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Abstract

The primary cilium (PC) is a very dynamic hair-like membrane structure that assembles/

disassembles in a cell-cycle dependent manner and is present in almost every cell type. Despite

being continuous with the plasma membrane, a diffusion barrier located at the ciliary base confers

the PC properties of a separate organelle with very specific characteristics and membrane

composition. Therefore, vesicle trafficking is the major process by which components are acquired

for cilium formation and maintenance. In fact, a system of specific sorting signals controls the

right of cargo admission into the cilia.

Disruption to the ciliary structure or its function leads to multi-organ diseases known as

ciliopathies. These illnesses arise from a spectrum of mutations in any of the more than 50 loci

linked to these conditions. Therefore, it is not surprising that symptom variability (specific

manifestations and severity) among and within ciliopathies seems to be an emerging characteristic.

Nevertheless, one can speculate that mutations occurring in genes whose products contribute to

the overall vesicle trafficking to the PC (i.e., affecting cilia assembly) will lead to more severe

symptoms, while those involved in the transport of specific cargoes will result in milder

phenotypes. In this review, we summarize the trafficking mechanisms to the cilia and also provide

a description of the trafficking defects observed in some ciliopathies which can be correlated to

the severity of the pathology.
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Introduction

Non-motile cilia were first observed by Zimmerman (1) more than a century ago, and named

‘Primary cilium’ (PC) by Sergei Sorokin in 1968 (2). Initially, this plasma membrane-

derived structure was thought to represent a vestigial swimming apparatus, and interest in it

eventually faded away. Indeed, it was not until about a decade ago that the PC resurfaced as

its presence was observed in virtually every cell type and its relevance for intracellular

signaling and developmental diseases became clear (3).

The PC hosts a series of signaling pathways of critical importance for normal vertebrate

development (Hedgehog (4), Wnt signaling pathways (5)), growth and differentiation (TGF-
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β (6), PDGF signaling (7)), sensory perception (Rhodopsin (8) and odorant receptors

localization in the cilia (9)), hormonal regulation (Mchr1 and 5-HTr6 (10), Sstr3 (11)) and

mechanical transduction (Polycystin-1 and Polycystin-2 (12)). These crucial sensory

functions of the PC rely on its high concentration of membrane receptors that interpret a

plethora of chemical, mechanical and other extracellular cues. In consequence, deficiencies

in the assembly or function of this specialized area of the plasma membrane have severe

consequences on the development and overall physiology of the affected organism (13).

Therefore, abnormal cilia have been linked to a heterogeneous group of diseases, attributed

to single gene mutations in more than 50 loci, known as ciliopathies (14). These illnesses

can be lethal and are characterized by overlapping phenotypes that may include retinal

degeneration, kidney dysfunction, infertility, cognitive impairment, polydactyly, situs

inversus, obesity, diabetes and other manifestations. In fact, it is in great part due to its

medical relevance that in recent times we have witnessed an immense surge of research

aimed to better understand the mechanisms of assembly, maintenance and function of the

PC.

Assembly and Architecture of the PC

The PC is a sensory, cell surface-structure with a microtubule-based core (a non-motile 9+0

axoneme) originating from a basal body derived from the mother centriole, and ensheathed

by the so-called ciliary membrane (Fig. 1A). For comprehensive descriptions of the PC

organization, the reader is referred to excellent reviews available in the literature (3, 15, 16).

Ciliogenesis in most cells is initiated by anchoring the basal body to the plasma membrane

directly by the distal appendage protein C2cd3 that in turn leads other components namely

Sclt1, Ccdc41, Cep89, Fbf1, and Cep164 to mark the position for assembly of the PC (17–

19). Vesicles dock to the basal body and supply material for growth of the cilia. An

alternative ciliary pathway begins in the cytosol, where vesicles dock onto the mother

centriole, elongate the nascent cilium in the cytosol which is later inserted in the plasma

membrane. In this case, the cilium remains partially buried under the plasma membrane,

enclosed in a curved invagination of the plasma membrane called the ciliary pocket that

continues with the ciliary membrane (20). Cilia elongation is mediated by a specialized bi-

directional intraflagellar transport system (IFT) (see below under ‘Trafficking within the

PC’).

Although the ciliary membrane presents continuity with the plasmalemma (Fig. 1A), the two

have a very different composition when compared to each other (21, 22). The establishment

of the primary cilia boundary is made possible by the presence of a barrier at the ciliary base

whose components include the transition fibres (TFs), ciliary necklace and the ciliary pocket

(Fig. 1A,B) that highly restricts protein diffusion to and from the ciliary membrane and the

intraciliary space. Therefore, this barrier gives the cilia characteristics of a

compartmentalized organelle and since there is no protein synthesis within the PC, it

requires specialized trafficking machinery for the delivery and retrieval of components.

