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Introduction to SMART designs for the development
of adaptive interventions: with application to weight
loss research
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Abstract
The management of many health disorders often
entails a sequential, individualized approach whereby
treatment is adapted and readapted over time in
response to the specific needs and evolving status of
the individual. Adaptive interventions provide one way
to operationalize the strategies (e.g., continue,
augment, switch, step-down) leading to individualized
sequences of treatment. Often, a wide variety of critical
questions must be answered when developing a high-
quality adaptive intervention. Yet, there is often
insufficient empirical evidence or theoretical basis to
address these questions. The Sequential Multiple
Assignment Randomized Trial (SMART)—a type of
research design—was developed explicitly for the
purpose of building optimal adaptive interventions by
providing answers to such questions. Despite
increasing popularity, SMARTs remain relatively new to
intervention scientists. This manuscript provides an
introduction to adaptive interventions and SMARTs. We
discuss SMART design considerations, including
common primary and secondary aims. For illustration,
we discuss the development of an adaptive
intervention for optimizing weight loss among adult
individuals who are overweight.
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The management of many health disorders, such
as obesity, substance use, or depression, often
entails a sequential, individualized approach where-
by treatment (e.g., behavioral or medical interven-
tions, or a combination) is adapted and readapted
over time in response to the specific needs and
evolving status of the individual [1, 2]. This type of
sequential decision-making is necessary when there
is high level of individual heterogeneity in response
to treatment. This is often the case for many chronic
disorders, conditions for which there is no widely
effective treatment, or conditions for which there

are widely effective treatments but they are burden-
some, costly, or carry side effects.
Due to the waxing and waning course of many

chronic disorders such as obesity [3], for example, a
treatment that demonstrates short-term weight loss
for an individual may not lead to weight loss in the
long-term even if the individual remains on the
same treatment (within-person heterogeneity; [4]).
In addition, not all individuals will respond or
adhere to the weight loss treatment to the same
degree, have the same side effect profile (e.g., in the
case of weight loss medications), or respond within
the same time-frame, to any given treatment or
package of treatments (between-persons heteroge-
neity; [5, 6]. Indeed, what works for one individual,
may not work (or may, in fact, be iatrogenic) for
another. All of these considerations, which unfold
over time, motivate an individualized sequence of
treatments.
To give a concrete example for the need for

individualized sequences of treatments, consider the
treatment of individuals who are overweight (body
mass index, BMI≥25 kg/m2) or obese (BMI≥
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Implications
Practice: Adaptive interventions provide clinical
practitioners with a guide to the type of sequen-
tial, individualized decision-making that is nec-
essary for the care or management of many
health disorders.

Research: Behavioral interventions researchers
who are interested in empirically developing
high-quality adaptive interventions should con-
sider Sequential Multiple Assignment Random-
ized Trials (SMART) as part of their
methodological toolbox.

Policy: For more efficient use of health research
resources, funding agencies should support the
use of SMART for developing and discovering
adaptive interventions prior to their evaluation in
a randomized clinical trial.
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30 kg/m2) with individual behavioral weight loss
treatment (IBT) [7–9]. IBT is incorporated in most
healthy dieting and weight loss interventions. It
involves strategies such as goal setting, self-monitor-
ing, and stimulus control; and it is often adminis-
tered via weekly sessions and can be delivered on an
individual basis or in a group-based setting. Despite
the general success of interventions such as IBT (and
others [7, 10–14]), a significant number of individ-
uals do not lose a clinically significant amount of
weight (for example, ≥7 % weight loss in a 26-
week period (~6 months) [15]) or meet their
targeted goals for weight loss. Further, research
suggests that it may be possible to identify such
individuals early, i.e., during treatment [16].
Therefore, developing new weight loss interven-
tions that (i) begin with IBT, (ii) identify individ-
uals showing early signs of nonresponse to IBT,
and (iii) adapt subsequent treatment to these
nonresponding individuals may be important for
increasing the total number of people who lose
weight.
Adaptive interventions (AI), defined and

discussed more formally in Section “Adaptive
Interventions” below, provide one way to guide
or formalize individualized sequences of treat-
ment. The following is an example adaptive
intervention (Fig. 1a) for weight loss involving
IBT and meal replacements [5] (MR), which
involves, for example, the replacement of one to
three meals per day via the provision of
prepackaged food items from a planned menu:
“Begin with five weekly sessions of IBT. At the

end of the 5th weekly IBT session, if the
individual has lost ≥5 lbs (i.e., a responder),
then continue on IBT. Otherwise, if the individ-
ual is a nonresponder, then augment IBT with
Meal Replacements (IBT+MR) starting at the 6th
weekly session.”
Often, a wide variety of critical questions must

be answered when seeking to develop an adap-
tive intervention. Yet, in many settings, there is
insufficient empirical evidence or theoretical basis
to address these questions. Drawing on the
example above, possible questions confronted by
the investigators may include (a) “Should we
begin with short duration IBT (5 weekly sessions)
or long duration IBT (10 weekly sessions) before
making a decision about subsequent treatment?”;
or, put a slightly different way, “When is the
optimal time (5 vs 10 weeks) to define nonre-
sponse to IBT and offer an alternative or
supplementary intervention strategy?”; (b) “For
individuals who do not respond to IBT, should
we augment IBT with MR or switch to another
weight loss intervention?”; (c) “Should the deci-
sion concerning the initial duration of IBT be
individualized based on factors known about the
patient at baseline (e.g., individuals who have
comorbidities, or a history of emotional eating
and may need more time on IBT to achieve a
clinically meaningful response during IBT)?”; and
(d) “Could the decision to augment with MR vs
switch be individualized based on other interme-
diate outcomes (e.g., early indicators of adher-
ence to IBT, such as completion of self-
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Fig 1 | a. This is one example of an adaptive intervention for weight loss. Response status is defined as losing ≥5 lbs by the
end of the 5th weekly session on IBT. Total treatment occurs over 26 weeks. b. This is a second example of an adaptive
intervention for weight loss. This example builds on the example in Fig. 1. In this example, the duration of initial IBT is
individualized based on baseline information about emotional eating. IBT individualized behavioral treatment, MR meal
replacements, ACT acceptance and commitment therapy (adapted for weight loss)
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monitoring records, or failure to recommended
changes in diet while on IBT)?”
The Sequential Multiple Assignment Randomized

Trial (SMART)—a special type of factorial study
design [17]—uses experimental design principles to
obtain answers to many of the challenging critical
questions around adaptive interventions, such as
those raised above [18–20]. Developed explicitly for
the purpose of building empirically supported
adaptive interventions, they are meant to comple-
ment the use of theoretical models and expert
clinical consensus for developing optimal adaptive
interventions [21–23].
Despite their increasing popularity due to their

real-world clinical appeal, and their fit in research
aimed at developing high-quality adaptive interven-
tions, SMARTs remain relatively new to many
behavioral intervention scientists. Due to their
novelty, and because SMARTs represent a signifi-
cant departure from the standard two-arm random-
ized clinical trial (RCT), many questions remain
about SMARTs and their role in the greater
scientific process. For example, “What kind of
questions can I answer using a SMART?” and “If I
use a SMART design, does it mean I do not have to
conduct an RCT?”
The purpose of this manuscript is to introduce

adaptive interventions (AIs) and SMART to behav-
ioral intervention scientists. We focus on study
design concepts and how to match the study design
to the types of scientific questions that might be
addressed in the development and evaluation of AIs.
To illustrate ideas, we discuss the development of an
AI for optimizing weight loss.

