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Abstract

High-throughput DNA sequencing has revolutionized cancer genomics with numerous discoveries

relevant to cancer diagnosis and treatment. The latest sequencing and analysis methods have

successfully identified somatic alterations including single nucleotide variants (SNVs), insertions

and deletions (indels), structural aberrations, and gene fusions. Additional computational

techniques have proved useful to define those mutations, genes, and molecular networks that drive

diverse cancer phenotypes as well as determine clonal architectures in tumour samples.

Collectively, these tools have advanced the study of genomic, transcriptomic, epigenomic
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alterations and their association to clinical properties. Here, we review cancer genomics software

and the insights that have been gained from their application.

Introduction

Fred Sanger and colleagues jump-started the nascent field of genomics in 1977 with their

development of chain-termination DNA sequencing1,2. It founded a series of commercial

instruments that helped produce numerous early milestones, including the sequence of the

first human genome3. Work was slow and expensive (the Human Genome Project rang-up

about 1 billion dollars) and enormous gains in economy and speed would be needed before

the approach could be applied widely. Enter ‘next generation sequencing’, the generic name

for a raft of advanced techniques, including pyrosequencing[G], sequencing-by-ligation[G]
and sequencing-by-synthesis[G]. State-of-the-art instruments now process a whole genome

in less than a week and for nominally less than ten-thousand dollars. Many thousands of

genomes and exomes have since been sequenced and their data have had an enormous

impact on cancer research. Cancer genomics is a now-recognized sub-specialty that grew out

of adapting sequencing for cancer research. It broadly seeks to characterize germline

variants and somatic mutations in the individual, to use such data from cohorts to identify

driver mutations[G], germline predispositions and environmental factors related to cancer

and, ultimately, to synthesize such information into mechanistic theories and to develop

information systems to assist clinicians with diagnosis and treatment decisions.

Aside from instrument advancements, cancer genomics owes a considerable debt to

computing hardware and software. Biology has been steadily absorbing the knowledge,

techniques and analytical culture of computer science and mathematics, and this has enabled

the development of workhorse algorithms for sequence alignment, detection of somatic

events and identification of significantly mutated genes[G] (SMGs). However, expansion in

computing power is no longer pacing increases in instrument throughput, meaning the

bottleneck is quickly shifting from data generation to data analysis. Taken with newer high-

throughput streams, like RNA and protein sequences, as well as incorporation of data-

intensive diagnostics like imaging, and the scope of the problem is clear; As the gap

between the investigator’s abilities to generate and analyze data grows, genomics will

increasingly experience the kinds of “Big Data” pains already familiar to other data-centric

disciplines like particle physics. One of the foremost issues will be integrating the grand

corpus of these many data types to open new frontiers in research.

The field has advanced substantially since the first cancer genome was sequenced, a mere 5

years ago4. Whole-genome, exome and RNA-sequencing are now routinely used in cancer

studies and tools continue to be deployed for even more sophisticated analysis, for example

combining genome and RNA-seq data for detecting fusion genes and interpreting cancer

genomes across multiple patients to discover driver mutations and pathways. Such analyses

have led to discovery of new cancer genes and cancer-causing mutations and have

demonstrated how environmental exposure leads to characteristic mutational spectra. In this

review, we discuss state-of-the-art data generation in cancer genomics, as well as current

methods for pre-processing the raw data to detect signals and higher-level analysis of
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individuals (Level I) and cohorts (Level II) for research questions and clinical application

(Figure 1). Moreover, we remark on some important open problems, and speculate on where

the field is moving in the next several years.

Sequencing strategies

“Sequencing” is a broad term for interrogating a variety of molecular entities, including an

entire static genome (whole genome sequencing)5, strictly the coding genomic regions

(exome sequencing)6, the transcriptome7 as a snapshot of mRNA presence at a given time

and tissue location, genomic methylation patterns8, and peptides (protein sequence).

Because coding genomic sequences comprise only 1–2% of the genome, the cost for exome

sequencing is still appreciably lower than for whole genome sequencing. However,

differences are gradually becoming less important, as technology improvements continue to

decrease overall sequencing costs. Despite its higher cost, whole-genome sequencing might

be preferable, as it provides information on structural and non-coding variants, which cannot

be captured from exome-only data. Whole genome data are therefore considered to be the

unbiased “gold standard”9 and the field is likely to shift increasingly towards this form of

data.