Indeed, vesicle trafficking is essential for ciliogenesis (23).
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This review will discuss the basics of ciliary transport to the base of the cilia, across the

barrier and within the cilia. It will primarily highlight the role of genes affected in

ciliopathies and involved in trafficking to and from the PC.

Vesicle trafficking in PC assembly, maintenance and function

Traffic Control: The Barrier

The most proximal line of defense against indiscriminate diffusion into the ciliary

compartment is the periciliary membrane where distal appendages arising from the basal

body, converted into the TFs, are attached. Transmission electron microscopy (TEM) has

revealed a pin-wheel like structure for the TFs with inter-fiber space between the transition

fibers too small for vesicles to pass through (24)(Fig. 1B). Instead, vesicles dock and fuse

with the ciliary pocket (if present) and the periciliary membrane (20). The higher occurrence

of endocytic events at the ciliary pocket sets it apart from the continuing plasma membrane

(6) (Fig. 1A). Examination of the periciliary membrane by Laurdan Microscopy exhibited

higher condensation of the membrane when compared to the ciliary membrane and the

ciliary tip (22).

TEM also revealed, distal to the TFs, the presence of particles known as the ‘ciliary

necklace’ circumferentially decorating the ciliary membrane (25). These membrane

decorations were connected to the axoneme by champagne glass-shaped structures called

“Y-links” (Fig. 1B). Many TZ (Transition Zone) proteins have been identified, namely the

Nephronophthisis-Meckel Syndrome-Joubert Syndrome (NPHP-MKS-JBTS) complex and

nucleoporins (26–31), and they have been proposed to be held in place by a septin barrier

present between the periciliary and the ciliary compartments (30). In addition, isolation of

the basal bodies from Tetrahymena pyriformis helped to identify a so-called ‘terminal plate’

which could serve as a ciliary partitioning system (32). Cryo-EM revealed that this ciliary

pore complex has an outer ring, speculated to be the septin ring, with nine inner rings which

are similar in size to the nuclear pore (32)(Fig. 1B). Indeed, similarities between the nuclear

pore complex and the ciliary base have been proposed; however, whether nucleoporins form

a pore complex at the ciliary base is still under debate (21, 31).

Membrane proteins—The septin ring was shown to prevent the lateral diffusion of

membrane proteins to and from the PC, emerging as a major player in maintaining the

ciliary membrane composition (33). The TZ seems to function as a ‘smart gate’ that

validates the entry of cargo pre-loaded at the TFs on ‘IFT trains’ headed for the ciliary tip

(34). Evidence points towards the existence of putative TZ resident proteins acting as

‘validating officers’ for each cargo to allow access to the ciliary membrane. Zhao et al (35)

showed that the depletion of the components of the TZ zone B9d2 or Nephrocystin-5

(NPHP-5) affected the transport of the protein Opsin, but not Peripherin. Another example is

the dramatic effect of depletion of the TZ proteins Tctn1, 2 and Cc2d2a on Smoothened

(Smo), Polycystin-2 and Arl13 ciliary localization, but without consequences on Sstr3

trafficking to the cilia (27). In addition, depletion of more than one of its components led to

ultrastructural defects in the TZ in Caenorhabditis elegans (29, 36).
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Soluble proteins—The TZ also functions as a molecular sieve to restrict soluble proteins

from moving across the barrier (Fig. 1A); although reports on the size-exclusion range vary,

perhaps reflecting a cell-specific property (21, 31, 37). An extreme case of ciliary

specialization is the photoreceptor, where the outer segment corresponds to the PC and is

connected to the inner segment by a region analogous to the TZ. Nafaji et al (38) showed

that the ability of soluble proteins to translocate into the photoreceptor cilia depended on

their intrinsic size. However, the investigators proposed that the traffic of these proteins to

the PC was controlled by steric hindrance exerted by layers of flattened membranous stacks

present in the outer segment rather than by a diffusive barrier at the ciliary base (38).

Trafficking to the base of the PC

As mentioned above, vesicle trafficking is the major pathway by which cells deliver

materials to the base of the cilia. Therefore, vesicle trafficking is required for the assembly,

maintenance and functionality of the PC. This section summarizes different ciliary targeting

mechanisms of ciliary lipids and proteins (Fig. 2).

Sorting of PC cargo at the Golgi apparatus—Among the earliest evidence that

Golgi-derived vesicles carry structural components of the cilia was the demonstration that

the Golgi-disrupting drug Brefeldin A was capable of impairing ciliogenesis (39, 40). Since

the lipid composition of the ciliary compartment is distinct from the plasma membrane,

ciliary specific lipids are believed to be pre-sorted at the TGN and packaged into vesicles for

delivery to the site of cilia assembly (41). PC-destined proteins containing ciliary targeting

signals (CTS) get incorporated into these vesicles. Further, a growing body of evidence

suggests that proper localization to the PC requires the interplay between several CTS (see

Table I) present in the protein cargo, and that different CTS can be recognized by different

elements of the sorting machinery at different stations enroute to the PC.