ADAPTIVE INTERVENTIONS
An adaptive intervention (AI) is a sequence of
decision rules that specify whether, how, when
(timing), and based on which measures, to alter the
dosage (duration, frequency or amount [24]), type,
or delivery of treatment(s) at decision stages in the
course of care. AIs are also known by a variety of
different names. In the statistical literature, they are
commonly referred to as dynamic treatment regimes
[17, 19, 25–37] (or, more appropriately, regimens).
In the mental health and substance use literatures,
they are more commonly known as adaptive
treatment strategies [38, 39]. Investigators often
study a special type of adaptive intervention, known
as a stepped-care intervention [40–44]. Stepped-care
interventions begin with a low-intensity intervention
that is increased if certain milestones are not
achieved [45]. AIs may include stepped-up treat-
ment (e.g., for individuals not able to lose weight) or
stepped-down treatment (e.g., for individuals able to
lose weight) or both. Further, in an AI, some
individuals may begin with a low-intensity interven-
tion whereas others may begin with a higher-
intensity intervention, depending on their specific
needs at baseline.Ta
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An AI has the following four elements: (i) decision
stages, each beginning with a decision concerning
treatment, and, at each stage, (ii) treatment options,
(iii) tailoring variables [46], and (iv) a decision rule.
Treatment options correspond to different treatment
types, dosages, or delivery options, as well as
various tactical treatment options (e.g., augment,
switch, maintain). Tailoring variables capture infor-
mation about the individual that is used in making
treatment decisions. At the beginning of each
decision stage, a decision rule links the tailoring
variables to specific treatment options (or sets of
treatment options).
There are two types of tailoring variables: baseline

tailoring variables and intermediate tailoring vari-
ables. Baseline tailoring variables include informa-
tion obtained prior to the first decision stage; they
can be used to make treatment decisions at the first-
stage or at subsequent decision stages. Intermediate
tailoring variables are obtained at any time during a
decision stage; they are used to make treatment
decisions at subsequent stages. Intermediate tailor-
ing variables are special types of tailoring variables
in that they may lie on the causal pathway of
treatment (e.g., mediators of prior treatment) or
they may be early indicators for longer-term out-
comes of interest (e.g., surrogates or proximal
measures of the longer-term outcome).
To appreciate each element of an AI, consider the

two examples shown in Fig. 1, which are also
compared side-by-side in Table 1. First, we discuss
the AI shown in Fig. 1a. In this example AI, short
duration IBT is the only first decision stage treat-
ment option, and no baseline tailoring variables are
used. Here, the first-stage decision rule recommends
offering the same treatment (i.e., short duration IBT)
to all adults who are overweight or obese, regardless
of their specific needs at baseline. At the second
decision stage, there are two treatment options:
continue IBT or augment IBT with meal replace-
ments (IBT+MR). The second-stage decision rule
recommends that responding adults (e.g., perhaps
those who lose ≥5 lbs of their initial weight within
the first 5 weeks) should remain on IBT; whereas
nonresponding adults should be offered IBT+MR.
Here, change in weight from baseline to the end of
the 5th weekly session is the intermediate tailoring
variable used to tailor the second-stage treatment.
The decision rule operationalizes how to use the
tailoring variable to guide the tactical decision at the
second-stage. In this example, the 5 lbs cutoff is
based on previous research [16], which is corrobo-
rated by clinical experience, suggesting that weight
loss of less than 5 lbs during the first 5 weeks of
behavioral therapy treatment is associated with
longer-term insufficient weight loss (<5–10 % of
body weight at the end of 26 weeks), thereby
indicating a need for subsequent (changes or
augmentation in) treatment.
Figure 1b is an example of an AI that is more

deeply-tailored than the AI in Fig. 1a (see Table 1).

By more deeply-tailored, we mean that, relative to
the AI in Fig. 1a, the AI in Fig. 1b uses additional
information about the individual (e.g., using addi-
tional tailoring variables) to provide more individu-
alized treatment. First, the AI in Fig. 1b involves two
first-stage treatment options: initial IBT for 5 weekly
sessions vs initial IBT for 10 weekly sessions; and
four second-stage treatment options: continued IBT
for 16 or 21 weeks, IBT+MR for 21 weeks, or
Acceptance and Commitment Therapy (ACT) for
16 weeks. ACT is a psychotherapeutic approach
focusing on acceptance and mindfulness strategies
for promoting health behavior change [47]. A
growing body of literature suggests that ACT may
be useful for managing or losing weight [48–50].
Second, the AI in Fig. 1b uses both baseline and
intermediate tailoring variables. Specifically, history
of binge or emotional eating at baseline is used as a
baseline tailoring variable in both the first- and
second-stage decision rules, and change in weight is
used as an intermediate tailoring variable in the
second-stage decision rule. Third, the two AIs in
Fig. 1a, b differ in terms of the decision rules.
Specifically, for individuals who have a history of
binge or emotional eating at baseline, the first-stage
decision rule recommends 10 weekly sessions on
IBT; whereas, for individuals who do not have such
a history, the decision rule recommends offering
only 5 weekly sessions of IBT. Such baseline
tailoring is based on the conjecture that to achieve
a meaningful long-term reduction in weight, those
who have a history of binge or emotional eating
may require more time and treatment; whereas, for
those who do not have such a history, it may be
better to offer short duration IBT and move them
more quickly to a second-stage treatment if they do
not respond [51]. Concerning the second-stage
decision rule, responders to 5 or 10 weekly sessions
of initial IBT are continued on IBT. However,
nonresponders to IBT with no history of emotional
or binge eating are augmented with IBT+MR,
whereas nonresponders to IBT with such a history
are switched to ACT. Here, the decision to offer
ACT to nonresponders with a history of emotional
and binge eating is based on a conjecture that ACT
may be particularly relevant for addressing this type
of problem [49]. For example, ACT may be more
useful than continued IBT or IBT+MR in resolving
some of the problems associated with emotional or
binge eating, such as feelings of ineffectiveness,
perfectionist attitudes, impulsivity, low self-esteem,
and poor sense of control [50].
The entire package of decision stages, treatment