Traditional sequencing analysis

For the individual cancer patient, the immediate goal of any sequencing procedure is to

identify germline and somatic variants linked to the cancer phenotype. Typically, tumour

and normal tissue samples are collected, sequenced, aligned to the reference genome, and

compared against each other to identify genomic differences (Figure 1). Many of the

reported differences represent bona fide somatic aberrations, but such findings are ideally

validated by more comprehensive data from an independent platform. There are many

different kinds and sizes of mutational events, for example single nucleotide variations

(SNVs), copy number aberrations (CNAs) and small insertions and deletions (collectively

referred to as indels), each of which is detected through specific algorithmic methods. In

actual practice, detection of all germline and somatic aberrations is a formidable challenge,

due to limitations in current analysis algorithms (discussed below) and the quantity/quality

of sequence data. Important events may be missed when sequence coverage is too low, or

when repetitive or complex genomic regions complicate the alignment and assembly of

sequence variants. Sequence coverage theory [G] has co-evolved with sequencing

technologies and predicts that data must increase as we seek to identify increasingly subtle

genomic signals (see Box 1).

Box 1

Coverage Considerations

Early sequencing projects were based on Lander-Waterman theory155 for haploid

coverage, which recommended a redundancy factor, ρ, of around 10X. Absent biases, this

implies that loci are spanned by an average of 10 sequence reads and that >99.99% of the

genome is represented by the data155. However, for medical applications, both alleles

must be reliably identified. If the minimum condition is ≥3 spanning reads per allele, a

figure of ρ ≈ 30X is then required for attaining roughly the same 99.99% standard156.
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This has been the de facto redundancy for cancer sequencing projects with respect to

detecting SNVs, although it does not speak to other types of events. For example,

presence of an indel is suggested whenever the reference-aligned average length of

spanning fragments is significantly different from the average fragment length of the

originating library.52 Application of this principle49,157 is tricky, because a genuine event

has to be distinguished from cases in which predominantly shorter or longer fragments

were sampled merely by chance. At 30X, the size range of insertions for which indels can

be detected with low Type I error is rather narrow, suggesting more data are needed158.

Data requirements elevate further if somatic events within subclones of a tumor are to be

identified. For a subclone whose mass is a fraction μ of the total tumor, the probability of

at least 3 reads reporting a heterozygous variant is

(1)

where R=μρ/2. In a 5% mass subclone, the remarkable figure of 340X data is required if

99% of subclonal variants should meet the detection conditions (Box 1 Figure). Smaller

subclones require even more data, readily topping 500X in certain instances. The

biomedical relevance of subclones, coupled with the growing throughput of instruments

means that amounts of data generated for cancer genomics projects will continue to

increase.

Box 1 Figure. Data requirements for capturing heterozygous variants
Identifying a single-nucleotide variant (SNV) requires its observation in multiple reads,

usually at least 3, but accrual of these reads is governed by the random dynamics of

sampling and coverage, quantified in the ideal case (pure samples, perfect data, and no

sequence bias) by Eq. (1) for various tumour mass fractions. Data requirements are

pushed appreciably higher by subclones that comprise smaller fractions of the entire

tumour mass. Red triangle indicates redundancy of 340X for 99% probability of

observing ≥3 reads in a 5% subclone.
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Subclonal analysis

As sequencing costs continue to decline, researchers are able to sequence tumor samples

more deeply, enabling new analyses. For example, cancer progression has long been known

to be a fundamentally clonal process10 and sequence coverages are now becoming

sufficiently large to permit detection of the low prevalence events routinely associated with

tumour subclones11. In recent years, multi-site and/or stage sequencing and tumour

sectioning experiments have begun to identify founding clones and subclones contributing to

cancer progression11–14 (Figure 1A). Mutations in subclones are typically mapped at low

variant allele fraction (VAF) and often occur against a background of impure tumour and/or

normal sample collection. Their identification is extremely difficult, an observation that is

partially quantified by coverage theory (Box 1).