Membrane proteins—The photoreceptor-enriched protein Rhodopsin has been a popular

cargo to study trafficking to the PC (42–44), and a spatiotemporal model for the sorting of

this protein has been proposed (45). Mazelova et al (42) identified a ternary complex

composed of Arf4, ASAP1 and Rab11- FIP3 which functions at the TGN for the packaging

of Rhodopsin into vesicles targeted to the cilia. Specifically, while a VXPX motif in

Rhodopsin is recognized by the small GTPase Arf4, a FR signal is responsible for engaging

the ARFGAP ASAP1. Disruption of either CTS prevented Rhodopsin localization to the PC

(46). The BAR domain of ASAP1 is believed to confer the complex with the ability to

deform membranes contributing to vesicle budding (47). FIP3, probably the last member of

the complex to be recruited, stimulates the Arf4GAP activity of ASAP1 supporting the

complex release from the TGN (48)(Fig. 2,I).

Although Polycystin-2 also contains a VXPX CTS (49), the membrane carriers containing

this cargo pinch off from the cis-Golgi to reach the cilia without traversing the TGN (50).

Interestingly, it has been demonstrated that full length Polycystin-2 and constitutively active

Smo are routed towards the cilia at the cis-Golgi, whereas truncated Polycystin-2 and WT

Smo found in the bulk of the plasma membrane are sorted at the trans-Golgi (50).
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The tetrameric clathrin-associated adaptor complex AP1, clathrin and the Rab GTPase Rab8

contribute to the sorting of cargo to the PC at the exit of the TGN (9) (Fig. 2,I). Single AP1,

clathrin or Rab8 mutants led to similar defects of ODR-10 trafficking, ciliary length and

shape defects in C.elegans (9). However, AP1 and Rab8 seem to function at distinct steps

during sorting because no co-localization was observed between them. Cargo seemed to

move quickly through the AP1 compartment, but resided longer in the Rab8 compartment

(9).

Rab8 was also found to interact with the inositol polyphosphate 5-phosphatase Ocrl1 (51).

Ocrl1 is a protein capable of binding to several Rabs along the endocytic and secretory

routes (51–53) and is required for membrane trafficking in both pathways (54). The loss of

Ocrl1 was recently linked to deficient cilia assembly (43, 55). Coon et al (43) showed that

Ocrl1 participates in the delivery of cargo to the PC via two routes: directly from the TGN

involving Rab8 and an indirect route by internalizing cargo from plasma membrane and

redirecting it from the endosomal compartment to the PC (Fig. 2,I and II). This latter

mechanism involved Rab5 and the endosomal proteins IPIP27A/Ses. Some evidence

suggested that both pathways coalesce at the base of the PC (43).

Additional evidence further supports the existence of an indirect, endocytosis- and

recycling-dependent protein trafficking route to the PC (Fig. 2,II). For example knock-down

of the tyrosine phosphatase PTPN2 in ht-RPE cells resulted in an accumulation of the

typical PC-enriched protein Smo-EGFP in early endosomes (23). In addition, mice

expressing a dominant negative version of the endocytic recycling protein Arl13b, displayed

evidence of defective regulation of Smo in the PC and abnormal Sonic hedgehog (Shh)

signaling (56, 57). Further, Arl13b was also shown to play a role in the ciliary targeting of

the lipid phophatase Inpp5E (58). Similar to Arl13b’s function at the ciliary base, another

GTPase, Arl3, co-ordinates with its GAP RP2 the traffic of proteins to the ciliary base (59–

62).

Soluble Proteins—Soluble cytoplasmic proteins reach the ciliary base by diffusion;

however, evidence suggest that the dynein-mediated, microtubule (MT)-dependent transport

is a parallel, faster route than diffusion, to reach the centrioles (63) (Fig. 2,III). Specifically,

several centriolar components namely pericentrin, γ-tubulin, ninein, centrin and PCM-1 are

localized by dynein-dynactin mediated and microtubule (MT) dependent transport (63, 64).

These components were mislocalized following MT depolymerizing or by disrupting dynein

(63, 64).

BBS4 interaction with PCM-1 and the p150 glued subunit of dynactin suggests that BBS4 is

an adaptor linking cargo to the dynein-dynactin motor for MT mediated transport (65).

Another adaptor protein that plays a role in maintenance of the centriolar structure and

function is Hook2 which also exists in a complex with PCM-1 (66, 67). The proposed idea is

that PCM-1 shuttles between the cytosol and the centriole delivering cargo to the ciliary

base, whose dispersion away from the centriole is regulated by Cep290 (68)(Fig. 2,III).

As a whole, these results emphasize the existence of multiple mechanisms and routes

participating in the sorting of proteins to the PC.

Madhivanan and Aguilar Page 5

Traffic. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Vesicle docking and fusion at the base of the PC—Since vesicles are prevented

from entering the cilia by the barrier located at the base of the PC, carriers must dock and

fuse at the ciliary base.

