the posterior distribution can then be

computed as a sum of these responses, weighted by the function whose expectation is being

computed:

(22)

As an example, consider a signal classification problem, in which one must decide from

which of two classes a stimulus was drawn by comparing probabilities p(c1|r⃗) and p(c2|r⃗).

These two probabilities can each be written as an expectation over the posterior: p(ci|r⃗) = ∫

p(ci|s)p(s|r⃗) ds. As such, they can be approximated using the weighted sum in Eq. (22), with

f(sn) = p(ci|sn). Note that the latter implicitly contain the class prior probabilities, since p(ci|

sn) = p(sn|ci)p(ci)/p(sn).

3.2 Simulations

We find that the Bayesian population vector provides a good approximation to the true

Bayes least squares estimator over a wide range of N and R values, and converges as either

N or R increase. In contrast, we find that the standard population vector operating on the
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responses of an efficient population poorly approximates the BLS estimator for most values

of N and R, and fails to converge. Furthermore, optimizing the weights of the standard

population vector results in a significant improvement in performance, but the resulting

estimator still fails to converge.

To compute the mean squared errors for the three estimators, we first drew 10, 000 samples

from an exponential prior distribution with mean value 20, clipped to a maximum value of

60 (Fig. 3a). Next, we simulated the responses of neural populations, of size N with mean

total spike rate R, designed to maximize information about stimuli drawn from this prior

(Fig. 3b). The response of each neuron to a single stimulus value corresponds to a sample

from a Poisson distribution, with the rate parameter determined by the neuron’s tuning curve

evaluated at that stimulus value. From these neural responses, we computed stimulus

estimates using the true Bayes least squares estimator (Eq. (17)) the Bayesian population

vector (Eq. (21)), the standard population vector (Eq. (19)), and a standard population vector

with stimulus values sn optimized to minimize the squared error of the estimates. We

approximated the mean squared error of each of these estimators as the sample average of

the square differences between the estimates and true stimulus values.

The mean squared error of the Bayesian population vector converges to that of the Bayes

least squares estimator as the number of neurons increases, independent of the total mean

firing rate (Fig. 4a). In a low firing rate regime (0.1 maximum average spikes/neuron) the

approximation is within 1% of the true error with as few as 10 neurons. In this regime, the

estimation error of the BLS estimator is significant, and the BPV is only slightly worse.

Note, however, that for 10 neurons firing a maximum of 10 spikes each, the mean squared

error of the BPV is 25% larger than that of the BLS estimator. In this regime, the likelihood

is very narrow due to the abundance of spikes relative to the spacing of the preferred stimuli

(which is inversely proportional to N). As a result, the discretized likelihood weights, p(r⃗|sn),

become concentrated on the preferred stimulus value with the highest likelihood, and the

BPV essentially behaves as a “winner-take-all” estimator, which is generally inferior to the

true BLS estimator operating in the same resource regime.

The population vector (PV) defined in Eq. (19) has been previously proposed as a means of

computing approximate BLS estimates, but the approximation relies on strong assumptions

about the encoding population (Fischer and Peña, 2011; Girshick et al., 2011; Shi and

Griffiths, 2009; Wei and Stocker, 2012a). We find that the PV provides a reasonably

accurate approximation to the BLS estimator in a low firing rate regime (0.1 maximum

average spikes/neuron), but becomes increasingly suboptimal (by orders of magnitude) as

the number of neurons increases (Fig. 4b). This is due to the fact that the population vector

does not take likelihood width into account correctly, and is therefore biased by the

asymmetries in the preferred stimuli (the implicitly encoded prior) even when the sensory

evidence is strong.

The standard population vector can be improved by optimizing the weights, sn, in Eq. (19)

so as to minimize the squared error. We simulated this optimal population vector (OPV),

using weights optimized over the sampled data for each value of N. We find that this the

OPV exhibits significant improvements in performance compared to the ordinary PV (Fig.
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4c), but is still substantially worse than the BPV. And as with the PV, the OPV fails to

converge to the true BLS estimator as N increases.

