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Abstract

The term adaptive intervention has been used in behavioral
medicine to describe operationalized and individually
tailored strategies for prevention and treatment of
chronic, relapsing disorders. Control systems engineering
offers an attractive means for designing and
implementing adaptive behavioral interventions that
feature intensive measurement and frequent decision-
making over time. This is illustrated in this paper for the
case of a low-dose naltrexone treatment intervention for
fibromyalgia. System identification methods from
engineering are used to estimate dynamical models from
daily diary reports completed by participants. These
dynamical models then form part of a model predictive
control algorithm which systematically decides on
treatment dosages based on measurements obtained
under real-life conditions involving noise, disturbances,
and uncertainty. The effectiveness and implications of
this approach for behavioral interventions (in general)
and pain treatment (in particular) are demonstrated using
informative simulations.
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INTRODUCTION

Advances in understanding disease and developing
efficacious treatments, coupled with the challenge of
rising health-care costs, have resulted in an increased
interest within the field of behavioral medicine for
developing more effective strategies to treat chronic,
relapsing disorders [1, 2]. Conventional clinical prac-
tice is traditionally based on treatment plans designed
for a standard response that may not recognize indi-
vidual participant characteristics or apply optimiza-
tion procedures. During a typical treatment phase,
clinicians assess the response of a participant to treat-
ment by noting changes in symptoms or expected
outcomes and suggesting changes in treatment dos-
ages (if required). Many of these treatment strategies
are inspired from the acute care model and, in
spite of efficacious treatments, are not necessarily

Implications

Practice: Adaptive interventions based on control
systems engineering principles represent a valu-
able practical approach for personalizing and opti-
mizing treatment in behavioral interventions that
feature intensive data collection and frequent deci-
sion-making.

Research: Dynamical systems and control engi-
neering provide a powerful, broad-based method-
ological framework for modeling and decision-
making in behavioral settings that can serve to
benefit modern time-varying, adaptive interven-
tions.

Policy: Adaptive, time-varying interventions
based on control systems engineering can substan-
tially improve individual treatment outcomes
while lowering costs and reducing negative effects.

well suited for chronic disorders. Hence, even with
clinical histories available, the process of assigning
treatment dosages by clinicians is based more or
less on intuition and experience and may be not
individualized.

One promising approach lies in adaptive behavioral
interventions; these adjust treatment dosages over the
course of the intervention based on the values of
tailoring variables, that is, measures of participant
response or adherence [3]. In this paper, we describe
how control systems engineering [4] offers a novel and
potentially powerful framework for optimizing the
effectiveness of broad classes of adaptive behavioral
interventions. Specifically, the development of deci-
sion policies from control engineering coupled with
technological enhancements in information and com-
puter technology can result in adaptive interventions
that minimize waste, increase compliance, and en-
hance overall intervention potency [5-9]. By relying
on repeated assessments of participant response and
model-based operationalized treatment decisions, it is
possible to ascertain the optimal treatment regimen
for an individual participant with less active
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involvement of a clinician, ultimately improving inter-
vention outcomes while lowering costs.

Consider an illustration from a hypothetical
smoking cessation intervention. The participant is giv-
en a smartphone to track her daily craving and
smoking, while taking a certain recommended fixed
treatment, such as a nominal dose of bupropion or
behavioral therapy scheduled at regular intervals. This
mode of operation can be termed as “open-loop” be-
cause the treatment dosages are not adjusted based on
participant response and may be suboptimal. Subse-
quently, the intervention can be switched to a “closed-
loop” system where a “controller” (or decision algo-
rithm) alters dosages over time based on the informa-
tion provided by the participant. The smartphone re-
cords symptom severity and automatically suggests
proper dosage changes based on a model of partici-
pant’s response to treatment, other assessment infor-
mation, and clinical constraints. Data can still be sent
periodically to clinicians for review, and flags can be
set to trigger alerts to the clinician in case of an unex-
pected response. In this way, the best dosage levels can
be determined with minimal time required on the part
of clinicians and participants. The computer (or
srnartphone) can then continue to monitor symptoms
(perhaps changing sampling frequency to once a week
or once month) and make changes periodically as the
individual’s response to treatment changes over time.
It is important to note that in the closed-loop, the
decisions are made by incorporating dynamics of the
behavioral process, optimization on the basis of an
objective function criterion, and clinical constraints
as discussed in the rest of the paper.

We illustrate how control engineering can accom-
plish this vision for behavioral interventions with the
treatment of fibromyalgia (FM), a complex, multi-
symptom illness [10-12]. The approach is based on a
secondary analysis of intensive longitudinal data col-
lected in a previously conducted clinical trial that re-
lied on low-dose naltrexone for the treatment of FM.
We apply a data-based modeling technique from en-
gineering known as system identification [13] to devel-
op dynamical system models which model symptom
changes over time from daily diary reports completed
by intervention participants. We apply an idiographic
approach [14, 15] and use these diary reports which
include self-assessments of outcomes of interest (e.g.,
general pain symptoms, sleep quality) and additional
external variables that affect these outcomes (e.g.,
stress, anxiety, and mood). The various psychosocial
variables measured in the intervention, along with the
pharmaceutical arm, are used to explain changes in
reported pain and other symptoms. The estimated
dynamical systems models then serve as the basis for
applying a control technology known as model pre-
dictive control (MPC) as a decision algorithm for au-
tomatic dosage selection of naltrexone. A multiple
degree-of-freedom formulation for MPC is presented
that enables a clinician to adjust the speed at which a
desired target pain level should be reached, with the

capability to adjust to both anticipated and unantici-
pated changes in symptoms (as well as possible side
effects) independently in the closed-loop system. Sim-
ulation results are presented to illustrate the perfor-
mance of the proposed decision scheme that incorpo-
rates individual participant response, clinical con-
straints, modeling errors, and variability typically pres-
ent in a real-life application.