Rab8 is one of the major players in ciliogenesis and the only Rab that localizes to the PC.

Indeed, this Rab GTPase is required for the docking and fusion of vesicles at the base of the

PC (69) and for maintaining ciliary membrane identity (70). Multiple proteins such as

RPGR (71), Cep290 (72), Ahi1 (73) and PCM1 (68) and the Rab11-Rabin8 complex

contribute to Rab8 recruitment to the base of cilia.

Also of outstanding importance for cilia assembly is Rab11, which is involved in the

recruitment of the Rab8 activator Rabin8 on pericentrosomal vesicles, activity that requires

the ASAP1 scaffolding function (46, 74, 75). The activation of Rab8 and localization to the

PC by the Rab11-Rabin8 complex is coupled to ciliary growth. Once the required cilia

length is achieved, Rabin8 is removed from the centrosomes which also stops the trafficking

of Rab8 into the cilium (75).

The TRAPPII (transport protein particle II) complex co-localizes with Rabin8-Rab8 in

vesicles and in the centriole (75). However, it seems to facilitate the tethering of the ciliary

vesicles to the centriole rather than to the periciliary membrane (75). In addition, it was

recently shown that distal appendage components can act as an anchor for ciliary vesicles

(18, 19, 76, 77) and interact with the vesicle trafficking machinery.

The role for the exocyst in vesicle fusion at the periciliary membrane is supported by several

observations. Members of the exocyst complex (Sec6 and Sec8) have been found at the base

of the cilia (78, 79). Overexpression of the exocyst component Sec10 led to the formation of

longer PC in MDCK cells likely due to the excess delivery of ciliary components (80). The

observation that the Sec15 subunit of the exocyst interacts with Rab11 and Rabin8 (81),

suggested that the exocyst is linked to the Rab11-binding ternary complex (Arf4-ASAP1-

FIP3) and facilitates membrane fusion (45). In fact, Rab8 regulation was coupled to the

exocyst-mediated ‘kiss and run’ discharge of the contractile vacuole in Dictyostelium

discoideum (82), supporting their role in vesicle tethering and fusion. Exocyst components

also were found in a complex with IFT components and cargo (Polycystin-2); and knock-

down of Sec10 resulted in a mislocalization of the cargo suggesting that the exocyst directs

the IFT particle and its associated cargo to the cilia (83).

Trafficking in and out of the PC

Membrane proteins—The octameric complex referred to as the BBSome, constitutes the

first canonical coat complex known to be involved in specialized protein trafficking into the

cilium (84, 85). Although the BBSome may also play a role in trafficking to the ciliary base

(86, 87), it localizes to the plasma membrane via Arl6 (BBS3) and mediates cargo

translocation through the ciliary barrier (85, 88)(Fig. 3A). Specifically, the BBSome

interacts with the C-terminus of ciliary cargoes such as Smo and Sstr3 (85, 89) and

somehow drags them across the barrier (90). The BBSome complex binds Rabin8 at the

ciliary base and it has been suggested that this interaction is the key for BBSome ciliary

entry along with its cargo (84). Regulators of BBSome ciliary trafficking have also been
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reported, namely LZTFL1 and AZI1 which sequester the BBSome in the cytoplasm and the

centriolar satellites respectively (91, 92).

There is also evidence that the BBSome is involved in the exit of proteins from the cilia.

Loss of BBS proteins resulted in the accumulation of Smo and its negative regulator Patched

(Ptch) in the cilia, leading to disruption of the essential development Shh signaling pathway

(89, 91). These results suggested that BBS components are required for the regulated

segregation of Smo from Ptch in the cilia, perhaps by facilitating the exit of the latter. Other

studies indicated that the BBSome is required for the exit of Dopamine GPCRs from the

primary cilia which could account for enhanced anxiety seen in BBS children (93, 94). It has

also been suggested that the BBSome proteins controls cilia exit and entry by co-ordinating

the IFT machinery (see below under ‘Trafficking within the cilium’). In order to achieve the

right ciliary volume, BBS and Rab8 deliver material to the ciliary compartment while the

endocytic players help to remove material from the periciliary compartment (95).

Soluble proteins—Nucleoporins also have been found to localize at the base of the cilia

(31) and the identification of a ciliary pore complex (32) emphasizes the similarities

between the nuclear and ciliary transport mechanisms. The nuclear pore is a highly selective

port of entry to the nucleus which only allows proteins with nuclear localization signals

recognized by importins (soluble carriers), to be transported into the nucleus following a

GTP-bound Ran gradient (96). Similar mechanisms have been proposed for the ciliary

transport of soluble protein KIF17 and membrane proteins Crumbs and RP2 (97–99)(Fig. 3).

Presence of a nuclear localization signal in these cargoes has been confirmed (see Table I).