4 Extensions and generalizations

The efficient encoding framework developed in section 2 may be extended in a number of

ways. Here, we explore the optimization of alternative objective functions, generalize our

results to handle sigmoidal tuning curves, and examine the influence of non-Poisson firing

rate models on our optimal solutions. We also discuss how these modifications to the

encoding model affect the Bayesian decoding results developed in section 3.

4.1 Alternative objective functions

Although information maximization is a commonly assumed form of coding optimality for

sensory systems, alternative objective functions have been proposed. Some authors have

suggested that sensory representations might be directly optimized for minimizing

estimation error (e.g., Brown and Bäcker, 2006; McDonnell and Stocks, 2008; Montemurro

and Panzeri, 2006; Pouget et al., 1999; Zhang and Sejnowski, 1999) and others for

minimizing perceptual discriminability (von der Twer and MacLeod, 2001; Wang et al.,

2012). Our formulation, with a population parameterized by density and gain, is readily

extended to these cases.

Consider a generalized objective function that aims to maximize the expected value of a

function of the Fisher information:

(23)

The efficient coding case considered in the previous section corresponds to f(x) = log(x) –

we refer to this as the infomax case. Choosing f(x) = − x−1 corresponds to maximizing the

Fisher bound on squared discriminability (see Eqs. (12) & (15)) – we refer to this as the

discrimax case. The more conventional interpretation of this objective function, is as a

bound on the mean squared error of an unbiased estimator (Cox and Hinkley, 1974).

However, the discriminability bound is independent of estimation bias and thus requires less

assumptions about the form of the estimator. More generally, we can consider a power

function, f(x) = xα, for some exponent α.

The solution for any exponent a is readily obtained using calculus of variations, and is given

in Table 1. The infomax solution is included for comparison. In all cases, the solution

specifies a power-law relationship between the prior, the density and gain of the tuning

curves, and perceptual discrimination thresholds. In general, all solutions allocate more

neurons, with correspondingly narrower tuning curves, resulting in smaller discrimination

thresholds, for more probable stimuli. But the exponents vary, depending on the choice of α.

The shape of the optimal gain function depends on the objective function: for α < 0, neurons

with lower firing rates are used to represent stimuli with higher probabilities, and for α > 0,

neurons with higher firing rates are used for stimuli with higher probabilities. As in the

infomax case, the resource constraints, N and R, enter the solution as multiplicative scale
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factors, facilitating a comparison to data. As a result, the theory offers a framework within

which existing data may be used to determine those optimality principles that best

characterize different brain areas. It is worth noting that only the infomax solution leads to a

neural encoding of prior information that can be extracted and used to produce Bayesian

perceptual estimates using the logic developed in section 3 (see Discussion).

4.2 Sigmoidal response functions

To derive the efficient population code in section 2, we assumed that the tuning curves “tile”

the space (Eq. (7)). This assumption is incompatible with monotonically increasing

sigmoidal response functions, as are observed for encoding intensity variables such as visual

contrast or auditory sound pressure level. Nevertheless, we can use the continuous

parameterization of cell density and gain to obtain an optimal solution for a population of

neurons with sigmoidal responses.

To see this, we start by noting that the Fisher information of a homogeneous population of

sigmoidal tuning curves is the same as in the unimodal case (Eq. (12)), again assuming that

the Fisher information curves of the homogeneous population tile the space. The constraint

on N is also unchanged from the unimodal case. However, the constraint on R is

fundamentally different. For neurons with sigmoidal tuning curves, the entire population

will be active for large stimulus values, which incurs a large metabolic cost for encoding

these values. Intuitively, we might imagine that this metabolic penalty can be reduced by

lowering the gains of neurons tuned to the low end of the stimulus range, or by adjusting the

cell density such that there are more tuning curves selective for the high end of the stimulus

range. But it is not obvious how the reductions in metabolic cost for these coding strategies

should trade off with the optimal coding of sensory information.