options, tailoring variables, and decision rules
constitutes one AI; e.g., Fig. 1a constitutes a single
AI and Fig. 1b constitutes a separate AI. From the
perspective of an overweight individual, an AI is a
sequence of treatments : e.g., an individual classified
as a nonresponder at the end of the 5th weekly
session is offered the sequence of 5 weekly sessions
of IBT followed by 21 weekly sessions of IBT+MR.
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From the perspective of the clinician/therapist, the
AI is a decision rule guiding (recommending) when
and how treatment should (could) be modified for
both responders and nonresponders over the course
of 26 weekly sessions.

SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZED
TRIALS
In many areas of research, investigators have
insufficient empirical evidence or theoretical basis
t o a s s emb l e a h i g h - q u a l i t y a d a p t i v e
intervention—that is, to choose the decision stages,
treatments options, tailoring variables, and decision
rules which lead to improved health outcomes. In
this section, we introduce Sequential Multiple As-
signment Randomized Trials (SMARTs), which are
used in research to build optimal adaptive interven-
tions. SMARTs are multistage randomized trial
designs. Each participant in a SMART may move
through multiple stages of treatment (i.e., first-stage
treatment, second-stage treatment, etc.). Each stage
corresponds to a decision stage. All SMART partic-
ipants are randomized at least once, and some or all
participants may be randomized more than once
throughout the course of the trial. Randomizations
occur at the beginning of decision stages. At each
stage, randomization is used to provide data for
addressing a scientific question concerning treat-
ment options at that decision stage.
Across a wide-range of the behavioral and clinical

sciences, a wide variety of SMART designs has been
conducted, or is currently being conducted, to build
adaptive interventions. For example, SMART has
been used in oncology to develop medication
algorithms to treat prostate cancer [36, 52, 53]. An
example of an early precursor to the SMART is the
Clinical Antipsychotics Trial of Intervention Effec-
tiveness (CATIE) [54] in chronic schizophrenia. Lei
et al. [23] describe the rationale and scientific
questions addressed by four different SMART
studies either recently completed or underway in

autism, attention-deficit/hyperactivity disorder
(ADHD), and for various substance use disorders.
The Methodology Center at Penn State University
hosts a web page with the description, status, and
citations to articles of various different SMART
designs completed or currently underway in a
variety of health settings [55].
To illustrate the key features of a SMART study

design, consider the hypothetical example shown in
Fig. 2. The overarching purpose of this SMART is to
develop an AI beginning with IBT for optimizing
weight loss among overweight adult individuals.
The primary study outcome in this example
SMART is longitudinal change in weight. Secondary
study outcomes include physical activity, quality of
life, dietary intake, and cost-effectiveness. Study
outcomes are measured during monthly study
(research) assessment visits from baseline/intake to
the week 26 follow-up. Individuals in this example
SMART participate in 26 weekly treatment sessions.
Weight is also measured during each of the 26
weekly treatment sessions.
In this example SMART, all participants are

randomized with equal probability to initial IBT
for 5 weekly sessions vs initial IBT for 10 weekly
sessions. After 5 or 10 weeks, respectively, respond-
er (≥5 lbs weight loss since baseline) vs nonre-
sponder status is examined. Responders are
assigned to continue on IBT, with as-needed mod-
ifications to IBT. Nonresponders are randomized
again with probability 1/2 to augment IBT with MR
(IBT+MR) vs switch to ACT.
As with IBT in the first-stage, there is an evidence

base for IBT+MR [5, 56, 57] and ACT [58–62] as
second-stage treatment options for weight loss. MR
is effective for weight loss, in part, because it
alleviates the need for decision-making regarding
what food(s) to prepare as well as the time and effort
needed to prepare the food. It provides a clear and
unambiguous method for obtaining portion control
and accompanying reduction in energy intake. IBT
augmented with MR (IBT+MR) may, therefore,

IBT for 5 
weekly 
sessions

R

Responders at 

end of week 10
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Fig 2 | This is an example sequential multiple assignment randomized trial (SMART) design for developing a weight loss
intervention. Four adaptive interventions are embedded within this SMART (see Table 2). N sample of overweight or obese
adult participants, R randomization, with probability 1/2, IBT individualized behavioral treatment, MR meal replacements,
ACT acceptance and commitment therapy (adapted for weight loss)
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permit nonresponding individuals to focus their
time and efforts on physical activity and experience
the benefits of proper nutrition. Previous research
also suggests the promise of ACT for managing or
losing weight (Table 2) [58–62]. Although ACT may
not produce superior weight losses on average
compared to more traditional interventions, ACT
may be particularly effective for certain types of
individuals, specifically, those who experience
higher levels of negative affect, and may, therefore,
be a suitable second-stage treatment option for
nonresponders.
Another rationale for considering MR and ACT

as second-stage treatment options is founded in an
intervention resource management perspective, with
important public health significance. Due to the cost
of meal replacements (MR) and the cost and
availability of trained ACT psychotherapists, it
would not be feasible from a public health, cost-
effectiveness point of view, to provide all adult
individuals who are overweight with IBT+MR or
with ACT from the start. Furthermore, ACT
requires a time commitment on the part of the
individual, which may be burdensome. These
perspectives are important since some proportion
of individuals might benefit adequately in the long-
term from IBT alone.

COMMON SCIENTIFIC AIMS IN A SMART
In this section, we discuss three types of scientific
aims that can be addressed using data arising from a
SMART (Table 3): (1) main effect aims, (2) embed-
ded AIs aim, and (3) optimization aim. We use the
example SMART in Fig. 2 to explain and give
concrete examples for each type. Among these, the
primary aim in a SMART is often one of the main
effect aims or embedded AIs aim. The optimization
aim is less confirmatory (more hypothesis
generating)—it is akin to the aim of identifying
moderators in a standard RCT. For this reason, the
optimization aim is rarely chosen as primary; in a
SMART, investigators often choose the optimization
aim as a third aim. However, as with any random-
ized trial, ultimately the choice of primary aim is
driven by scientific considerations specific to the
area of study. Of course, for all of these aims, the
choice of primary and secondary outcomes will
differ depending on the area of application. In
weight loss research, the primary outcome is often
weight loss, and secondary outcomes may include
quality of life or cost-effectiveness outcomes.