However, how these proteins are selectively localized in the cilia and not the nucleus is yet

to be established. Other studies have showed that soluble proteins move into the cilia

depending on their size (21, 37) by diffusion across a molecular sieve at the ciliary base.

Therefore, it is possible that larger molecules require active transport to move across the

cilia.

Trafficking within the PC

Once inside the cilia, movement is made possible by the IFT complexes A and B,

responsible for retrograde and anterograde transport, respectively (12, 34, 100–103) (Fig. 3).

Both complexes have been found to be in association as a single string of particles which are

known as ‘IFT trains’, allowing constant bi-directional movement or helping each other to

successfully complete a cycle of transport to and fro in the cilia (104). The IFT trains move

in the space between the axoneme and the membrane and associate with both, as seen in the

electron-tomographs of Chlamydomonas reinhardtii flagella (105). The IFT particles are

carried in the anterograde direction by kinesin-2 motors and in the retrograde direction by

cytoplasmic dynein-2 motors (105–107)(Fig. 3).

In C.reinhardtii and C.elegans, cargo gets loaded on IFT particles at the ciliary base (34)

and again at the ciliary tip (108). A recent study in C.reinhardtii showed that cargo loading

at the ciliary base is regulated by the size of the growing cilia (109). Up to date, no direct

IFT-cargo interaction has been reported (110), however cargo has been observed hopping on

and off the ‘IFT trains’ (111). Interestingly, Mukhopadhyay et al (112, 113) showed
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evidence supporting the presence of an adaptor protein (Tulp-3) linking cargo and the IFT

particle.

Investigations in C.elegans also suggested a role of the BBS proteins as co-ordinators of IFT

particles and motors for efficient anterograde transport (114, 115)(Fig. 3). Specifically,

C.elegans mutants of BBS7/8 displayed varying velocities of anterograde transport due to

lack of co-ordination between the motors (114, 115). Similar roles have also been described

for the ARL proteins Arl-3 and Arl-13 (116). How and whether these 2 families co-ordinate

along the same pathway has not been determined. Further, loss of BBS proteins in C.elegans

and C.reinhardtii led to the accumulation of IFT B particles and signaling molecules at the

cilia tip (108, 117). Turnaround of IFT complexes and cargo loading at the ciliary tip

occurred in a DYF-2 and BBS-1 dependent manner (108). This abnormality was also

apparent in mouse models of BBS (BBS 1/2/4/6 null mice) showing bulged ciliary tip which

points towards problems in the retrograde IFT transport (94, 118, 119).

Ciliopathies

Ciliopathies are a broad and heterogeneous group of diseases due to compromised cilium

function or structure. Given that almost every cell type in our body assembles a PC at a

certain moment, it is not surprising that most ciliopathies are multi-organ disorders.

Ciliopathies arise from different mutations in more than 50 genes, and mutations in some

genes can lead to more than one ciliopathy with pleiotropic phenotypes that can vary from

mild to severe. While Tables II–V summarizes the characteristics of different ciliopathies

and their link to vesicle trafficking, the following section discusses the steps of ciliary

trafficking specifically affected in each ciliopathy and assesses its correlation with the

phenotypes/symptoms observed.

Renal ciliopathies

Among the ciliopathies, Polycystic kidney disease (PKD) and Nephronophthisis (NPHP)

majorly involve renal malfunction.

PKD is caused by mutations in the renal-cilia specific signaling receptors Polycystin-1,

Polycystin-2 or Fibrocystin (120). Abnormal function or PC targeting of these protein

cargoes leads to mechanosensation defects which in turn conduces to cyst formation or

tubulopathy (121).

NPHP is the leading cause of end stage renal disorder, the last stage of chronic kidney

disease, a condition requiring immediate dialysis or kidney transplant. The products of the

genes affected in NPHP are called nephrocystins, and are localized at the ciliary base. In

addition to renal ciliopathies, some of these genes are also involved in multi-organ diseases

(see below). NPHPs form distinct complexes with each other namely NPHP1-4-8,

NPHP5-6, NPHP 2-3-9-16 found in the TZ (122). Although their specific functions are not

known it is apparent that genes that cause the renal form of NPHP do not affect ciliogenesis

(Table II). Some of the members of this protein family seem to play a role in signal

transduction (123–125), for example Glis-2 is a negative regulator of the Wnt β-catenin
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pathway by functioning as its negative regulator (126). In fact, suppression of the canonical

Wnt signaling is required for normal renal development and maintenance (125, 127) which

when disrupted in PKD and NPHP leads to cystogenesis or fibrosis.

Multi-organ ciliopathies

Senior-Løken Syndrome (SLSN)—Affected NPHP genes are also often found

associated with retinal abnormalities, in which case the corresponding pathology is known

as SLSN. NPHP-5 is the classical SLSN causal gene as 100% of the cases are associated

with retinal-renal pathology. The link between nephrocystin genes and retinal degeneration

is possibly due to the interaction of nephrocystins with RPGR which is required for the

maintenance of the photoreceptor by trafficking of Opsins to the outer segment (128–131).