To derive the optimal solution, we first parameterize a heterogeneous population of

sigmoidal response curves by warping and scaling the derivatives of a homogeneous

population:

(24)

Here, h(·) is a prototype sigmoidal response curve, and we assume that the derivative of this

response curve is a unimodal function that tiles the stimulus space when sampled at unit

spacing: . The warping function is again the cumulative integral of a cell

density function, , so that d(·) controls both the density of tuning curves

and their slopes.

The total spike count can be obtained by combining Eqs. (2) & (24):
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We define a continuous version of the gain as , and integrate

by parts to approximate the total number of spikes as:

where  is the cumulative density function of the sensory prior. This

constraint on the total number of spikes is very different than that of Eq. (13), and will thus

affect the optimal solutions for cell density and gain.

The optimization problem now becomes

(25)

A closed-form optimum of this objective function may again be found by using calculus of

variations and the method of Lagrange multipliers. Solutions are provided in Table 2 for the

infomax, discrimax, and general power cases.

For all objective functions, the solutions for the optimal density, gain, and discriminability

are products of power law functions of the sensory prior, and its cumulative distribution. In

general, all solutions allocate more neurons with greater dynamic range to more frequently

occurring stimuli. Note that, unlike the solutions for unimodal tuning curves (Table 1), the

optimal gain is the same for all objective functions: for each neuron, the optimal gain is

inversely proportional to the probability that a randomly chosen stimulus will be larger than

its preferred stimulus. Intuitively, this solution allocates lower gains to neurons tuned to the

low end of the stimulus range, which is metabolically less costly. The global resource values

N and R again only appear as scale factors in the overall solution, allowing us to easily

compare the predicted relationships to experimental data, even when N and R are not known

(Fig. 5).

As in the unimodal case, the infomax solution yields a neural representation of prior

information that can be easily extracted and used to produce Bayesian perceptual estimates.

The estimator is similar in form to the BPV developed in section 3 with a single key

difference: the sum of discretized tuning curves (middle terms in the numerator and

denominator of Eq. (20)) is no longer a constant. Hence, this set of weights must be

subtracted from the filtered neural responses, before the result is passed through the

exponential.

4.3 Generalization to Poisson-like noise distributions

Our results depend on the assumption that the spike counts of neurons are Poisson-

distributed and independent of each other. In a Poisson model, the variance of the spike

counts is equal to their mean, which has been observed in some experimental situations

(Britten et al., 1993; Tolhurst et al., 1983), but not all (e.g., Shadlen and Newsome, 1998;

Werner and Mountcastle, 1963). In addition, the assumption that neuronal responses are
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statistically independent conditioned on the stimulus value is often violated (Kohn and

Smith, 2005; Zohary et al., 1994).

Here, we show that our results can be generalized to a family of “Poisson-like” response

models introduced by (Beck et al., 2007; Ma et al., 2006), that allow for stimulus dependent

correlations and a more general linear relationship between the mean and variance of the

population response:

(26)

This distribution belongs to the exponential family with linear sufficient statistics where the

parameter η(s) is a vector of the natural parameters of the distribution with the nth element

equal to ηn(s), a(η(s)) is a (log) normalizing constant that ensures the distribution integrates

to one, and f(r⃗) is an arbitrary function of the firing rates. The independent Poisson noise

model considered in Eq. (1) is a member of this family of distributions with parameters: η(s)

= log h(s) where h(s) is a vector of tuning curve functions, with the nth element equal to

hn(s), , and .

Our objective functions depend on an analytical form for the Fisher information in terms of

tuning curves. The Fisher information for the response model in Eq. (26) may be expressed

in terms of the Fisher information matrix of the natural parameters using the chain rule:

(27)

The Fisher information matrix about the natural parameters may be written as (Cox and

Hinkley, 1974):

(28)

where Σ(s) = ER|S[r⃗ r⃗T] is the stimulus-conditioned covariance matrix of the population

responses.

Finally, the derivative of the natural parameters may be written in terms of the derivatives of

the tuning curves (Beck et al., 2007; Ma et al., 2006),

(29)

where Σ−1(s) is the inverse of the covariance matrix, also known as the precision matrix.