Main effect aims: comparison of first- or second-stage
treatment options
One critical question that can be addressed with the
SMART in Fig. 2 is: “What is the best initial
duration of IBT for overweight adults?” Or, more
specifically, “Is it better to begin adaptive interven-
tions with a short duration IBT or long durationTa
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IBT?” The scientific aim targeting this question
concerns the comparison of the two IBT durations,
averaging over the second-stage treatments for
nonresponders. This comparison corresponds to
the main effect of the first-stage treatment options.
A second critical question that can be addressed

with the SMART in Fig. 2 is: “What is the best
treatment option for nonresponders to IBT?” Or,
more specifically, “Among nonresponders to IBT,
should we augment IBT with meal replacements or
should we switch to a psychotherapeutic approach
(such as ACT)?” The scientific aim targeting this
question concerns the comparison of the two
treatments among nonresponders to IBT, averaging
over the duration of initial IBT. This comparison
corresponds to the main effect of second-stage
treatments for nonresponders to IBT.

Embedded adaptive interventions aim
Both of the main effect aims above are useful for
building an efficacious AI because they shed light on
which treatment option (separately, at each stage) is
more beneficial, on average. Here, we discuss aims
that focus on how first- and second-stage treatment
may work with (synergistically) or against (antago-
nistically) each other to impact weight loss out-
comes. From this perspective, this aim involves
assessing the interactive effect (as opposed to main
effect) between the intervention components in the
first- and second-stage.
Since the example SMART experimentally

“crosses” (i.e., systematically varies) two first-stage

treatment options with two second-stage treatment
options (among nonresponders), this aim involves a
comparison of (2×2) four experimental groups.
These groups represent the four AIs that are
embedded within the SMART, by design (see
Table 2). Note that the AIs themselves do not
involve randomization.
The comparison of these four embedded AIs may

be operationalized in various ways. One approach
involves contrasting two or more of the embedded
adaptive interventions. Consider a comparison of AI
# 1 (initial short duration IBT; and assign IBT+MR
if not responsive, continue IBT otherwise) with AI #
4 (initial long duration IBT; and assign ACT if not
responsive, continue IBT otherwise) on the basis of
weight loss outcomes at the follow-up at week 26.
These two AIs, for example, represent the two most
distinct AIs in this SMART in terms of first-stage
treatment duration and second-stage treatment (i.e.,
an augment versus a switch): AI # 1 permits IBT a
shorter amount of time to produce a response (short
duration) and then recommends IBT+MR if the
response is not achieved. Whereas AI # 4 permits
IBT a longer period of time to achieve a response
(longer duration) and then recommends ACT if the
response is not achieved. That is, such a comparison
permits investigators to examine whether it is better
to be more stringent about achieving response
during IBT and, if not responsive, augment IBT
versus whether it is better to be less stringent about
achieving response during IBT and, if still not
responsive, give up on IBT and try an alternative.

Table 3 | This table lists three types of scientific aims commonly examined in a SMART, using the example SMART in Fig. 2 to
illustrate

Type of aim Example scientific questions Contrast/analysis of
interestb

Main effect aims Main effect of first-stage treatment: “Is it better
to begin adaptive interventions with a short duration
IBT or long duration IBT?”

A+B+C versus D+E+F

Main effect of second-stage treatment: “Among
nonresponders to IBT, is it better to augment IBT
with MR or to switch to ACT?”

B+E versus C+F

Embedded adaptive
interventions
aima

Comparison of two adaptive interventions: “Is long
duration IBT followed by ACT for nonresponders better
than short duration IBT followed by IBT+MR for
nonresponders?”

A+B versus D+F

Identifying the best the adaptive intervention: “Which of
the four embedded adaptive interventions leads to the
greatest reduction in weight loss?”

Identify best among
A+B, A+C, D+E and D+F

Optimization aim To develop a more deeply-tailored adaptive intervention:
“Should individuals identified as emotional/binge
eaters at baseline receive longer duration IBT instead
of short duration IBT?”, and “Should individuals who
were nonresponders and also not adherent to initial
IBT be switched to ACT?”

B+E vs C+F (for nonresponders)
within levels of adherence to
initial IBT, and
A+B+C vs D+E+F
within levels of emotional/
binge eating

Responder=Weight loss of 5 lbs or more, Nonresponder=Weight gain, no change in weight, or weight loss of less than 5 lbs

IBT individualized behavioral treatment, MR meal replacements, ACT acceptance and commitment therapy (adapted to address weight loss)
a See Table 2 for a description of the four embedded adaptive interventions aim
b The letters represent the different subgroups being compared in Fig. 2
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A second way to operationalize the embedded AIs
aim is to order the four AIs in terms of those with
the largest average reduction in weight loss to
those with the smallest reduction [63]. Since
this operationalization of the aim seeks to
identify the best performing AI, it differs from
the first operationalization, which aims to
compare two (or more) AIs using a statistical
hypothesis test.

Optimization aim: the development of a more deeply-
tailored adaptive intervention
This hypothesis generating aim is often considered
the most interesting aim. Here, the goal is to
discover and propose an AI in which the treatment
is more deeply-tailored than the four AIs that are
embedded in the SMART design (i.e., beyond those
specified in Table 2). Practically, this aim involves
identifying tailoring variables beyond those that are
embedded in a SMART. This is often considered an
“optimization aim” because it aims to find a more
optimal sequence of treatments for each individual.
To better appreciate this, consider again the

SMART study in Fig. 2. In this design, response/
nonresponse status after initial IBT (i.e., based on a
5-lb change in weight from baseline to the end of
first-stage treatment [16]) was used to individualize
(tailor) the second-stage treatment options for all
SMART study participants. Because this intermedi-
ate tailoring variable was embedded as part of the
SMART study design, all AIs examined with data
arising from this SMART will be a function of this
variable. Indeed, the four AIs in Table 2 employ this
intermediate tailoring variable as the sole tailoring
variable. However, these four AIs do not (i)
individualize initial IBT duration (first-stage treat-
ment), and they (ii) do not take advantage of
additional heterogeneity within the nonresponders
to further individualize the choice of IBT+MR vs
ACT.
The optimization aim concerns the identification

of baseline tailoring variables that might be useful in
making decisions about first-stage treatment (dura-
tion of first-stage IBT), as well as other intermediate
tailoring variables, other than response/nonresponse
based on a 5-lb change in weight, that might be
useful in making decisions about second-stage
treatment (IBT+MR vs ACT among nonre-
sponders).
Concerning the investigation of baseline tailoring