While the treatment of FM with naltrexone serves as
the primary example in this paper, similar procedures
can be applied to many other disease-treatment com-
binations associated with behavioral medicine. Pub-
lished work that examines aspects of the control sys-
tems engineering approach described in this paper in
other behavioral health settings includes work on pre-
vention of conduct disorder [8, 16-18], promotion of
moderate-to-vigorous physical activity [19], general
weight change and body composition [20], gestational
weight gain [21-24], and smoking cessation [25-28].

The paper is organized as follows: the second sec-
tion describes an approach for dynamical systems
modeling with an example from the secondary analy-
sis performed on the naltrexone intervention data. The
third section demonstrates the application of a closed-
loop control for assigning treatment adaptively using
simulations based on the models estimated in the sec-
ond section. The paper ends with a summary and
conclusions in the fourth section that includes a brief
discussion on the design of experimental protocols for
behavioral interventions from a system identification
perspective, motivated by the results of this study.

A DYNAMICAL SYSTEMS APPROACH FOR MODELING
BEHAVIORAL INTERVENTIONS
Dynamical systems modeling considers how to char-
acterize the transient response resulting from changes
in manipulated inputs (e.g., intervention components,
denoted by «) and disturbance inputs (e.g., external
influences which are not manipulated by the user,
denoted by d) on outputs (e.g., proximal or distal
outcomes, mediators, denoted by j) measured in an
intensive longitudinal setting. In a typical pain inter-
vention, the input (#) can represent the dosage of a
primary intervention component like medication or
counseling, while a disturbance (d) can correspond to
behavioral constructs associated with the disorder that
influence the outcomes but are independent of treat-
ment, for example, a reported level of anxiety or stress.
The output () can be an outcome of interest which the
intervention aims to modify such as reported pain or
sleep quality. In Fig. 1, we show that these three vari-
ables can be related to each other by the model P
which is a symbolic representation of a dynamical
system. P can be mathematically expressed using a
system of ordinary differential equations (in continu-
ous time # or a system of difference equations (in
sampled or discrete time £ among various other rep-
resentations. A dynamical systems approach allows for
an efficient mapping of the causal relationship between
TBM
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Fig 1] An input-output “block” diagram representation of the effect of input dosage () and disturbance (d) on output (j) using a
dynamical system (B in an open-loop configuration. The input  (e.g., dosages) induces, based on the system dynamics P, a
resulting output y (e.g., pain report) in the presence of external disturbances d (e.g., symptoms such as anxiety and stress)

variables by capturing the concepts of change and
effect in interventions. A representative dynamical
system that incorporates many of the responses seen
in this study is

2
12% + 2&% +3(8) =K, (radz(;) + u(t)>. (1)

Since treatment dosages can change over time, they
are represented as function of time or %(f). Equation (1)
relates changes in the output y(¢) and its derivatives
with the changes in the input #(#) and its derivatives; K,

represents the process gain of the system which corre-
sponds to the overall steady-state effect following a
unit “step” change in the input. The parameters ©
(natural time constant) and { (damping ratio) are relat-
ed to the speed and shape of the time-domain re-
sponse. For example, if  is less than 1, this would
result in a decaying oscillatory response. The parame-
ter 7, (called the system zero) determines the initial
direction of the symptom report in response to a dos-
age change.

In Fig. 2, we show a hypothetical case where a unit
step change in the input %(f) is prescribed. The change
in an outcome of interest y(j) (for example, the pain
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Fig 2 | Representative time-domain responses of an output following a “step” change in the input for a second-order system
according to Eq. (1). In this case, a unit change in treatment dosage at time ¢=0 results in a 20 magnitude decrease in a symptom
report over time. Based on the system dynamics, the responses range from a decaying oscillation with inverse response (solid blue
ling) to increasing sluggish, nonoscillatory response (red (dash), green (dod), and maroon (dash-dod)
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report provided by a participant) resulting from this
input change can be observed. Different values of the
coefficients in the differential equation (as shown in the
legend of Fig. 2) result in responses of varying speed
and shape; these range from a decaying-oscillatory
response over time to a more sluggish, nonoscillatory
response. Figure 2 also depicts an “inverse response”
where 1, is a negative number, which causes the re-
sponse to initially increase prior to decreasing to a final
steady-state value (solid blue line in Fig. 2). This tran-
sient response can be further quantified using dynam-
ical system properties such as the rise time 7; (which is
the time at which the response reaches 90 % of the
steady state for the first time [29]) and the settling time
1; (which is the time when the response reaches 98 %
of its steady-state value [29]). Brevity prevents a more
detailed discussion, but we note that the second-order
system structure shown in Eq. (1) can represent a
highly diverse range of dynamical system responses
observed in real life, among these mechanical, electri-
cal, and process systems applications [29, 30].

The model structure shown in Eq. (1) can be extend-
ed to behavioral settings and, in the experience of the
authors, representative of a large class of dynamical
system responses in behavioral medicine. This will be
shown in the paper with respect to fibromyalgia, but
models within the general class of second-order sys-
tems have been observed in the modeling of smoking
cessation [25], human weight and body composition
change [20], and physical activity [19]. Statistically
sound, data-centric procedures will be presented to
estimate and validate these models; the procedures
will similarly indicate when it is necessary to use
higher order structures.