Substituting Eqs. (29 & 28) into Eq. (27) yields the final expression for the local Fisher

information:
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(30)

The influence of Fisher information on coding accuracy is now directly dependent on

knowledge of the precision matrix, which is difficult to estimate from experimental data

(although see (Kohn and Smith, 2005)). Here, we assume a precision matrix that is

consistent with neuronal variability that is proportional to the mean firing rate, as well as

correlation of nearby neural responses (Abbott and Dayan, 1999). Specifically, for a

homogeneous neural population, hn(s) = h(s − n), we express each element in the precision

matrix as:

(31)

where δn,m is the Kronecker delta (zero, unless n = m, for which it is one). The parameter α

controls a linear relationship between the mean response and the variance of the response for

all the neurons. The parameter β controls the correlation between adjacent neurons. The

Fisher information of a homogeneous population may now be expressed from Eqs. (30 &

31) as,

In the last step, we assume (as for the independent Poisson case) the Fisher information

curves of the homogeneous population, ϕ(s − n) sum to a constant. We also assume that the

cross terms, ψ(s − n, s − m), sum to the constant, Icorr.

The Fisher information for a heterogeneous population, obtained by warping and scaling the

homogeneous population by the density and gain is

(32)

(33)

In the second step we make three assumptions. First, (as for the independent Poisson case)

we assume g(s) is smooth relative to the width of ϕ(D(s) − n) for all n, so that we can

approximate g(sn) as g(s). Second, we assume that the neurons are sufficiently dense such

that . Finally, we assume g(s) is also smooth relative to the width of
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the cross terms, ψ(D(s) − n)ψ(D(s) − m). As a result, the gain factors can be approximated

by the same continuous gain function, g(s), and can be pulled out of both sums.

The Fisher information expressed in Eq. (33) has the same dependency on s as that of the

original Poisson population, but now depends on three parameters, α, β, and Icorr, that

characterize the correlated variability of the population code. We conclude that the optimal

solutions for the density and gain are the same as those expressed in Tables 1 & 2, which

were derived for an independent Poisson noise model (α = 1, β = 0).

Because the solution for the infomax tuning curve density is the same as in the Poisson case

(proportional to the prior), we can use the same logic developed in section 3 to derive a

Bayes least squares estimator for the generalized response model that exploits the embedded

prior. Specifically, we use the response model in Eq. (26) to expand out the likelihood

weights in Eq. (18) to obtain:

In the second step, in addition to canceling out the terms f(r⃗) in the numerator and

denominator, we again use the fact that the optimal population is obtained by warping a

convolutional population. As a result, ηm(sn) corresponds to a set of weights that is the same

for all m neurons. Therefore, the operation  can be expressed as a

convolution of the neural responses with a fixed linear filter w⃗. The filter weights will be

different from those in the Poisson case, where the natural parameters are simply the log-

tuning curves. The above expression is equivalent to the BPV for all response models where

a(η(sn)) is constant for all sn. Otherwise, the above expression yields a BPV with an

additional offset term, similar to the sigmoidal case.

5 Discussion

We have developed a formulation of the efficient coding hypothesis for a neural population

encoding a scalar stimulus variable drawn from a known prior distribution. The information-

maximizing solution provides precise and yet intuitive predictions of the relationship

between sensory priors, physiology, and perception. Specifically, more frequently occurring

stimuli should be encoded with a proportionally higher number of cells (with

correspondingly narrower tuning widths) which results in a proportionally higher perceptual

sensitivity for these stimulus values. Preliminary evidence indicates that these predictions

are consistent with environmental, physiological, and perceptual data collected for a variety

of visual and auditory sensory attributes (Ganguli, 2012; Ganguli and Simoncelli, 2010). We

have also shown that the efficient population encodes prior information in a form that may

be naturally incorporated into subsequent processing. Specifically, we have defined a

neurally-plausible computation of the posterior distribution from the population responses,

thus providing a hypothetical framework by which the brain might implement probabilistic
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inference. Finally, we developed extensions of the framework to consider alternative

objective functions, sigmoidal response functions, and non-Poisson response noise.