Single cell sequencing

Pioneering work on assessing CNAs in multiple tumor subpopulations13 was followed by

single-cell sequencing15 using whole genome amplification (WGA) of DNA extracted from

flow sorted nuclei (Figure 1A). Single-cell DNA and RNA sequencing are now routinely

used for revealing cellular diversities within a tumour. However, there are still important

challenges, such as amplification biases from degenerate oligonucleotide-primed WGA15

and multiple displacement amplification techniques16,17. Biases lead to uneven coverage

and consequent difficulties for identifying somatic alterations, including SNVs, CNAs and

structural aberrations. Sensitivity is most affected by allele dropout, owing to the

preferential amplification of one of two alleles, with rates of 8 to 40%16,18 reported. Large

CNAs can still be examined with low genome coverage (e.g., 5–6%) by computing read

counts in variable-sized bins19, whereas unequal coverage renders analysis of smaller copy

number and structural variants extremely difficult. Despite these challenges, recent

advances, such as assembly algorithms that handle uneven sequence coverage20, point to

widespread application of single-cell sequencing in the future.

Dissecting genomic changes in cancer

Somatic aberrations contain crucial information about the mechanisms of tumour

development, progression, and metastasis/relapse. In addition, a subset that are “clinically

actionable” have important implications in inferring prognosis and guiding decisions about

treatment. The need for accurately identifying these events has spawned a wide collection of

algorithms and software (Figure 1B). Most tools use either a composite statistical “score” or

a formal probability test, though simple heuristic thresholds persist too. Table 1 lists some of

the more widely used algorithms for detection of SNVs, indels, structural variants, fusions,

as well as for additional analyses, including driver gene identification.

Despite impressive progress, the variant calling problem remains unresolved and we believe

there is yet appreciable room for improvement in algorithm sophistication and accuracy.

Numerous ad-hoc procedures have been developed to wring more performance out of

existing tools. For example, it is known empirically that a candidate event called by several

independent algorithms is significantly less likely to be a false positive than if it were called

by any single one alone. Consequently, multi-caller strategies have now become more
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common, where several detectors21 are used under a “majority rules” aegis. Of course,

sensitivity can suffer, as the overall discovery power now depends jointly on the individual

tools’ powers. Although preliminary work22 has been reported, there are no conclusive

studies that recommend specific tool combinations for optimally balancing Type I [G]
versus Type II errors [G], perhaps because such studies require enormous computation. As

there are more than two dozen published SNV-specific detectors alone, a 3-caller approach

would demand evaluating more than 2000 possible combinations. Knowing the best

algorithm combinations for various types of somatic events would be tremendously valuable

to the community.

Single nucleotide variant detection

SNVs are the most frequent alterations in cancer genomes. Numerous SNV detection

algorithms have been developed, including GATK23 [This is a broad and widely-used

toolkit for variant discovery and data processing.], VarScan24,25 [VarScan is one of the early

programs for single-nucleotide somatic detection and has since added additional capability

for germline, copy number, and indel events.], SAMtools26 [SAMtools is a broad set of

utilities for processing sequence data in the standardized SAM/BAM format, including

variant calling.], SomaticSniper27, Mutect28 [MuTect is a widely used program for

identifying single nucleotide somatic events in tumor-normal pair sequencing data.],

Strelka29, and JointSNVMix/SNVMix30,31 (Figure 1B and Table 1). The first three handle

both germline and somatic variants, whereas the others were designed for calling somatic

mutations using tumour and matched normal genomic sequences. Although heterozygous

variant allele frequencies of 50% are expected in germline samples, this number often does

not hold for somatic sites in tumours, mainly owing to normal contamination and/or tumour

heterogeneity. Algorithm development is now focusing on handling somatic mutations over

a wide range of variant allele fractions. One example is the Bassovac algorithm that

considers dependence upon bi-directional impurities and tumour subclonal structures

(heterogeneity) at the read level, a necessary condition for avoiding ad hoc modeling and

heuristics (Wendl et al., unpublished observations). Preliminary findings show improved

performance, especially for events having low allelic fractions.

Indel detection

Indel detection is still challenging, largely owing to both their lower frequencies compared

with those of SNVs32,33 and to mapping difficulties34. Although existing alignment tools are

adequate for mapping reads containing SNVs, they lack the necessary accuracy and

sensitivity for reads that overlap with indels or structural variants. Most tools by default

allow for only two mismatches and no gaps in ‘seeded’ regions (that is in the first 28 bp in a

read), which prohibits indel-containing reads from aligning to the reference. Paired-end

mapping [G] is tremendously helpful in identifying larger indels when the ends occur in

flanking regions, enabling inference of altered intervening sequences (Box 1). Gapped

alignment [G], split read [G], and de novo assembly [G] are common approaches for

detecting indels. VarScan25 and GATK Unified Genotyper23 are based on heuristics for

indel calling using raw statistics, such as coverage, numbers of indel-supporting reads, read

mapping qualities and mismatch counts.
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Many existing tools23,25,26 work well for detecting short indels (<5–8 bp), but suffer from

lack of precision [G] (Figure 1B and Table 1). Further, they often cannot detect medium-

size indels, including some known druggable and/or prognostic events, using short read data.