The data
FM is a disorder characterized primarily by chronic
widespread pain. The characteristic symptoms of FM
are diffuse musculoskeletal pain and sensitivity to me-
chanical stimulation at soft tissue tender points [31,
32]. Other important symptoms of FM include fatigue,
sleep irregularities, bowel abnormalities, and cognitive
dysfunction. There is no accepted diagnostic laborato-
ry test for FM, and its etiology is largely unknown and
without any scientific consensus [33], although the
condition is suspected to involve central sensitization
of pain processing [34]. As the causes for FM are
uncertain, unknown, or disputed, and due to its chron-
ic nature, it has been difficult to single out a specific
type of treatment for this disease. There is good evi-
dence to suggest that naltrexone, an opioid antagonist,
has a neuroprotective role and may be a potentially
effective treatment for diseases like FM [11, 35]. The
data for this paper has been taken from clinical trials of
a low-dose naltrexone (LDN) intervention [11, 12].
The study was conducted in two phases: a single
blind pilot study on 10 participants and a double blind
full study on 30 participants; the full study involved a
longer protocol. A crossover design was employed
where participants received both treatments and hence

act as their own control (i.e., each participant takes
both drug and placebo). A fixed naltrexone dose of
4.5 mg concentration was administered. In the pilot
study, the participants received placebo followed by
drug (P-D protocol), whereas in the full study, partici-
pants were randomized to receive either drug first (D-P
protocol) or placebo first (P-D protocol). The time
series is split into a baseline (during which participants
do not receive any kind of medication), followed by
placebo and drug (or vice versa), and finally a washout
phase during which all study medications are stopped.
The number of data points range from 98 to 154
sampled daily (7=1). Participants entered their re-
sponses in a handheld computer to 20 questions such
as “Overall, how well did you sleep last night?” on a
scale of 0-100. The continuous scale used for measur-
ing variables in the FM study facilitates its suitability
for dynamical systems methods, as will be explained in
more detail later. The daily diary data consists of one
primary endpoint “Overall, how severe have your FM
symptoms been today?” [FM sym]| and 13 secondary
endpoints: fatigue, sadness, stress, mood, anxiety, sat-
isfaction with life, overall sleep quality, trouble with
sleep, ability to think, headaches, average daily pain,
highest pain, and gastric symptoms [11, 12].

General description of variables

From an input-output dynamical systems viewpoint,
one can broadly classify these variables from the FM
clinical study as follows:

—  Outputs (y): Since we are primarily interested in
understanding the magnitude and speed at which
the treatment component affects various FM symp-
toms during the intervention, typical symptoms
like pain, fatigue, and sleep problems correspond
to dependent variables in the system and proximal
outcomes which we classify as outputs.

— Inputs (u,d): Drug and placebo are classified as the
primary inputs in this analysis, as they are external
to the system and their magnitude and duration can
be manipulated by the clinician; these are referred
to by the symbol « In addition to these primary
inputs, there are other exogenous disturbance var-
iables daffecting the outputs. Certain variables such
as anxiety, stress, and mood are treated as mea-
sured disturbance inputs that, when coupled with
the drug and placebo inputs, can help to better
explain the variance in the output.

In Fig. 3, we show selected variables associated with
the naltrexone intervention for a participant from the
pilot study; illustrating our proposed methodology by
analyzing data from this participant is the focus of this
paper; however, Deshpande [36] documents this anal-
ysis for all 40 participants associated with the com-
bined pilot and full study. The plot shows the primary
inputs (i.e., drug and placebo) and its resulting effect
on outcomes such as FM symptoms and sleep. Vari-
ables such as anxiety, stress, and mood are also shown.

TBM
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Fig 3 | Primary variables associated with naltrexone intervention

of fibromyalgia as shown for a representative participant with

placebo-drug (P-D) protocol from the pilot study. With the introduction of naltrexone at day 27 for the participant, one notices a
significant decrease in FM symptoms and a substantial increase in sleep quality over time, suggesting a lagged dynamical

response to treatment

It can be observed that with administration of naltrex-
one (drug phase), the participant reports a significant
decrease in pain. Our aim is to find a parsimonious
dynamic representation for this relationship. Before
describing the modeling procedure, we briefly men-
tion some of the challenges associated with this partic-
ular dataset:

1. The limited amount of data collected during the
study and the nature of the protocol create barriers
to cross validation; care must be taken to avoid
model overparameterization.

2. A lack of a priori knowledge about the system and
the possible presence of feedback between signals
present challenges when classifying variables as
inputs or outputs.

System identification procedure to model FM intervention
dynamics

In light of the unknown dynamics of FM, we apply an
empirical modeling approach where input-output da-
ta for each individual participant is used to build a
model describing the effect of drug and external fac-
tors on FM symptoms. It should be stressed that the
goal of the modeling task is not to capture the detailed
internal mechanisms of FM, but rather to build an
informative empirical model describing how changes
in drug dosage and external factors affect a number of
FM symptoms over time. The estimated model can
serve a myriad of purposes, among them providing

predictions that can be used by a controller to assign
dosages based on measured participant responses. The
modeling procedure undertaken in this study is sum-
marized in three subparts as follows:

1. Data preprocessing. Initially, the data is preprocessed
for missing entries, and then to reduce the high-
frequency (i.e., rapid day-to-day) variations in the
data, a 3-day moving average filter is applied.