Our framework naturally generalizes previous results on optimal coding with single neurons

(Fairhall et al., 2001; Laughlin, 1981; McDonnell and Stocks, 2008; von der Twer and

MacLeod, 2001; Wang et al., 2012), homogeneous population codes (Brown and Bäcker,

2006; Montemurro and Panzeri, 2006; Pouget et al., 1999; Zhang and Sejnowski, 1999), and

heterogeneous populations with identical tuning curve widths (Brunel and Nadal, 1998;

Harper and McAlpine, 2004), by explicitly taking into account heterogeneities in the

environment and the tuning properties of sensory neurons, and by considering a family of

optimality principles. Furthermore, our results are complementary to recent theories of how

the brain performs probabilistic computations (Jazayeri and Movshon, 2006; Ma et al.,

2006), providing an alternative framework for the encoding and use of prior information that

extends and refines several recent proposals (Fischer and Peña, 2011; Ganguli and

Simoncelli, 2012; Girshick et al., 2011; Shi and Griffiths, 2009; Simoncelli, 2009; Wei and

Stocker, 2012a).

Our analysis requires several approximations and assumptions in order to arrive at an

analytical solution for the optimal encoding population. First, we rely on lower bounds on

mutual information and discriminability, each based on Fisher information. Note that we do

not require the bounds on either information or discriminability to be tight, but rather that

their optima be close to those of their corresponding true objective functions. It is known

that Fisher information can provide a poor bound on mutual information for small numbers

of neurons, low spike counts (or short decoding times), or non-smooth tuning curves

(Bethge et al., 2002; Brunel and Nadal, 1998). It is also known that it can provide a poor

bound on supra-threshold discriminability (Berens et al., 2009; Shamir and Sompolinsky,

2006). Nevertheless, we have found that, at least for typical experimental settings and

physiological data sets, the Fisher information provides a reasonably tight bound on mutual

information (Ganguli, 2012).

We made several assumptions in parameterizing the heterogeneous population: (1) the

tuning curves, h(D(s) − n) (or in the sigmoidal case, their derivatives) evenly tile the

stimulus space; (2) the single neuron Fisher information kernels, ϕ(D(s) − n), evenly tile the

stimulus space; and (3) the gain function, g(s), varies slowly and smoothly over the width of

h(D(s) − n) and ϕ(D(s) − n). These assumptions allow us to approximate Fisher information

in terms of cell density and gain (Fig. 1(e)), to express the resource constraints in simple

form, and to obtain a closed-form solution to the optimization problem.

Our framework is limited by the primary simplification used throughout the population

coding literature: the tuning curve response model is restricted to a single (one-dimensional)

stimulus attribute. Real sensory neurons exhibit selectivity for multiple attributes. If the

prior distribution for those attributes is separable (i.e., if the values of those attributes are

statistically independent) then an efficient code can be constructed separably. That is, each

neuron could have joint tuning arising from the product of a tuning curve for each attribute.

Extending the theory to handle multiple attributes with statistical dependencies is not

straightforward, and seems likely to require additional constraints to obtain a unique
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solution, since there are many ways of carving a multi-dimensional input distribution into

equal-size portions of probability mass. Furthermore, physiological and perceptual

experiments are commonly restricted to only measure responses to one-dimensional

stimulus attributes. As such, a richer theory that incorporates a multi-dimensional encoding

model will not be easily tested with existing data.

The Bayesian population vector offers an example of how the optimal population may be

properly incorporated into inferential computations that can be used to describe perception

and action. The defining characteristic of this solution is the implicit embedding of the prior

in the distribution and shapes of tuning curves within the encoding population, eliminating

the need for a separate “prior-encoding” neural population (Ma et al., 2006; Yang et al.,

2012), and generalizing previous proposals for representing priors solely with neural gains

(Simoncelli, 2003), the sum of tuning curves (Simoncelli, 2009), or the distribution of tuning

preferences (Fischer and Peña, 2011; Girshick et al., 2011; Shi and Griffiths, 2009).