For example, internal tandem duplications of FLT3 (FLT3 ITD), present in 20% of patients

with acute myeloid leukaemia (AML) and associated with poor prognosis35, are often

overlooked because of mapping difficulties36. Finally, detection around low-complexity

regions (such as homopolymers) is particularly challenging. SAMtools26 finds short indels

by correcting for the effect of flanking tandem repeats, usually producing a large number of

indel calls in the process. Dindel37 applies a Bayesian approach for calling small (<50

nucleotides) indels by realigning previously-mapped reads to generate candidate haplotypes

and computes a posterior probability for each haplotype for downstream analysis.

Conversely, Pindel38 [Pindel is focused on identifying breakpoints at single base resolution

of indels, inversions, and tandem duplications.] takes a pattern growth approach borrowed

from protein data analysis39 to detect indel breakpoints using both split reads and paired-end

reads. A similar approach is employed in Delly40. Pindel achieves high precision and its

sensitivity has been improved by allowing mismatches during the pattern matching process.

The recent application of BWA-MEM41 alignment allows better mapping around long

indels and structural variants. Moreover, local de novo assembly or multiple alignments

around candidate indel sites (for example, using GATK haplotype caller and TIGRA local

assembly42) reduce the number of false-positive indels. This process is utilized in many

pipelines for indel detection.

Copy number aberration and structural variant detection

Unlike SNVs or small indels, CNAs typically affect more than one gene. Traditionally,

single nucleotide polymorphism (SNP) genotyping data have been utilized for studying

CNAs in cancer, and the CNA landscape across multiple cancer types has been

reported43,44. Accurate inference of copy number from sequence data requires normalization

procedures that consider certain biases inherent to short read sequencing methods (such as

GC content and library biases). Approaches have been implemented for both GC-based

coverage normalization and mapping bias45,46. GISTIC47 [GISTIC is one of the standard

tools for finding genes affected by copy number changes that have a bearing on cancer

initiation or progression.] and CMDS48 have been developed for the identification of

recurrent CNVs.

Structural changes in chromosomes, such as chromosome deletions, insertions, inversions

and translocations represent another major source of somatic variation in cancer genomes.

The majority of known cancer genes are affected in varying degrees by rearrangements that

result in either a fusion transcript or transcriptional dysregulation. Cytogenetics, spectral

karyotyping, and fluorescent in situ hybridization have previously identified large

chromosomal events in multiple cancer types (such as the BCR–ABL translocation in

chronic myelogeneous leukaemia (CML)). Early end-sequencing profiling of bacterial

artificial chromosome (BAC) or Fosmid libraries revealed complex chromosomal

architectures in several human cancers49–53. In recent years, high-throughput whole-genome

sequencing of tumour samples has further improved the ability to detect somatic

rearrangements and to characterize their breakpoints with base pair resolution. The
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identification and analysis of read pairs that do not align as anticipated enable the detection

of a wide range of structural alterations, including deletions, tandem or inverted

duplications, inversions, insertions and translocations in many cancer genomes.

BreakDancer54 [BreakDancer is a general tool for identifying structural variations, including

insertions, deletions, inversions, and translocations using the concept of discordant read

pairs.], CREST55, VariationHunter56, GASV-Pro57,58 and GenomeSTRIP59 are among the

pioneering and most popular algorithms for such analysis (Figure 1B and Table 1).

BreakDancer performs de novo prediction of deletions, insertions, inversions and

translocations based on a Poisson model for the number of supporting reads, size of

anchoring regions and overall genome coverage. CREST utilizes the soft-clipping performed

by the software package Burrows Wheeler aligner (BWA) and similar aligners to predict

diverse structural events. GASV analyzes structural variants, improving breakpoint

identification using a geometric bounding algorithm; GASV-Pro extends this approach

incorporating read depth to further improve variant calls. GenomeSTRIP characterizes

genome deletion polymorphism using population-level concepts to reinterpret the technical

features of sequence data that often reflect structural variation. Although these approaches

are quite sensitive, the paired-end strategy tends to yield many false positives owing to

sequencing errors or read mis-alignments, especially within repetitive sequences. As for

indel detection, local assembly is also widely considered to be a reliable supplement for

reducing false positives and improving breakpoint resolution of structural variants.