2. Discrete-time modeling using multi-input ARX models.
The filtered data is fitted to an autoregressive with
exogenous input (ARX) parametric model (ARX
[n, ny ny]) defined through the linear difference
equation:

(k) + ary(k=1) + ... + an,y(k—n,) = by (k—np) + ... (2)
+ bn,,l ul(k—nk—nb + 1) + bliu,-(k—nk) + ...
+ by ivi(k—np—ny + 1)... + bin, tn,(k—np) + ...
+ by, tn, (k—nmp—ny + 1) + e(k)
where n, represents the number of inputs; 7, 1, and n;

are model orders; ¢f) is the prediction error; £ is a
discrete time index (e.g., day); and

[al, ey @y bty b b by iy bnm] (3)

represents the model parameter vector estimated by
the regression. ARX model estimation constitutes a
linear least-squares regression problem and has
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favorable statistical properties when estimating the
dynamics of a system such as consistency [13]. In the
detailed analysis of all participants done in [36], ARX
[441] models were the highest order required; in many
instances, models of lower complexity (such as ARX
[221]) were suitable.

The procedure for selecting which input signals
should be included in the model begins with the
choice of drug and placebo, which are expected to
contribute significantly to FM symptoms for all par-
ticipants. Given the lack of a well-understood etiolo-
gy for FM discussed previously, we take an approach
driven by system identification theory where addi-
tional input variables are introduced sequentially such
that they are minimally cross-correlated [37]. While
increasing the number of inputs improves the overall
fit, in the absence of a cross-validation dataset, an
exceptionally high fit may not necessarily imply a
highly predictive model. As the protocol applied in
this study did not allow for a cross-validation dataset,
proper judgment on the choice of input variables that
adequately describes the data across all participants
must be made. The “model fit” terminology used in
this paper points to the amount (percentage) of output
variance explained by the model as:

model fit (%) = 100 x ( H}’ H )

l[y(%) sz

where (k) is the measured output, y(k) is the simu-

lated output, y is the mean of all measured y(4)

values, and ||+ ||o indicates a vector 2-norm. Finally,

as a part of model validation, the residuals from
model fitting are evaluated for whiteness, to confirm
that all the important dynamics have been captured

by the model structure [13].

3. Simplification to a continuous time model. Step re-
sponses from the ARX model are individually fit
to a parsimonious continuous second-order model
structure of the form:

2
7 ddyt(;) + 2&% +y(8) = K, (rad';(tt) + u(t)). (5)

As noted previously, Eq. (5) provides important
dynamical system information such as gain, time
constant, overshoot, rise, and settling times for each
input which can be used to better understand partic-
ipant response. These measures provide insights re-
garding the strength and speed of response to an inter-
vention component for an individual. The estimation
procedure applied in this step relies on prediction
error minimization to a continuous model structure,
as implemented in the Process Models routine in
MATLAB’s System Identification toolbox [38]. A
comparison of step responses between the ARX mod-
el and the estimated continuous model can readily

determine if a higher order model than Eq. (5) is
necessary.

The estimation procedure requires that the data be
uniformly sampled; this assumption is reasonable for
constructs measured on a daily basis and with standard
approaches applied to address any missing data (as is
the case in our fibromyalgia study). For cases involving
truly irregularly sampled data, recent advances in con-
tinuous time system identification could be incorpo-
rated in the methodology described here [39].

Case study: representative participant from the pilot study
In this subsection, we focus on the application of the
system identification modeling procedure to a repre-
sentative participant from the pilot study, with data as
seen in Fig. 3. The following multi-input ARX [221]
models (with FM symptoms treated as the primary
output and corresponding inputs noted below) are
considered:

. Model I (Drug)

. Model 2 (Drug, Placebo)

Model 3 (Drug, Placebo, Anxiety)

Model 4 (Drug, Placebo, Anxiety, Stress)

. Model 5 (Drug, Placebo, Anxiety, Stress, Mood)

. Model 6 (Drug, Placebo, Anxiety, Stress, Mood,

Gastric)

7. Model 7 (Drug, Placebo, Anxiety, Stress, Mood,
Gastric, Headache)

8. Model 8 (Drug, Placebo, Anxiety, Stress, Mood,
Gastric, Headache, Life)

9. Model 9 (Drug, Placebo, Anxiety, Stress, Mood,

Gastric, Headache, Life, Sadness)

U W N =

Figure 4 shows the corresponding evolution of fit for
models 1-9 which explain 46.57-79.69 % of the vari-
ance in the output (daily symptom severity). As seen in
Fig. 4, beyond the five inputs that define Model 5,
adding more input variables does not improve the fit
significantly and results in overparameterization.
Hence, we rely on the input variables from Model 5
as our base for multi-input ARX models for this par-
ticipant which captures the effect of drug, placebo,
anxiety, stress, and mood variables on outcomes of
interest. It has a gain parameter K,=—2.47, indicating
a nearly 2.5 point decrease in the pain report per
milligram dose of naltrexone (see Table 1). The nega-
tive gain associated with administration of naltrexone
allows us to classify this participant as a responder to
treatment. A rise time (7;) of slightly over 5 days was
seen. The 98 % settling time (Z;) of nearly 11.5 days
characterizes the naltrexone speed of response for this
participant. The overall response resulting from the
model is an example of an overdamped response
showing no oscillations [29]. Table 1 also shows how
additional inputs improve the goodness-of-fit and con-
trasts the Akaike information criterion (AIC) with the
goodness-of-fit metric defined in Eq. (4).