RPGR acts as a GEF for Rab8 and is also required for Rab8 localization (71). The adaptor

protein RPGRIP1L seems to mediate the interaction between the RPGR and different NPHP

complexes namely NPHP1-2-5 and NPHP 4-6-8 (71, 132). A role of the nephrocystins in

sorting and trafficking of Opsins by correct loading of IFT particles on trains has also been

described (133).

Oculo-Cerebro-Renal syndrome of Lowe (OCRL) or Lowe Syndrome (LS)—LS

is characterized by cataracts, mental retardation and renal abnormalities such as LMW

proteinuria. This disease is caused by mutations in the OCRL1 gene (see ‘Trafficking to the

base of the PC’). However, OCRL1 mutations can also lead to a renal tubulopathy called

Dent disease. It has been proposed that these different pathologies might be due to mutations

resulting in different truncated forms of the protein (134).

It has been shown that LS patient and Ocrl1 knock-down cells show abnormal cilia (43, 55,

135) with reduced Rhodopsin trafficking to the PC (43). A zebrafish model of LS showed

symptoms typical of ciliary dysfunction with curved bodies, underdeveloped eyes,

pronephro cilia abnormalities and neurological lesions (43, 55, 136). Importantly, Ocrl1

interacts with several Rabs (underscoring its role in vesicle trafficking); and with highest

affinity for Rab8, highlighting its role in ciliary function (53). In fact, simultaneous

overexpression of Ocrl1 and Rab8 led to abnormal traffic to the cilia and to the formation of

bulged PC likely due to cargo accumulation (43). In addition, Ocrl1 lack of function leads to

RhoGTPase activation abnormalities which could be a cause or consequence of ciliary

dysfunction (137, 138). Although the specific mechanism is still unknown, these

abnormalities led to defects in cell spreading, cell migration, and fluid phase uptake (139)

which in turn may be responsible for some of the developmental defects observed in LS

patients.

Bardet-Biedl Syndrome (BBS)—BBS is characterized by obesity, rod-cone dystrophy,

renal abnormalities, polydactyly, male hypogonadism and learning disabilities; animal

models of BBS faithfully reproduced these phenotypes (See Table III). Most of the BBS

causative genes are part of the BBSome or are required for regulation, assembly or

functioning of the BBSome. As discussed previously, the BBSome plays a role in trafficking

of cargoes across the cilia (See Section on ‘Trafficking In and Out of the Cilia’). However, it

does not seem to be playing a critical role in cilia assembly (87, 89, 117, 140)(Table III).
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This is probably the reason why BBS is not characterized by severe phenotypes such as

perinatal lethality. Indeed, BBS results in male infertility due to defective spermatogenesis

caused by motile ciliary defect, not PC defect (140, 141).

Abnormal delivery of ciliary components for proper ciliary functioning can also lead to

ciliary dysfunction, as it is apparent in the case of retinal degeneration due to mistrafficking

of Rhodopsin. BBS proteins are required for maintenance of the photoreceptor by

functioning at the connecting cilium; therefore, mutations in BBS components results in a

degeneration of the photoreceptor. BBS proteins are also required for trafficking of neuronal

cilia cargoes namely Sstr3, Mchr1 and D1 (87, 93, 94)(Table III). Defective Leptin receptor

signaling and mistrafficking of the NeuropeptideY in the absence of the BBSome has been

linked to obesity in these patients (86, 142)(Table III).

Lack of BBS protein functions led to structural ciliary defects with bulged ciliary tips due to

accumulation of cargo along with IFT components (94, 118, 119). This is probably due to

the role played by BBS in IFT co-ordination and turn-around in the cilia (108, 114, 115).

Overall, these findings are suggestive of BBSome functioning in the delivery of cargo to the

cilia in a cell-specific manner resulting in a degenerative disease.

Joubert Syndrome (JBTS)—JBTS is a multi-organ disorder with a characteristic

hindbrain malformation (‘Molar tooth Sign’), along with ataxia and cognitive dysfunction. It

is also frequently accompanied by renal and/or retinal symptoms. The animal models of

JBTS display symptoms characteristic of ciliopathies: photoreceptor degeneration, brain

malformations, laterality defects and cystic kidneys (133, 143–150)(Table IV).

Genes affected in JBTS are required for ciliogenesis (Table IV). Absence of PC or decreased

PC length is observed upon mutations in CSPP1, CEP41, TMEM237, TCTN1, KIF7, OFD1

and AHI1. Ciliary motility was also affected in animal models of JBTS: Nphp1 (151) and

Cep41 (149). Ciliary defects were observed in several organs such as nodal cilia, connecting

cilium of photoreceptors, neural tube cilia, limb bud mesenchyme and renal cilia (27, 143,

145–147) which accounts for the multi-organ disruptions associated with JBTS.