Fusion detection

The expression of gene fusions that arise through genomic structural rearrangements is a

major mechanism for tumour initiation and progression. BCR–ABL1 in CML60, PML–RARa

in acute promyelocytic leukemia61,62 and TMPRSS2–ERG in prostate cancer63 are among

the most recurrent, functional gene fusions identified to date. Recently, algorithms such as

Tophat-fusion64, deFuse65, MapSplice66, ChimeraScan67 and BreakFusion68 have been

developed to detect fusions from RNA sequencing data (Figure 1B and Table 1). These tools

are algorithmically similar to their genomic counterparts, although they focus primarily on

mapping and ascertaining novel sequence junctions produced by mRNA-splicing and

depend more on genome annotations. It is increasingly clear that fusions can arise from both

simple translocations involving only two distal genomic loci60 and complex rearrangements

consisting of multiple distal loci69,70. Therefore, concurrent detection of gene fusions and

the originating rearrangements using systematic approaches can improve the accuracy of

predictions, as well as help to delineate the underlying mechanistic aspects of gene fusion

products. Two tools, Comrad71 and nFuse72, were developed to address this challenge. Both

align raw whole-genome and RNA sequencing reads, while simultaneously corroborating

fusions and genomic breakpoint discovery. Comrad, which was the first to be developed,

only maps a single fusion breakpoint to a single genomic breakpoint through the application

of a set of ad hoc rules. An extension, nFuse maps fusion breakpoints to complex structural

rearrangements using a graph-theoretic approach. Their advantage is that they account for

ambiguous read alignment and therefore minimize errors caused by misalignments. We have

recently developed BreakTrans73, which jointly analyzes whole-genome and transcriptome

sequencing data to test hypotheses produced by other tools, such as Tophat-fusion,

MapSplice, BreakDancer and CREST, for further delineating the mechanistic components of
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gene fusions. Variants of various types and sizes described above require sophisticated tools

for annotating and interpreting their effects and significance.

Variant Annotation and Prediction of Driver Mutations and Pathways

Following the identification of somatic alterations, the next challenge is to distinguish driver

mutations from passenger mutations [G]. Because of the ease of assessing the recurrence

and frequency of somatic mutations relative to the efforts necessary to validate their

function, many computational and statistical techniques have been introduced to predict

driver mutations and genes. These techniques can be divided into three general categories

based on their underlying strategies: variant effect prediction; recurrence/frequency

assessment; and pathway/network analysis.

Annotations and functional predictions

Recent years have seen consolidation of various genome annotation databases into

centralized sources, with great improvement in quality and comprehensiveness. Ensembl

and UCSC have emerged as leading repositories of genes and transcripts from GENCODE

and Refseq; regulatory elements identified by ENCODE, TransFac and RegulomeDB;

noncoding RNAs from Noncode, BodyMap and MiRBase; and protein annotations from

Pfam and Interpro (see online links). There has been a concurrent emergence of software

that leverages these resources to perform genome-wide annotation of variants in coding and

non-coding regions. Annovar74 [Annovar is a versatile and widely-used tool for functional

annotation of variants. It is often accessed through its web interface wAnnovar] and

SNPeff75 provide annotation of transcript variants, SKIPPY76 predicts cryptic splice

effectors, and Ensembl VEP, FunSeq77 and SNPnexus78 all extend support to include

annotation of noncoding elements and regulatory features (Figure 1B and Table 1). Further,

VAAST79 and GEMINI80 allow for comprehensive analysis and integration of coding

variants, noncoding variants, regulatory elements and phenotype. In cancer studies,

PolyPhen81 [A concatenation of “polymorphism phenotyping”, PolyPhen predicts the

impact of amino acid changes on proteins and is often used in conjunction with SIFT.],

SIFT82 [SIFT (sorting intolerant from tolerant) infers whether amino acid substitution has an

effect on subsequent functioning of protein and is often used in conjunction with PolyPhen],

MutationAssessor83 and Condel84 are commonly used to predict deleterious mutations. In

addition, CHASM85,86 [CHASM is a popular tool for assessing functional impact of somatic

missense mutations based on whether they furnish selective advantage to cancerous cells.],

TransFIC87 and OncodriveFM88 use features learned from known cancer mutations for

highlighting potential driver mutations. Finally, tools such as ActiveDriver89 have been

developed to predict effects related to protein aggregation, protein stability and alterations of

residues targeted by post-translational modification.