variables, the investigators may discover that, in the
long-term, individuals who have low motivation for
behavior change at baseline or a history of emo-
tional/binge eating benefit more from receiving
longer duration IBT initially, whereas those who
are highly motivated or do not have a history of
emotional/binge eating benefit more from shorter-
duration IBT initially. Additional baseline
information—such as baseline body mass index, the
presence of other comorbidities, or lack of social

support at home—could also be examined. Fig. 1b,
discussed earlier, provides an example AI in which
baseline information is used to tailor first-stage
treatment.
Concerning the investigation of other intermedi-

ate tailoring variables, the investigators might dis-
cover that different types of nonresponders to IBT
would do better on augmenting with IBT+MR,
whereas other types of nonresponders to IBT might
do better switching to ACT. For instance, nonre-
sponders to IBT who continue to overeat (quantity is
a problem), despite eating a balanced diet and
displaying the ability to make changes in physical
activity (making changes in lifestyle is not a
problem), may benefit more from switching to
ACT rather than augmenting with MR. In other
words, the individual is responding to, and comply-
ing with, the core principles IBT by initiating
behavior change, yet emotional problems leading
to overeating remain a barrier to weight loss. Such
an individual, who now has acquired the skills useful
for weight loss, may respond better to a switch to
ACT. Or, as described in Fig. 1b, the choice of
second-stage treatment among nonresponders may
differ depending on initial treatment or baseline
measures such as emotional/binge eating.

OVERVIEW OF DATA ANALYSES FOR THE COMMON
SCIENTIFIC AIMS IN A SMART
In this section, we provide a brief overview of the
analytic approaches associated with each of the
three types of scientific aims.

Analyses associated with the two main effect aims
Standard longitudinal data analysis methods, such as
linear mixed models (LMM [64]; also known as
mixed-effect, random effects, hierarchical linear, or
growth curve models) are used to address the two
main effect aims. A key idea to understanding why
standard data analysis methods are possible to
address these aims is that a SMART is a form of a
factorial experimental design [17]. Consistent with
the analysis of factorial experiments for the devel-
opment of behavioral interventions [65–67], the
analyses associated with these two “main effect”
aims pool together different groups of participants
from the multiple subgroups A–F shown on the
right margin of Fig. 2.
Specifically, the data analysis associated with the

first question—“Is it better to begin with short
duration IBT or long duration IBT?”—might com-
pare change in weight loss from the beginning of the
first-stage treatment to the week 26 follow-up
between all individuals randomly assigned to short
duration IBT (5 weeks of initial IBT; subgroups A+
B+C in Fig. 2) versus all individuals randomly
assigned to long duration IBT (10 weeks of initial
IBT; subgroups D+E+F). This is a single factor
(initial IBT duration) analysis where the factor has
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two levels (short vs long duration). This analysis is
identical to the analysis used to analyze data arising
from a two-arm, longitudinal randomized clinical
trial (RCT).
A similar data analysis approach can be used to

address the second question: “Among nonre-
sponders, is it better to augment IBT with MR or
switch to ACT?” This analysis compares change in
weight loss between all nonresponders randomly
assigned to augmented IBT+MR (subgroups B+E)
versus all nonresponders randomly assigned to
switch to ACT (subgroups C+F). Again, this
analysis is simply a 2-group comparison of weight
trajectories.

Analysis associated with the embedded adaptive
interventions aim
Again, as with the analyses of the two main effect
aims above, data analyses associated with com-
parisons of embedded AIs pool individuals over
various subgroups. For example, individuals in
subgroups A+B provide data for the estimation
of mean outcomes (e.g., weight loss) under AI #
1, whereas individuals in groups D+F provide
data for the estimation of mean outcomes under
AI # 4.
Comparing the mean outcomes between the four

AIs can be done using all of the data in one
regression analysis. However, unlike the standard
regression analyses (e.g., LMM) associated with the
main effect aims, this analysis requires a small
adjustment involving weighting and replication. To
appreciate why a weighted regression approach is
necessary, consider that by design—i.e., nonre-
sponders are randomized twice whereas responders
are randomized only once—nonresponders would
have a 1/4 chance of following the sequence of
treatments they were offered, whereas responders
would have a 1/2 chance of following the sequence
of treatments they were offered. Therefore, in terms
of second-stage treatment offerings, nonresponders
are underrepresented in the data; this underrepre-
sentation occurs by design. To account for this
imbalance (i.e., to account for the underrepresenta-
tion of nonresponders), weighted regression is
employed, whereby nonresponders are assigned a
weight of 4 and responders are assigned a weight of
2. The weights are inversely proportional to the
probability of being offered a particular treatment
sequence.
Next, to appreciate why replication is necessary,

consider that responders to initial short duration
IBT (subgroup A; see Table 2 and Fig. 2) are
consistent with AIs # 1 (A+B) and # 2 (A+C);
and, similarly, responders to initial long duration
IBT (subgroup D) are consistent with AIs # 3 (D+E)
and # 4 (D+F). Therefore, to account for this
“sharing” of responders, prior to data analysis, the
outcomes (and covariates) for all responders are
replicated twice.

The above provides intuition for the weighted-
and-replicated regression approach for comparing
the embedded AIs. This method and the adjust-
ments necessary to provide appropriate standard
errors—i.e., to account for the “double use” of
responders and uncertainty in the number of
individuals who are assigned a weight of 2 vs
4—are described in detail in the work by Nahum-
Shani and colleagues [21]. That paper also includes
example SAS code for a variety of different SMART
designs. The statistical foundation for the weighting-
and-replication method is found in the work by
Orellana, Rotnitzky, and Robins [33, 34, 68].
Once the mean outcome and standard error is

estimated for each of the embedded AIs, it is
possible to conduct a hypothesis test to compare
any two (or more) of the embedded AIs, or identify
the AI leading to the greatest estimated weight loss
[63].