Table 2 summarizes the model parameters for all
inputs (manipulated and disturbance) for the Model 5

TBM
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Fig 4 | Evolution of model fit with input addition to the ARX [221] model. The percent fits for each model are shown in parenthesis.
No significant improvement in model fit is obtained beyond Model 5

structure. The positive gain for the placebo input indi-
cates that for this participant, pain symptoms wors-
ened when placebo was administered. The large mag-
nitude of the placebo gain is partly a consequence of
how the input signal is coded (1 when present and 0
when not). Examining the gains for the measured
disturbance models (anxiety, stress, and mood), these
correspond to 0.86, 2.29, and —0.091, respectively.
The positive values for the anxiety and stress gains

and negative value for mood agree with the clinical
observations that increases in anxiety and stress and
decrease in mood should worsen FM symptoms. Ta-
ble 2 also includes the model relating the effect of
naltrexone on sleep. The positive gain in this model
demonstrates improved sleep quality in this partici-
pant as a result of treatment. The rise and settling times
associated with the sleep outcome are approximately
37 % longer than those for general FM symptoms,

Table 1| Model parameter tabulation corresponding to the drug-FM input—output pair for different multi-input models for a
participant from the pilot study

Model %fit AlC 1% % & T; (days) T (days)
1 46.5 3.64 -12.03, 5.67, 4.14,21.3 75.5 139.69
2 59.2 3.58 -0.91, 3.5, 2.67, 44.4 0.43 75.06
3 64.7 3.54 -1.02, 2.09, 1.5, 15.3 0.43 25.6
4 71.8 3.42 -3.11, 1.62, 1.24, 0.22 7.53 14.38
5 73.9 3.44 -2.47,1.57,1.26,1.96 5.12 11.49

AIC Akaike information criterion, 7, the rise time (the time at which the response reaches 90 % of the steady state for the first time), 7; the 98 % settling time (the
time at which the response reaches 98 % of its steady-state value)
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Table 2 | Model parameter tabulation for various input-FM models for a participant from the pilot study as per Model 5. The
estimated gain for the drug-FM model is negative, implying that a reduction in pain symptoms with the introduction of drug, while
the gain for placebo-FM model is positive, implying worsening outcomes as a result of placebo. The table includes the case of the

drug-sleep model, where the use of drug improves sleep quality

Model K, 7,0, 1a T; (days) T, (days)
Drug-FM -2.47,1.57,1.26,1.96 5.12 11.49
Placebo-FM 45.81,1.57,1.26, 1.15 6.59 13.06
Anxiety-FM 0.86,1.57,1.26, 0.24 7.45 14.24
Stress-FM 2.29,1.57, 1.26, 0.49 7.31 13.94
Mood-FM -0.091, 1.57, 1.26, 4.67 0.8 11.93
Drug-OSleep 4.98, 2.13, 1.04, -3.35 7.06 15.83

which implies that sleep benefits lag general FM symp-
tom improvements.

Dynamic modeling for behavioral interventions: beyond black
box approaches

In earlier sections, we described an empirical “black
box” modeling approach for determining the process
dynamics associated with the fibromyalgia interven-
tion where the choice of the model structure has been
primarily driven by aspects of goodness-of-fit and
overparameterization of clinical data. However, it is
possible and in many instances desirable to incorpo-
rate theories from behavioral science in a dynamical
systems framework relevant to interventions [40, 41].
The interested reader is directed to work using the
theory of planned behavior (TPB) to develop a dy-
namic model for a behavioral intervention for weight
loss [20]; meanwhile, the combination of TPB and self-
regulation to model the dynamics of an adaptive inter-
vention for gestational weight gain is explored in [21-
24]. The use of self-regulation for modeling smoking
cessation dynamics is explored in [25-28], while a
dynamical model for social cognitive theory (SCT) in
the context of improving physical activity interven-
tions is described in [41].

“CLOSED-LOOP” BEHAVIORAL INTERVENTIONS USING
CONTROL SYSTEMS ENGINEERING

We noted in the “INTRODUCTION?” that the ulti-
mate goal of this research is to accomplish closed-loop
treatment in which the control system assigns appro-
priate dosage magnitudes automatically over time.
Control systems are used widely in industrial practice
to achieve desired behavior of a system by systemati-
cally adjusting manipulated variables based on mea-
sured system information [4, 29, 42]. Prior work [8] has
established that time-varying adaptive interventions
featuring repeated assessments, intensive data, and
frequent decision-making can be conceptualized as
engineering control systems. In a control engineering
approach to adaptive interventions, the controller as-
signs dosages to each participant as dictated by the
solution of a formal optimization problem which fully
incorporates the parameters or predictions from a dy-
namical model. The optimization problem is solved
taking into account clinical constraints and relies on

measurements (of both outcomes of interest and symp-
toms reports, collectively known as tailoring variables)
provided by or assessed from the participant.

To conceptually illustrate this adaptive treatment
strategy, the open-loop dynamical system shown in
Fig. 1 is extended by “closing” the loop using a con-
troller. In the block diagram shown in Fig. 5, Prepre-
sents the dynamics expected of the treatment interven-
tion on outcomes of interest; this is the same block as
in Fig. 1. The controller, represented by the symbol C
(which is part of the decision algorithm and does not
represent the clinician) is supplied with clinical con-
straints and a cost function providing a performance
metric for the optimization problem. Based on the
discrepancy between the measured outcomes y (e.g.,
pain reports) and their desired reference values and the
values of current and future symptom reports (as pre-
dicted by the model), the controller assigns dosages u
to achieve a closed-loop response for each participant
[8, 30]. The closed-loop control system aims at
performing the following three functional tasks:

1. Reaching a desired goal (setpoint tracking). Treatment
dosages are assigned to move an outcome of inter-
est (such as pain report or sleep quality) to a desired
goal. For example, the clinician may decide on a
goal of 45 % reduction in the general pain symp-
toms report within 2 weeks of the start of the
intervention.