In addition, JBTS involves mutations in genes whose products are required in key vesicle

trafficking processes during cilia assembly (Table IV). For example, the JBTS protein

Cep164 is essential for ciliogenesis by docking the mother centriole to the apical membrane

(148, 152) and vesicles to this structure (76). Ahi1 is required for vesicle delivery and fusion

to the PC via its interaction with Rab8 (73). Arl13b is involved in trafficking material to the

cilia (see ‘Trafficking to the base of the PC’) and its knockdown also resulted in a defective

axoneme structure (56). Further, Arl13b, Cep164 and Pde6d form a complex that co-

ordinates the localization of ciliary cargo (58), such as the lipid phosphatase Inpp5E. In turn,

mutations in Inpp5E also lead to JBTS. Recently, the role of Inpp5E in ciliary development

was demonstrated in morphant zebrafish (153). Although the exact mechanism of action is

unknown; given its similarities to Ocrl1 in terms of substrate specificity (154, 155), Inpp5E

may be also involved in vesicle transport to the PC. It is possible that this complex serves to

transport more components to the cilia for its proper functioning (156). JBTS components
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also play a role in the regulation of ciliary signaling pathways, such as the essential Shh

pathway (56, 157).

JBTS proteins are also required for proper functional co-ordination of IFTs, as is apparent

from the disruption of IFT-A and B subcomplexes in ARL13b mutant C.elegans (116). Lack

of function of other JBTS proteins have also been linked to IFT transport, namely Ofd1

defective cells were affected for Ift-88 ciliary base localization (4) and Nphp1 mutant

photoreceptors showed defective trafficking of Ift-88 and Wdr-19 (133). It can be speculated

that each JBTS protein might be functioning with certain IFT particles and co-ordinating the

movement of the IFT particle associated cargo into the PC; further, IFT particles might carry

different cargoes depending on the cell type leading to a complex, multi-organ disease.

Collectively, the evidence indicates that JBTS is caused by disrupted ciliogenesis or by

trafficking of components essential for defining and maintaining the ciliary compartment

characteristics thus leading to more severe phenotypes than BBS.

Meckel-Gruber Syndrome (MKS)—This is the most severe of the multi-organ

ciliopathies, characterized by occipital encephalocele, perinatal lethality, renal cysts and

hepatic ductal malformations. Animal models of MKS faithfully reproduce these defects

(30, 123, 124, 158, 159)(Table V). Similar to JBTS, MKS mutants display overall ciliary

disruption in multiple tissues namely, the nodal cilia, neural cilia, limb-bud cilia and retinal

degeneration (27, 30, 124, 129, 158, 160) (Table V).

MKS proteins are involved in early ciliogenic events which involves establishment of the

barrier at the base which controls protein trafficking to and from the PC. Most of these

proteins are localized in the TZ and co-operate to form an intact TZ (29, 30)(Table V).

Mutations in the corresponding TZ genes resulted in stunted cilia with abnormal membrane

composition, due to loss of the ability to maintain the membrane diffusional barrier between

the plasma and the ciliary membrane (29, 30). Other functions described for these MKS

proteins involve basal body docking by Mks1 and Mks3 (161). Cep290 and Cc2d2a are

required for Rab8 localization, which is the ciliary compartment identifier (68, 162). Taken

together, mutations in these genes disrupt global ciliogenesis leading to severe phenotypes.

Overlap among ciliopathies—Lack of or abnormal function of certain genes can lead to

the onset of several ciliopathies (See Fig. 4). For example, mutations in some MKS-causing

genes (CEP290) also can lead to milder phenotypes resulting in NPHP, BBS or JBTS (See

Table V). This spectrum in phenotype has been attributed to specific mutations and

mutational load. Hypomorphic mutations in MKS1 and CC2D2A have shown to cause

milder diseases categorized as BBS and JBTS respectively (163, 164). In the case of

TMEM67, the position and nature of the mutation determines the severity of the disease

(165). Interestingly, Cep290 is a protein that when mutated can manifest a varied spectrum

of disorders (130), possibly due to the number and type of interactors that it has, namely,

BBS proteins, Cc2d2a, Nphp5 and Rab8 (68, 166–168).

In addition, there are also reports that even the same mutation may lead to scenarios of

different severity. For example, Ocrl1 mutations can cause LS, but also Dent’s disease

(lacking mental retardation and ocular abnormalities) (169). The mechanisms responsible for
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this variability are not fully established yet, but the existence of critical genetic modifiers

and the differential impact of specific mutations have been suggested.