Analysis associated with the optimization aim
Data analyses associated with the aim to develop a
more deeply-tailored AI are akin to, but go beyond,
standard moderator analysis [69–72]. In standard
moderator analyses of data arising from standard
randomized clinical trials (RCTs), for example,
investigators often fit hypothesis generating regres-
sion models with baseline covariate-by-treatment
interactions terms, such as with demographic vari-
ables (age, race/ethnicity, or sex), comorbidities
(mental health or substance use), baseline weight or
body-mass index, or history of treatment. These
regression models often help unpack the effects of
interventions because they can be used to help
explain for whom treatment effects are stronger vs
weaker. Such analyses are often also used with RCT
data to determine whether the identified moderators
are also baseline tailoring variables.
Indeed, all tailoring variables are moderator

variables; whereas, not all moderators are tailoring
variables. In data analysis, a tailoring variable is a
special type of moderator variable in that both the
magnitude and the direction (or presence) of the
treatment effect differs at different values of the
tailoring variable. (Only differences in magnitude
are necessary for treatment effect moderation to be
present.)
Analyses associated with the development of a

more deeply-tailored AI are similar to the regres-
sions with covariate-by-treatment interactions terms
mentioned above, except with an explicit focus on
exploring not only baseline but also intermediate
tailoring variables. In the example SMART, this
means identifying baseline variables that pinpoint
whether shorter vs longer duration IBT is better, and
baseline and intermediate variables that pinpoint
whether IBT+MR vs ACT is better, among nonre-
sponders to IBT.
“Q-Learning Regression” is a data analysis meth-

od useful for optimizing the AI while exploring
candidate tailoring variables [22]. Q-Learning is
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essentially a generalization of moderated regression
analysis to multiple stages of treatment.
In the context of our example SMART, Q-Learning

involves three steps. The first step is a regression,
among early nonresponders, of weight loss from
baseline to week 26 (end of study outcome) on
candidate baseline tailoring variables, first-stage IBT
duration, candidate intermediate tailoring variables
(e.g., adherence to first-stage IBT, or within-person
slope in weight change from baseline to the point of
initiating second-stage treatment), a binary indicator
for second-stage treatment (IBT+MR vs ACT), and
covariate-by-second-stage-treatment interaction terms.
The purpose of this regression is to examine candidate
baseline and intermediate tailoring variables of sec-
ond-stage treatment. Note that the first-stage treatment
decision (5 vs 10 weeks initial treatment duration) may
also serve as a tailoring variable for the decision to
augment with IBT+MR vs switch to ACT.
The second step, which is based on the results of

the first regression, is to assign each nonresponding
individual an estimated outcome that represents
their expected weight loss under the second-stage
treatment (IBT+MR vs ACT) that is best for that
individual. This step ensures that the evaluation of
first-stage tailoring variables (the third step, below)
incorporates the effect of having made the optimal
future treatment decision (IBT+MR vs ACT) for
each individual. Responders are assigned their
observed outcome since all responders continued
receiving IBT.
The third step is another regression, using all

participants, of this new outcome (estimated out-
come constructed in the second step above for
nonresponders, observed outcome for responders)
on candidate baseline tailoring variables, a binary
indicator denoting whether the subject was random-
ized to 5 vs 10 weeks initial duration IBT, and
covariate-by-first-stage-treatment interaction terms.
The purpose of this final regression is to examine
candidate baseline tailoring variables (e.g., emotion-
al/binge eating or level of severity at baseline) of
first-stage treatment while taking into account the
fact that a future optimal decision has been made.
The end of result (e.g., the product) of this aim is a

proposal for an optimal AI that may more deeply
tailor treatment over time. For instance, in the
context of the SMART in Fig. 2, the result of this
aim may suggest the AI in Fig. 1b, or to give a
second example, it may yield an AI such as the
following: “Begin with weekly sessions of IBT.
Individuals who have a history of emotional/binge
eating should receive initial IBT for 10 weeks (long
duration IBT); whereas all other individuals should
receive IBT for 5 weeks initially (short duration
IBT). Adherent nonresponders to short duration
IBT should receive IBT+MR in the second-stage.
All other nonresponders (i.e., those who are not
adherent to initial IBT (regardless of duration) and
those who are adherent to long duration IBT)
should switch to ACT.”

As with the AI in Fig. 1b, observe how this second
example AI goes beyond the four design-embedded
AIs (Table 2). In this second example AI, baseline
diagnosis for emotional/binge eating was identified
as a tailoring variable for determining initial IBT
duration. Nonresponse status, duration of initial
treatment, and initial IBT adherence status are used
as the three tailoring variables determining second-
stage treatment (IBT+MR vs ACT). A full discus-
sion of Q-Learning is outside of the scope of this
manuscript; for details, including a worked example,
see Nahum-Shani et al. [22] and associated tutorial
materials on the first author’s website. In addition,
an add-on procedure for SAS that implements Q-
Learning [73] has been developed with an associated
user’s guide [74].

SAMPLE SIZE CONSIDERATIONS
A common misconception is that SMARTs require
prohibitively large sample sizes. This often stems
from a belief that a large number of participants
must end up in each of the final subgroups of a
SMART design (i.e., subgroups A–F in Fig. 2). This
belief stems from a misunderstanding of how the
data is commonly analyzed. For example, it is
common to think that the data arising from a
SMART such as the one shown in Fig. 2 is analyzed
as a 6-way analysis of covariance comparing sub-
groups A–F. Such an analysis may, indeed, require
large sample sizes; however, as we have discussed,
such an analysis does not correspond to any of the
primary aims described above.
As is well known, the minimum sample size for

any experimental trial is dictated by the primary aim
for that trial [75]. Above, we have identified two
types of aims that often serve as primary aims in a
SMART: main effect aims and the embedded AIs
aim. To illustrate what the sample size requirements
may look like for a SMART, consider sample size
calculations for the two main effect aims and the
embedded AIs aim using the example SMART in
Fig. 2. For simplicity, we focus on detecting medium
effect sizes [76] of 0.5 (Cohen’s d) for each of these
aims.
First, we consider sample size requirements as-

suming the main effect of first-stage treatment (the
effect of initial IBT duration) is the primary aim.
Since the associated analysis for this aim is a
longitudinal comparison of two groups (A+B+C
vs D+E+F), the sample size requirements for this
effect is identical to the sample size requirement for
a two-group longitudinal randomized clinical trial.
Therefore, assuming a within-person correlation of
0.50 in longitudinal weight, and a study drop-out
rate of 10 %, a total sample size of at least N=122
(i.e., 61 in group A+B+C vs 61 in group D+E+F)
would be needed in order to detect a medium effect
size [58] (Cohen’s d=0.5) with at least 85 % power
and type-I error of 5 %.
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Second, we consider the sample size requirement
assuming the main effect of second-stage treatment
(the effect of augment IBT with MR vs switch to
ACT among nonresponders to IBT) is the primary
aim. This analysis is also a two-group comparison
(subgroups B+E vs subgroups C+F). Yet, because
this analysis is among nonresponders, the sample
size calculations need to take into account the rate of
nonresponse to IBT as follows. For simplicity, here
the rates are assumed to be equal between short vs
long duration initial IBT; however, in applications
where this is not an appropriate assumption, we
recommend the conservative approach of choosing
the smaller nonresponse rate. Assuming a nonre-
sponse rate of 0.60 to initial IBT, and keeping all
other assumptions the same as above, would require
a total sample size of at least N=204=122/0.6; that
is, 204/2=102 in group A+B+C vs 102 in group
D+E+F, which implies 102×0.6=61 in group B+E
vs 61 in group C+F. Note that a nonresponse rate
lower than 0.6 would result in a larger total N.
Third, we consider the sample size requirement