Significantly mutated genes

The most widely used approach to distinguish driver mutations from passenger mutations is

to identify those mutations that occur more often than expected by chance. This approach is

generally applicable across cancer types and is especially well suited for mutagenic

phenomena associated with specific kinds of cancers, for example viral disruption in ovarian
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and cervical cancers, smoking and tobacco-induced mutations in lung and oral cancers, and

ultraviolet (UVA, UVB or UVC) radiation-induced mutations in melanoma (Figure 2 and

Box 2). In the simplest case, one assumes that the background mutation rate [G] (BMR) of a

gene is known and evaluates the probability of passenger mutations in a given number of

samples using a statistical test90,91.

Box 2

Detection of environmental impact on cancer genomes

Healthy cells are subjected to various external insults that promote mutagenesis, well-

known examples being cigarette smoke, asbestos, and ultraviolet radiation159 (Box 2

Figure). Viral infection and age also play roles160. These factors leave their marks on the

cancer genome. For example, comparison of the mutation profiles across 12 common

cancer types reveals that lung tumours contain higher proportions of C→A

transversions131, which are classical signatures of exposure to cigarette smoke. Mutation

dynamics are compliant with circumstances133, such as by ultraviolet exposure in

melanomas, mismatch repair defects in colon cancers, or viral infections in head and

neck tumors133,161,162. There is also growing appreciation that viral sequences, both

episomal and those integrated into a genome, are more important in cancer than

previously thought. Several oncoviruses have already been confirmed, including human

papilloma virus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr

virus (EBV), human T-lymphotropic virus and Merkel cell polyomavirus, but there are

undoubtedly more and they affect 15% to 20% of all human cancers163. Efforts to

systematically characterize viruses in cancer are forthcoming and screening cancer

genomes for viral sequences will likely be routine in the future. Despite their propensity

for rapid evolution, it is likely that viral sequences will be reasonably detectable owing to

their size, for example using homology-based read alignment and comparison with viral

and bacterial databases. PathSeq164 and RINS165 investigate microbial sequences using

the traditional subtraction and intersection approaches, respectively and research is now

underway for developing additional tools for viral discovery.
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Box 2 Figure. Environmental factor contributing to cancer risk
Smoking, viruses, and radiation can strongly affect mutation rates across the cancer

genome and mutation profiles across cancer types and human populations. Signatures of

these effects can often be detected in tumour genome sequences.

The primary difficulty is to obtain good BMR estimates, as inaccuracies can lead to

incorrect association of a gene with cancer. Many factors are known to affect the BMR of a

gene (Figure 2), including covariates, variation among samples, and errors in upstream

analysis. Covariates include differences in gene length, expression level, and replication

timing. Mutation frequencies can differ not only across patients within a cancer type, but

also because of diverse mutation spectra across cancer types that are possibly associated

with environmental factors and viral signatures. Finally, incorrect or biased annotation of

mutations can contribute markedly to potential false positives in cancer gene analysis. For

example, multiple open reading frames in genes like TTN or incomplete description of

pseudogenes in olfactory receptors can lead to incorrect assignment and annotation of

mutations resulting in false predictions. Inadequate sequence coverage of a gene exacerbates

these problems. Software that accounts for these contingencies includes MuSiC92 and

MutSig93, which have been extensively used in many large-scale cancer studies94–98. Both

tools integrate heterogeneities using convolution to obtain probability tails. There are
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additional covariates not accounted for and it is likely that frequency methods will continue

to be developed.

Another method that has been used to distinguish between driver and passenger mutations is

to examine whether mutations cluster in specific residues of the protein sequence. The so-

called ‘20/20 Rule’99 advises that a gene be classified as an oncogene if at least 20% of its

missense mutations (or identical in-frame indels) are located at a particular residue.

Conversely, a gene is classified as a tumour suppressor if at least 20% of the mutations are

inactivating (nonsense, frame-shift, splice site, or stop codon read-through). This heuristic is

applicable to many well-known cancer genes, but is also somewhat arbitrary in the use of a

fixed 20% threshold. It is now being supplemented by algorithms that assess patterns of

mutational signatures100 and clustering of mutations in protein sequence101 or 3D protein

structure102 using more rigorous statistical scores. Recent methods have shown that

combining different signals of positive selection holds great potential for finding reliable

lists of driver genes103.