2. Known symptoms handling (measured disturbance rejec-
tion). The controller manipulates treatment dosages
to mitigate the effect from reported or assessed
external influences (e.g., anxiety in case of FM
intervention) using estimated disturbance models.
For instance, if some external event that leads to
stress or anxiety is known a priori, then dosages
can be adjusted to compensate for this distur-
bance. It should be noted that the control engi-
neering approach does not preclude providing
the participant with a separate intervention that
directly targets anxiety. However, as no treat-
ment is perfect, if changes in anxiety levels lead
to changes in FM symptoms, then it makes
sense to include this information as a feedforward
adjustment in the control system. The control
algorithm possesses the functionality to allow
this feature to be eliminated or “detuned” (as
discussed later in the paper).
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Fig 5| Conceptual “block diagram” representation of a control system showcasing a closed-loop treatment strategy using a
desired reference for a designated cost function and clinical constraints. This figure extends the concept introduced in Fig. 1 by
“closing the loop.” The dosages u are assigned by the controller C based on cost function and clinical constraints to take

outcomes to a desired reference setpoint or goal

3. Unknown symptoms handling (unmeasured disturbance
rejection). The controller can adjust treatment dos-
ages to mitigate the effect of unknown or
unmodeled external influences. For example, there
could be an increase in a pain report that may not
be directly associated with a change in a measured
or reported condition (such as stress or anxiety). In
such cases, the controller through the process of
feedback compensation is able to adjust dosages
to mitigate the effects of this unmeasured
disturbance.

The three functional modes of the control system
have to be achieved under a number of practical clin-
ical requirements, and hence, this functionality has to
be integrated into the controller design. In clinical
practice, treatment dosage limits are often set to min-
imize adverse effects, such as drug toxicity. In addition,
treatment dosages are generally categorical in nature.
For example, counseling sessions can either be weekly,
bi-weekly, or monthly. Similarly, drug dosages are
compounded in standard dosage concentration, and
subsequent increase in the dosage can be prescribed as
an integer multiple of that basic dose (for example, a
commercially produced drug may be available only in
100, 150, and 300 mg dosages). These dosage limits

are factored into the control algorithm. Furthermore,
dosage changes should not be very abrupt due to
potential negative consequences that the participant
may experience. Hence, the controller should be
tuned in such a way that dosing can be varied from a
more aggressive case, where treatment dosages change
rapidly over arelatively short period of time, to a more
conservative case where treatment dosages change
relatively slowly over time.

Model predictive control

In this work, we describe MPC as the algorithmic
framework for making systematic dosage assign-
ments. MPC has widespread application in indus-
try, ranging from chemical process control to
aerospace engineering [43]. This control technol-
ogy has also been useful in designing treatment
regimens for diverse medical applications, from
diabetes mellitus control to HIV/AIDS treatment
(16, 44-47].

Figure 6 depicts the “receding horizon” strategy
that is the basis for the model predictive control
algorithm. The predicted change in FM symptom
severity over time (calculated using the estimated
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Fig 6 | Receding horizon strategy used by the model predictive control algorithm illustrated for the case of naltrexone intervention
with one controlled variable (FM symptoms), one manipulated variable (naltrexone dosage), and one measured disturbance
(anxiety report). Control moves (i.e., dosage change decisions) are calculated by the algorithm over a horizon and only the first
control move calculated using the optimization procedure is implemented. The entire procedure is repeated at the next
assessment period and continues until the end of the intervention

models from system identification) with predic-
tion of measured variables like anxiety (if avail-
able) determines an error projection which shows
actual and expected deviations in symptoms from
the goal. On the basis of this error projection,
the optimizer chooses the sequence of future con-
trol actions which minimize the error with re-
spect to a desired goal; this process is repeated
for each sample instant. The control actions are
calculated by an on-line optimization algorithm
as follows: the constrained optimization problem
shown in Eq. (6) is numerically solved at each
time instant (e.g., daily) based on model-based
prediction over a period of time (defined by the
prediction horizon p) and optimal treatment dos-
ages over a period of time (defined by the move
horizon m). Instead of using all of the recom-
mended treatment dosages, only the first of the
calculated dosage is applied, with the process
repeated at the next assessment period (e.g., dai-
ly) until the end of the intervention. Hence, the
algorithm is able to respond to unexpected symp-
tom changes as it systematically relies on up-to-
date participant response information. In Eq. (6),
the optimization objective is related to the error
between the predicted values (y(k+1),...,y(k+p))
and the reference setpoint y, with Q) as a user
defined weight. It is solved under constraints on
the allowable minimum and maximum outcome
values, input treatment dosages, and their rate of
change (represented by Au(k)=u(k)—u(k—1)).

Variables p and m correspond to the prediction
horizon and the move horizon, respectively.

?
{lutt D1 pming & = 3 otk + 073) " Q, 1k + )73
Join <Y+ 1) <y 1<i<p
Unin < u(k + 1) < U, 0<i<m—1

Athin < Au(k+ 1) < Athax, 0<i<m—1 (6)

The solution to the optimization problem denoted
in Eq. (6) is accomplished through established numer-
ical procedures from operations research. For linear
dynamical models with categorical inputs, the optimi-
zation problem in Eq. (6) is solved using a mixed
integer quadratic program (MIQP). Details of the al-
gorithm and its solution are provided in [16].