assuming the embedded AIs aim is the primary aim,
operationalized as identifying which of the four
embedded adaptive interventions leads to the
greatest amount of weight loss (as opposed to
operationalizing it as a hypothesis test). Following
Oetting et al. [63], a total sample size of at least N=
154 is required in order to correctly identify the best
embedded AI with at least 95 % probability. This
calculation assumes that the best and second-best
AIs differ by no smaller than a medium effect size
(Cohen’s d=0.5) and the study drop-out rate is 10 %.
(A web applet for this calculation exists at the
Methodology Center website [77]). An alternative,
potentially less conservative approach, is to calculate
the sample size to contrast two (or more) embedded
adaptive interventions by simulation experiment
[78].

A SMART DESIGN VARIATION
Different SMART designs are suitable for address-
ing different types of scientific questions [21, 23].

An interesting variation of the SMART shown in
Fig. 2 centers on whether the decision to provide 5
vs 10 weeks of initial IBT occurs at baseline or
whether this decision occurs at some point after
initial IBT (but prior to 10 weeks). The design in
Fig. 2 supposes that the decision of 5 vs 10 weeks
occurs at baseline; and consistent with this consid-
eration, all participants are randomized at baseline
to 5 vs 10 weeks duration of IBT. However, suppose
that the decision to provide 5 vs 10 weeks of initial
IBT is one that occurs (or investigators believe
should occur) at the end of week 5, rather than at
baseline. In this case, a variation of the SMART
design shown in Fig. 2 (see Fig. 3) would provide
5 weeks of initial IBT to all participants. Then, at the
end of week 5, all participants are randomized to
either (1) immediately assess response/nonresponse
status for purposes of deciding whether to continue
IBT, augment IBT with MR, or switch to ACT or (2)
provide an additional 5 weeks of initial IBT before
assessing response/nonresponse status (i.e., post-
pone the assessment for another 5 weeks). Non-
responders (at the end of week 5 or week 10)
would be re-randomized to IBT+MR vs ACT, as
before.
Apart from the important practical matter of

which type of duration decision makes the most
sense in clinical practice, the investigator’s decision
to design the SMART as in Fig. 2 vs the variation in
Fig. 3 also has scientific implications. Consider the
following trade-off: Since, in the SMART in Fig. 2,
individuals are initially aware of the assignment to 5
vs 10 weeks of initial IBT, this design permits
investigators to examine interesting “expectancy
effects of initial IBT duration”. That is, even though
the two arms are nominally identical up to week 5 in
terms of the intervention being provided (IBT), it is
possible that during the initial 5 weeks, participants
in the two arms may differ in weight loss trajectories
due to knowing how long they will remain on initial
IBT. One conjecture is that participants in shorter-
duration IBT, for instance, may become more
motivated (than participants in longer duration) to
achieve quicker weight loss knowing that their
progress is going to be assessed relatively soon.

Assess 
response 

status

Responders at 

end of week 10

Non-Responders

at end of week 10

Continue IBT

Augment IBT:
IBT + MR

Switch:
ACT

R

Responders at 

end of week 5

Non-Responders

at end of week 5

IBT for 5 
more 

weekly 
sessions

N

Continue IBT

Augment IBT:
IBT + MR

Switch:
ACT

R

A

B

C

D

E

F

IBT for 5 
weekly 
sessions

R

Fig 3 | This is a variation of the example SMART in Fig. 3 in which the decision to provide 5 vs 10 weeks of initial IBT occurs
at the end of 5 weeks on IBT instead of at baseline. N sample of overweight or obese adult participants, R randomization,
with probability 1/2, IBT individualized behavioral treatment, MR meal replacements, ACT acceptance and commitment
therapy (adapted for weight loss)
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The latter design is less suitable for shedding light
on such interesting expectancy effects of initial IBT
duration. On the other hand, since in the latter
design the decision concerning 5 vs 10 weeks of
initial IBT occurs at week 5, this permits greater
opportunity for developing a more deeply-tailored
AI. For instance, the latter design would permit
investigators to understand whether information
about the progress of individuals during the first
5 weeks (in addition to baseline information) can be
used to tailor the decision to assess response/
nonresponse immediately (at week 5) versus post-
pone the assessment for another 5 weeks. This
examination would be part of the optimization aim
analysis. Thus, the latter design offers additional
opportunities for using data to inform the decision
to provide 5 vs 10 weeks of initial IBT.

DISCUSSION
For simplicity, this manuscript focused on the
development of an adaptive weight loss intervention
in the acute phase of treatment. However, in clinical
practice, adaptive interventions may also span
across the acute and maintenance phase continuum.
For example, individuals who meet their target
weight loss goals at the end of week 26 of acute
phase treatment may be offered a personal contact
intervention via telephone [79] to sustain their
weight loss in the maintenance phase, whereas the
intervention intensity may be increased for others
who do not meet their target weight loss goals.
Indeed, the ideas in this manuscript extend readily
to this type of application, and within or between
any phases/sequences of care.
SMART designs differ significantly from standard

randomized clinical trials (RCT) in terms of their
overarching aim. Whereas the overarching aim of a
SMART is to construct a high-quality adaptive
intervention based on data, the overarching aim of
an RCT is to evaluate an already-developed inter-
vention versus a suitable control. Examples of
suitable controls may be usual care, enhanced care,
a fixed (nonadaptive) intervention, etc. That is, an
RCT is highly useful when investigators already
have the theoretical basis and empirical evidence
necessary for constructing the best/optimal adaptive
intervention, and they wish to test the effectiveness
of this already-developed AI by comparing it to a
suitable control. For instance, Jakicic and colleagues
[44] developed an 18-month stepped-care AI for
weight loss, in which the “contact frequency, contact
type and other strategies were modified over time
depending on the achievement of weight loss goals
at 3-month intervals”. In developing this AI prior to
study, decisions were made (i) about the total
number of decision stages, including when and
how often they would occur (i.e., there was a step
every 3 months over 18 months), (ii) to use one
tailoring variable (i.e., weight loss), (iii) about the
treatment options (i.e., group sessions, behavioral