Conclusions

Broadly, ciliopathies can be divided in isolated (PKD, NPHP) versus multi-organ disorders

(SLSN, BBS, JBTS, LS and MKS). Whereas specific ciliary signaling pathways are

disrupted in NPHP and PKD, multi-organ ciliopathies display a more global effect on PC

function. Importantly, the severity of the disease seems to depend on whether ciliogenesis is

affected or not (Fig. 5). In the case of the milder BBS, while the cilia are intact, specific

functions are disrupted due to mistrafficking of ciliary receptors (Fig. 5B). On the more

severe end of the disease spectrum are LS, JBTS and MKS in which ciliogenesis is disrupted

or affected (Fig. 5C and D).

In summary, this review emphasized the importance of vesicle trafficking and protein

sorting for the assembly and function of the primary cilia. As a whole, the evidence

discussed also highlights the correlation between the impact of the mutation (depending on

factors such as gene redundancy and the presence of genetic modifiers) on the PC (e.g.,

altering traffic of specific cargo vs. PC assembly deficiencies) and the severity of the

corresponding ciliopathy. We speculate that in the near future, these emerging trends will

contribute to our ability to make predictions in terms of gene product function or ciliopathy

mechanism.
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Synopsis

The receptor-rich, signaling organelle known as Primary cilium (PC) has been implicated

in a multitude of diseases collectively denominated as ciliopathies. The presence of a

defined barrier at its base makes the PC an isolated compartment that needs vesicle

trafficking for maintenance and function. This review discusses the major players

involved in trafficking to the PC and highlights evidence correlating the severity of the

ciliopathy to the trafficking defect involved. Specifically, mild and severe symptoms

arise from specific ciliary receptor mislocalization and generalized ciliogenesis defect,

respectively.
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Figure 1. The PC is an isolated domain
(A) The barrier at the ciliary base gives the ciliary membrane its unique identity in terms of

lipid and protein composition (see text for details). (B) Cross-sections bottom up of the

ciliary base depicting the proximal transition fibres (I), Septin ring and the ciliary pore

complex (II) and the distal Y-links (III) (See text for details).
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Figure 2. Pathways for transport of material to the base of the cilia
Secretory pathway (I) Endocytic-recycling pathway (II) Dynein-Dynactin complexes (III).
(See text for details)
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Figure 3. Transport of Material across and within the cilia
Movement across the cilia mediated by the BBSome and activated Ran gradient system. Co-

ordination of IFT inside the cilia by the BBSome for anterograde and retrograde trafficking

(See text for details).
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Figure 4.
A Graphical Representation of the overlap of genes involved in ciliopathies.
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Figure 5. Ciliary trafficking defects in ciliopathies
(A) Normal Cilia. (B) NPHP and BBS: no ciliogenesis defect, specific ciliary cargo

trafficking defect. (C) LS and JBTS: ciliogenesis affected due to defective material delivery

for ciliary construction. (D) MKS: TZ components missing resulting in the loss of ciliary

boundary
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Table I

Ciliary targeting consensus sequences present in cargos

Cargo Protein type Organism Signal1 (Consensus)a/binding partner Signal2 (Consensus)a/binding partner

ODR-10 GPCR C.elegans FR (ØB)/NDb(170)

STR-1 GPCR C.elegans YR (ØB)/ND (170)

SSTR3 GPCR Mammalian FK (ØB)/BBSome (4) APSCQ (AX[S,A]XQ)/ND (171)

HTR6 GPCR Mammalian FK (ØB)/ND (4) ATAGQ (AX[S,A]XQ)/ND (171)

Rhodopsin GPCR Mammalian FR (ØB)/ASAP1 (4, 46, 170) QVSPA ([K,R,Q]VXPX)/Arf4 (42, 44)

Smoothened GPCR Mammalian WR (ØB)/ND (4)

MCHR1 GPCR Mammalian APASQ (AX[S,A]XQ)/ND (171, 172)

GPR161 GPCR Mammalian [I,V]KARK/ND (113)

Polycystin-1 GPCR Mammalian KVHPSST ([K,R,Q]VXPX)/ND (173)

PGR15L GPCR Mammalian [R,K][I,L]W/ND (142)

GPR83 GPCR Mammalian [R,K][I,L]W/ND (142)

NPY2R GPCR Mammalian [R,K][I,L]W/ND (142)

Polycystin-2 6 TM domains Mammalian RVQPQ ([K,R,Q]VXPX)/ND (49)

Fibrocystin Single-pass TM Mammalian CLVCCWFKKSKTRKIKP/Rab8 (174)

RP2 Membrane-associated protein Mammalian
Consensus M9 sequence/Importin β2

(99)

CNGB1b Ion channel Mammalian RVSPG ([K,R,Q]VXPX)/ND (175)

KIF17 Soluble Mammalian
KRKK (Similar to NLS)/Importinβ2

(98)

a
Amino acids are indicated using the 1-letter code (e.g., Y=Tyrosine; N=Asparagine). “X” represents a position occupied by any amino acid. Ø=

amino acid with a bulky-hydrophobic side chain (L, I, M, V, F). Amino acids within brackets indicate that one or the other can be found in that
position within the consensus.

b
Not determined
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