The control algorithm relies on a three degree-of-
freedom (3 DoF) tuning approach to flexibly achieve
desired levels of performance [48, 49]. The 3 DoF
tuning methodology enables the three performance
requirements associated with reaching a desired goal
and known and unknown symptoms handling to be
adjusted independently by varying three “knobs” rep-
resented by the parameters a,, oq, and f,, respectively
[16, 36, 44]. This tuning approach provides the user a
flexible and intuitive method to adjust the controller so
that the outputs achieve a desired speed and shape of
response. In the following section, we demonstrate
how the 3 DoF formulation gives the flexibility to
obtain desirable participant treatment profiles over
time, while accommodating clinical requirements.
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Fig 7 | Deterministic simulation of adaptive closed-loop naltrexone dosage assignment by the model predictive controller using
eight drug dosage levels. The controller assigns dosages to reach a target pain level while addressing the effects of known and
unknown symptoms on this pilot study participant. The three tuning knobs (o, a4, and £) are all equal to 0.5; p=25,m=15, Q;=1.
To reach the desired goal (a pain report of 40.5 %), the controller assigns corresponding dosages which have to be adjusted

based on the values of known and unknown symptom reports

Closed-loop control simulation

In this section, we demonstrate an adaptive treatment
scenario on the representative participant modeled
from the pilot study. For simulation purposes, we con-
sider a version of Model 5 described previously with
one manipulated variable (drug), one disturbance var-
iable (anxiety), and one output (FM symptoms). Nal-
trexone dosages are assumed to be available at eight
levels equally spaced between 0 and 13.5 mg. The FM
symptoms variable serves as the primary outcome in
the analysis, while anxiety (assumed to be reported
daily by the participant) serves as the measured (or
known) disturbance signal.

Figure 7 illustrates the operation of the control system
for adaptive drug dosage assignment under deterministic
conditions. In this simulation, we show the three func-
tional tasks that this controller can perform: reaching a
setpoint goal with dosage change and dosage changes for
known and unknown symptoms. Setpoint tracking
(reaching the goal) starts at day 0, while the measured
disturbance (anxiety report) acts between days 20 and 40,
and the unmeasured disturbance (an unknown cause
resulting in an increase in reported pain) acts at day 55.
The baseline value for the pain report is 50 %, and a
setpoint change of magnitude —9.5 is applied at day 0 as
shown by the reference line (dashed red line). The pain
report reaches 95 % of the setpoint in 8 days and the final
goal in 11 days. The measured anxiety report acts in such
a manner that it has an effect for a limited period of time
(e.g., the increase in anxiety can be attributed to some
stressful event). The controller increases the drug dosages

to mitigate the effect of increased anxiety, with the re-
sponse reaching the setpoint in around 7 days. There is
an increase in the pain report (initially), but this returns to
the desired symptom baseline. When the anxiety report
diminishes, the controller can correspondingly reduce
dosage amounts while staying within the pain threshold
level acceptable to the participant. In this way, the con-
troller responds favorably to participant feedback by
efficiently varying dosages over time. At day 55, an
abrupt change in the pain report occurs due to an un-
measured disturbance (e.g., a psychosocial stressor that is
unrelated to the measured symptoms). In this case, we
observe that since the stressor is unknown (and hence not
a part of participant model), a sudden increase in the pain
report is seen to which the controller responds by in-
creasing the drug dosage to bring back the pain level to
the desired goal. The response reaches the setpoint in
approximately 14 days.

In the 3 DoF formulation, the user/clinician can vary
the magnitude of the three knobs (o, for setpoint tracking,
o4 for measured disturbance rejection, and f, for unmea-
sured disturbance rejection) between 0 and 1 to reach ata
desired system response. The value of the knobs deter-
mines the speed of the closed-loop response. However, a
faster response may result in drug dosing being too
aggressive for participant comfort; hence, a proper
trade-off between the speed of response and correspond-
ing dosage profile has to be determined based on the
intervention goals. The effect of tuning changes is
discussed in [16] and illustrated for this simulated inter-
vention in more detail in [36] and [50].
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Fig 8 | Simulation for an unmeasured stochastic disturbance. A simulation showing change in the FM symptoms report for an
unmeasured stochastic disturbance (a) is shown for the representative pilot study participant under closed-loop control (b). The drug
dosages are assigned by the model predictive controller on eight levels where the controller adjusts drug dosages to compensate for
changes in the general FM symptoms reports. Based on the tuning value (f), the resulting drug dosage changes can vary from
aggressive to conservative. The fixed dosage is set at 1.92 mg. Other controller and simulation parameters remain as in Fig. 7

The simulation in Fig. 7 considered a scenario with a
deterministic disturbance. A scenario in which the
disturbance is of stochastic nature (generated by an
ARMA (2,1) model driven by a Gaussian noise) is
shown in Fig. 8. The subplot on the top shows the time
series for an unmeasured disturbance, and the corre-
sponding figure on the bottom represents the simula-
tion under two different tuning settings and a constant
dosage. The performance of these interventions is mea-

N-1
sured by the tracking error J, = Y (y(k)-y,)

2
)