lessons, 1 vs 2 sessions of telephone counseling,
individual sessions, and meal replacements), and (iv)
about the decision rules linking weight loss and
treatment options at each time point (i.e., different
weight loss cutoffs were decided on at different
steps). After these decisions were made, the investi-
gators evaluated this adaptive intervention versus a
standard behavioral weight loss intervention using a
2-arm RCT. The aim of this study was not to
construct an adaptive intervention; rather, the aim
was to evaluate the above-described intervention.
However, as noted earlier, in many other cases

investigators have insufficient empirical evidence or
theoretical basis to form a high-quality adaptive
intervention. That is, investigators often confront
important open questions such as “What is the best
first-stage treatment?”, “What is the best subsequent
treatment?”, “What is the optimal intensity and
scope for the first- or subsequent-stage interven-
tions?”, “What is the optimal timing of a change in
treatment?”, “How often should the intensity of the
intervention be stepped-up or stepped-down?”,
“Should adherence to initial treatment be used in
addition to achieving certain weight loss goals to
decide how to modify the intervention?”, or “What
other measures can be used to adapt the interven-
tion over time so as to effectively address the
specific and changing needs of the individual?”
SMART designs can help address these critical
questions empirically, using experimental design
principles, prior to evaluation.
The end result of a SMART is a proposal for an

optimal AI, e.g., such as the more deeply-tailored AI
in Fig. 1b. Following the development of an
optimized AI using data arising from a SMART, an
investigator may choose to evaluate the optimized
AI versus a suitable control using a subsequent
RCT.
SMARTs are part of the Multiphase Optimization

Strategy (MOST; [66]), a framework for constructing
effective multicomponent behavioral interventions.
To appreciate this, consider that: (a) AIs, which
SMARTs aim to construct, are multicomponent
interventions (e.g., different components may be
provided at different time points to different indi-
viduals); (b) factorial designs (along with other
approaches) are often used in the optimization stage
of MOST to develop more potent interventions [65,
67] and, as stated earlier, SMART is a type of
factorial design [17]; and (c) using a SMART to
construct the best AI prior to evaluating it in an
RCT is consistent with the resource management
principle of MOST, which states that “available
research resources must be managed strategically
so as to gain the most information [to] move science
forward fastest” [66]. For example, concerning (c), it
would be less cost-effective—both in terms of actual
dollars spent and, importantly, the value of the
scientific information gained (see Section “Overview
of data analyses for the common scientific aims in a
SMART” of [1]—to conduct one RCT to evaluate the
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effect of short versus long duration initial IBT,
followed by a second RCT (among nonresponders
to the IBT duration which appears best on average
based on the results of the first RCT) to evaluate the
effect ACT vs IBT+MR, followed by a third RCT
to evaluate the effect of the adaptive intervention as
a whole (for both responders and nonresponders)
versus a suitable control.
In terms of the actual conduct of the trial, a

SMART differs from other experimental designs
(such as RCTs and factorial designs) in that ran-
domizations occur repeatedly over time. The core
methodological rationale for the randomizations,
however, remains the same. That is, just as random-
ization is aimed at permitting an unbiased compar-
ison (i.e., free of alternative explanations due to
confounding or treatment selection bias [75]) be-
tween the experimental treatment and a control
conditions in an RCT or between different levels of
treatment components in a factorial design, the
randomizations in a SMART are aimed at permit-
ting unbiased comparisons between treatment com-
ponents (or their levels) at each decision stage in the
development of an AI. SMARTs also differ from
other experimental designs in that randomizations
may be restricted based on an intermediate re-
sponse/nonresponse to earlier treatment; e.g., sec-
ond-stage randomization to ACT vs IBT+MR in
Fig. 2 occurs only for nonresponders to IBT.
A practical issue concerns the randomized alloca-

tion of participants in a SMART. Investigators may
choose to randomize participants up-front (at base-
line). That is, for example, study participants might
be randomized at baseline, to one of the embedded
four AIs listed in Table 2. Or investigators may
generate allocations in “real time” as each partici-
pant reaches a point of randomization. Both ap-
proaches permit stratified random allocation; this is
used to control potential bias due to chance
imbalances in treatment groups on key prognostic
factors. However, the former approach only allows
stratified random allocation based on baseline
prognostic factors, whereas in the latter approach
randomizations can make use of a wider variety of
prognostic factors. For example, in Fig. 2, first-stage
randomizations may be stratified based on baseline
measures (including those considered as candidate
baseline tailoring variables), such as baseline weight
or BMI; and second-stage randomizations, among
nonresponders, may be stratified on intermediate
outcomes, such as adherence to IBT, or changes in
weight from baseline observed prior to the second-
stage. Stratifying the second-stage randomization on
intermediate outcomes is not possible with up-front
randomization to the embedded AIs; yet such
stratification is particularly attractive when
nonadherence in the first-stage (to IBT) may be
prognostic of outcomes to the second-stage treat-
ments. Other practical considerations and chal-
lenges in the design and conduct of SMART are
discussed elsewhere [80].

In addition to the misconception that SMARTs
require large sample sizes, another common concern
about SMARTs has to do with blinded assessment of
outcomes. For example, there may be concern that
staff’s knowledge of both initial treatment assign-
ment and the value of the tailoring variable may
lead to differential assessment (e.g., information
bias) in the collection of study outcomes. As with
any randomized trial, the key to avoiding this type
of bias in a SMART is to make a clear distinction
between the measures used for treatment (e.g., tailoring
variables) versus the outcomes used for research [80].
For example, in the SMART in Fig. 2, the weight
loss measures used to determine response/nonre-
sponse at the end of the 5th and 10th weekly session
is part of the definition of the embedded AIs. The
therapist providing IBT, for example, may collect
these measures. To avoid information bias, these
measures would not be used to address the research
aims. Rather, a separate set of research outcomes
collected by an independent evaluator (IE; i.e., an
assessor who is blind to treatment assignment) could
be used to address the research aims. Some
investigators may choose to conduct a SMART
where blinded research outcomes are used for both
treatment and research; however, since IE’s are not
a part of clinical practice, careful consideration
would need to be given to the impact of this on
the applicability of the embedded AIs in clinical
practice.
Misconceptions about SMART also arise when

the term “adaptive design” is used to describe
SMARTs because the phrase is not sufficiently
precise [81]. SMART studies are used to develop
“adaptive interventions”. However, SMART studies
are not necessarily “adaptive trial designs” in the
sense that in adaptive trial designs, the clinical trial
can be altered during the course of the trial (e.g.,
minimum required sample size is recalculated, or a
treatment arm is abandoned) as data is gathered
during the conduct of the trial [82].
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