Furthermore, if one assumes tuning curves that include a baseline response level (i.e., a

background firing rate), the efficient population will also exhibit spontaneous responses

reflecting the environmental prevalence of stimuli, which is consistent with recent

predictions that that spontaneous population activity provides an observable signature of

embedded prior probabilities (Berkes et al., 2011; Tkačik et al., 2010).

Nevertheless, it seems unlikely that the brain would implement a decoder that explicitly

transforms the distributed population activity into a single response value. A more likely

scenario arises from retaining the population representation of the posterior (Fig. 3, with the

final summation omitted) and performing subsequent computations such as multiplication

by other sensory posteriors (Ma et al., 2006), or marginalization (Beck et al., 2011) only

when necessary for action (Simoncelli, 2009). One final caveat is that the decoder

considered here (both the posterior computation, as well as the full BPV) is deterministic,

and a realistic solution for neural inference will need to incorporate the effects of neural

noise introduced at each stage of processing (Sahani and Dayan, 2003; Stocker and

Simoncelli, 2006).

At a more abstract level, the efficient population solution has two counterintuitive

implications regarding the implementation of Bayesian inference in a biological system.

First, we note that of the family of encoding solutions derived in Tables 1 & 2, only the

infomax solution leads to a neural encoding of prior information that can be extracted and

used to produce Bayesian perceptual estimates using the logic developed in section 3. The

discrimax solution, which is optimized for minimizing squared error (assuming an unbiased

estimator) does not lend itself to an encoding of prior information that is amenable to a

simple implementation of Bayesian decoding. Despite the inconsistency of the infomax and

MSE objective functions, we find it intuitively appealing that early-stage sensory encoding

should be optimized bottom-up for a general (task-free) objective like information

transmission, while later-stage decoding is more likely optimized for solving particular

problems, such as least-squares estimation or comparison of stimulus attributes. Second,

Bayesian estimators are traditionally derived from pre-specified likelihood, prior, and loss

functions, each of which parameterize distinct and unrelated aspects of the estimation

problem: the measurement noise, the environment, and the estimation task or goal. But in
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the efficient population, the likelihood is adaptively determined by the prior, and thus, the

estimator is entirely determined by the loss function and the prior. As a result, in addition to

the predictions of physiological attributes and perceptual discriminability that we derived

from our encoding framework, it should also be possible to predict the form of perceptual

biases (see (Wei and Stocker, 2012b) for an example).

Finally, if the efficient population we’ve described is implemented in the brain, it must be

learned from experience. It seems implausible that this would be achieved by direct

optimization of information, as was done in our derivation. Rather, a simple set of rules

could provide a sufficient proxy to achieve the same solution (e.g., Doi et al., 2012). For

example, if each neuron in a population adjusted its tuning curve so as to (1) achieve

response distributions with mean and variance values that are the same across the

population; (2) ensure that the input domain is “tiled” (leaving no gaps); and 3) allow only

modest levels of redundancy with respect to responses of other cells in the population, then

we conjecture that the resulting population would mimic the efficient coding solution.

Moreover, allowing the first adjustment to occur on a more rapid timescale than the others

could potentially account for widely observed adaptation effects, in which the gain of

individual neurons is adjusted so as to maintain a roughly constant level of activity (Benucci

et al., 2013; Fairhall et al., 2001). If such adaptive behaviors could be derived from our

efficient coding framework, and reconciled with the underlying circuitry and cellular

biophysics, the resulting framework would provide a canonical explanation for the

remarkable ability of sensory systems to adapt to and exploit the statistical properties of the

environment.
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Figure 1.
Construction of a heterogeneous population of neurons. (a) Homogeneous population with