N-1
total change in drug dosage JA, = Y Au(k)?
k=0

and total amount of drug dosage consumed in the
N-1

intervention JA, = Y u(k). Setting f* equal to 1
k=0

results in a more aggressive control action in which the
variance around the pain target is minimized, but this
is accomplished at the expense of a large variation in
drug dosage changes. A detuned controller with f2
equal to 0.1 reduces the variance in drug dosage
changes at the expense of increased variance in the
participant’s pain report as noted in Table 3. In prac-
tice, f* must be adjusted to accomplish a desired trade-
off between dosage changes and reported symptoms,
as deemed acceptable by the clinician and the partic-
ipant. Finally, the dosage profile under tuning f*=0.1
is compared with a fixed dose equal to 1.92 mg to
highlight the benefits of adaptation in the presence of
unmeasured disturbances. The adaptive intervention
offers lower tracking error while also consuming
less treatment compared to the fixed dosage case,
as noted in Table 3.
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Table 3 | Comparison of the performance of the intervention from the control system (£,=1,0.1) with a fixed dosage of naltrexone
(1.92 mg) under stochastic disturbances. The control system offers lower tracking error J, for the cost of higher variability in drug

dosage J4,. In comparison with a constant dosage, the case £=0.1 also offers lower total drug consumption J,

Scenario Je Ju Ju
MPC (/;=1) 6,204 1,205.1 275.79
MPC (_];=0.1) 9,211.3 55.791 144.64
Constant drug dosage 12,328 3.6864 170.88

In industrial practice, the robustness of a control
system to modeling errors and other forms of uncer-
tainty is an important consideration [4, 42]. In the
context of this application, robustness issues arise from
the statistical errors resulting from parameter estima-
tion during system identification, the variability that
may exist between participants, and changes in the
model that may occur within the participant over time.
Space limitations prevent us from describing these
concepts in more detail, but robustness of the control
system is evaluated in a series of simulated scenarios
relevant to the adaptive intervention that are described
in [36] and [50].

SUMMARY AND CONCLUDING THOUGHTS

In this paper, we have described how techniques from
dynamical systems and control engineering can be used to
achieve more efficacious treatments with increased poten-
cy by enabling adaptive behavioral interventions. In this
approach, a parsimonious dynamical systems model that
explains the relationship between treatment and symp-
toms is estimated from intensive participant data. From
these estimated models, an adaptive “closed-loop” dosage
assignment system can be developed. The closed-loop
treatment algorithm solves a receding horizon optimiza-
tion problem that effectively integrates predictions from
the dynamic model with repeated assessment of partici-
pant outcomes and symptoms to accomplish a personal-
ized, optimal dosage profile over time.

To illustrate this concept, the paper focused on an
example of an adaptive intervention designed to deter-
mine appropriate dosage levels of naltrexone as a treat-
ment for fibromyalgia. Because of a lack of understand-
ing of fibromyalgia etiology and the absence of first-
principles models, we performed a secondary data anal-
ysis to estimate parsimonious models from data available
through clinical trials. A multi-input ARX model, further
approximated with continuous second-order differential
equation models, was used to explain the effect of drug,
placebo, and other variables on symptom reports of
interest. Subsequently, models from a representative par-
ticipant were used by a model predictive control algo-
rithm to systematically assign dosages in the presence of
disturbances and clinical constraints. We illustrated how
the controller can assign treatment dosages to reach a
desired set point target and then maintain this goal under
conditions that involve disturbance changes in symptoms
(known and unknown). This capability was demonstrat-
ed for both deterministic and stochastic disturbances.

Although the data and illustrations in this paper
relied primarily on data collected from self-reports,
the methodology presented can be applied without
modification to data obtained from mHealth-related
technologies. Increasing advances in the computing
and information technologies associated with mHealth
imply that the dynamical systems and optimization
methods described in this paper will become more
important (and commonplace) in behavioral settings
in the future. Ultimately, these improvements will al-
low, wherever possible, for more direct and accurate
measurement of human behavior and its environment,
with corresponding impact in the development of
more relevant and predictive models of behavior
change [6, 51].

One important consideration in extending the use-
fulness of these methods is the role of experimental
design. Traditional population-level clinical data is
generally not amenable for constructing dynamical
models as these are typically designed for “static”
systems and are geared toward hypothesis testing and
finding treatment efficacy. There has been an increas-
ing interest in using “n-of-1” or single subject experi-
mental protocols; these designs are highly individual-
ized and, hence, offer certain advantages over popula-
tion-level design [52-54]. Typically, treatment dosages
remain constant throughout the duration of a conven-
tional trial, which limits the effectiveness of system
identification techniques. In a system identification
approach to single subject experimental design, the
treatment dosage is varied over time to multiple signal
levels, the changes designed to provide sufficient exci-
tation and consequently resulting in richer information
regarding the dynamics of the system. Optimization
approaches come into play as the experiments must
increase the information content in the data while
respecting clinical constraints such as limits on treat-
ment dosage values and the rate of change of dosages
over time. The work in [50, 55] discusses such ap-
proaches in detail.

In conclusion, we envision that the concepts pre-
sented in this paper will lead to novel individualized
treatments where treatment dosages can be assigned
by a mobile device at the disposal of the participant.
The closed-loop dosage assignment can adjust treat-
ment dosages based on daily participant reports of
outcomes of interest and by incorporating predictive
behavioral theories. In this way, an optimal dosage
profile for that individual could be rapidly determined
without requiring office visits or substantial clinician
involvement. Dynamical systems modeling and
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control engineering offer a rich set of theoretical tools

to

address various demands of practice. Ultimately, we

see adaptive interventions using control engineering as

a
ac

cost-effective and efficient approach for
complishing personalized behavioral interventions.
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