Gaussian tuning curves on the unit lattice. The tuning width, σ = 0.55, is chosen so that the

curves approximately tile the stimulus space. (b) The Fisher information of the

convolutional population (green) is approximately constant. (c) Inset shows d(s), the tuning

curve density. The cumulative integral of this function, D(s), alters the positions and widths

of the tuning curves in the convolutional population. (d) The warped population, with tuning

curve peaks (aligned with tick marks, at locations sn = D−1(n)), is scaled by the gain

function, g(s) (blue). A single tuning curve is highlighted (red) to illustrate the effect of the

warping and scaling operations. (e) The Fisher information of this heterogeneous population,

which provides a bound on perceptual discriminability, is approximately proportional to

d2(s)g(s).
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Figure 2.
Experimental predictions for efficient coding with a heterogeneous population of unimodal

tuning curves. (a) Hypothetical example of a probability distribution over a sensory

attribute, p(s). (b) Five tuning curves of a neural population arranged to maximize the

amount of information transmitted about stimuli drawn from this distribution. (c–e)
Predicted shapes of experimentally accessible attributes of the neural population, derived

from the prior distribution using Eq. (14). (c) Histogram of the observed preferred stimuli

(stimuli associated with the peaks of the tuning curves) provides an estimate of local cell

density, d(s), which should be proportional to the prior distribution (black line). (d) Tuning

widths of the neurons (measured as the full width at half maximum of the tuning curves)

should be inversely proportional to the prior (points correspond to example neurons from

(b)). (e) The gain, g(s), measured as the maximum average firing rate of each of the neurons,

should be constant (points correspond to example neurons from (b)). (f) Minimum

achievable discrimination thresholds of a perceptual system that relies on this efficient

population are inversely proportional to the prior distribution (Eq. (16)).
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Figure 3.
Computation of the posterior distribution, and the Bayesian population vector (BPV), from

responses of an optimally efficient encoding population. (a) Hypothetical prior distribution

over the stimulus variable. (b) Optimal encoding population. Colored tick marks denote the

preferred stimuli, sn, of each neuron. Points represent (noisy) responses of each neuron to a

particular stimulus value, with color indicating the preferred stimulus of the corresponding

neuron. (c) The decoder convolves these responses with a linear filter (triplets of thin gray

lines) with weights log h(m). The convolution output is exponentiated (boxes) and

normalized by the sum over the decoder population, yielding an encoding of the posterior

distribution, p(s|r⃗), whose integral against any function may then be approximated. As an

example, the BPV is computed by summing these responses, weighted by their associated

preferred stimulus values, to approximate the mean of the posterior, which is the Bayes least

square estimate of the stimulus.
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Figure 4.
Relative estimation errors of three different decoders, computed on responses of an

optimized heterogeneous population. All results are presented relative to the true Bayes least

squares (BLS) decoder (e.g., a value of 1 indicates performance equal to the BLS). a The

Bayesian population vector accurately approximates the true BLS estimator (in terms of

mean squared error) over a wide range of resource constraints, and converges as the number

of neurons increases. b The standard population vector has substantially larger error (note

scale), and fails to converge to BLS performance levels. c Optimizing the weights of a

population vector leads to a significant performance increase, but the resulting estimator is

still substantially worse than the BPV and again fails to converge.
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Figure 5.
Experimental predictions for efficient coding with sigmoidal tuning curves. Panels are

analogous to Fig. 2, but illustrate the solution given in the infomax column of Table 2.

Ganguli and Simoncelli Page 30

Neural Comput. Author manuscript; available in PMC 2015 April 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

Ganguli and Simoncelli Page 31

Table 1

Closed form solution for optimal neural populations with unimodal tuning curves, for objective functions

specified by Eq. (23).

Infomax Discrimax General

Optimized function: f(x) = log x f(x) = −x−1

Density (Tuning width)−1 d(s) Np(s)

Gain g(s) R

Fisher information If (s) ∝ RN2p2(s)

Discriminability bound δmin(s) ∝ p−1(s)
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Table 2

Closed form solution for optimal neural populations with sigmoidal tuning curves, for objective functions

specified by Eq. (25).

Infomax Discrimax General

Optimized: f(x) = log x f(x) = −x−1

Density d(s) Np(s)

Gain g(s) RN−1 [1 − P(s)]−1 RN−1 [1 − P (s)]−1 RN−1 [1 − P (s)]−1

Fisher If (s) ∝ RNp2(s) [1 − P(s)]−1

Discrim. δmin(s)
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