Pathway and network analysis

Enhanced understanding of somatic mutations can be gained by examining collections of

mutations in signaling, regulatory, or metabolic pathways (Figure 3). It is well established

that functional somatic mutations deregulate these pathways, and researchers have used a

variety of approaches to assess the clustering of mutations in known pathways and

interaction networks. These approaches can be divided into two classes: those that analyze

known (curated) pathways, represented as gene sets, and those that analyze interaction

networks to implicitly build pathways de novo.

A straightforward approach to evaluate combinations of mutated genes is to examine the

overlap between lists of mutated genes and pre-defined gene sets having known biological

function. This technique has been used for over a decade in gene expression analysis to

evaluate lists of differentially-expressed genes. Databases that record functional annotations

of human genes include KEGG104, GO105, MSigDB106 and others. For example, suppose

we have a list M of mutated genes, and we aim to see whether this list contains genes

involved in regulation of cell cycle. Using the KEGG database, we find the list L of over

two dozen cell cycle genes. There are two statistical tests that can be used to test whether M
and L have significant overlap. First, if the list M of mutated genes is ranked (for example,

using one of the mutation significance scores described above), gene-set enrichment analysis

(GSEA)106 can be used to determine whether the genes in L are near the top of the ranked

list M107. Second, if the list M is unranked, then the overlap between the lists M and L can

be assessed using a hypergeometric test108. More recently, specialized tests for SMG sets

have been introduced. The most direct approach is to adapt one of the SMG tests (e.g.,

MuSiC and MutSig) described above. More sophisticated approaches such as PathScan109

and the method of Boca, et al.110 allow for varying BMR across annotated genes.

Examination of gene sets overcomes some of the limitations of single-gene tests of

recurrence; in particular, these tests can assign significance to rarely mutated genes, when

these genes appear in the same pathway. However, these tests also have some limitations.

Human gene annotations and pathway databases remain incomplete and there is extensive
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crosstalk between pathways, meaning that decisions regarding which genes form the

boundary of a pathway are somewhat arbitrary. The crosstalk is represented in gene set and

pathway databases by the presence of multiple, overlapping gene sets, thus complicating the

interpretation of reported enrichments. Finally, signaling and regulatory pathways have a

rich topology of activating and inhibitory interactions, and this information is not

represented in the list of genes genes/proteins that are members of the pathway.

To overcome these limitations, a second approach to analyzing combinations of mutations is

to utilize biological interaction networks. A variety of genome-scale protein–protein

interaction networks have been constructed in the past few years. For example, HPRD111,

KEGG104 and Reactome112 summarize experimentally validated protein–protein

interactions, whereas other databases, such as BioGrid113, STRING114, HINT115 and

iRefIndex116 integrate interaction information from multiple data sources including protein–

protein interactions derived from high-throughput experiments. The resulting protein–

protein interaction networks contain over 10,000 proteins and 50,000 interactions. More

recently, protein–DNA interactions from the ENCODE project117 have been integrated into

these networks118.

Interaction networks have been used in place of gene sets to determine combinations of

mutations that should be further evaluated. However, most biological networks have a non-

uniform topology that is characterized by the presence of hubs or nodes. This topology must

be taken into account when defining mutated subnetworks. HotNet119 is a method to find

subnetworks of a large interaction network that are mutated in more samples than expected

by chance. HotNet employs a heat diffusion model to simultaneously encode both the

topology of the network and the significance of the observed frequencies of each mutated

gene. Genes (or their corresponding proteins) are assigned an initial heat according to their

mutation frequency or significance. This heat then diffuses over the edges of a network.

Thus, significantly mutated subnetworks correspond to hotspots on the network. The number

and size of such subnetworks is then tested for statistical significance. HotNet has been used

to determine subnetworks in multiple cancer types analyzed in the context of

TCGA 95,97,120, and has, for example, implicated mutations in the Notch signaling pathway

in ovarian carcinoma95.

Recently, network-based stratification (NBS)121 used a similar heat diffusion model to

define subtypes of tumour samples by clustering smoothed mutation profiles. MeMo122 is

another approach to find mutated subnetworks, using the observation that driver mutations

in interacting proteins are often mutually exclusive across patients123,124(see also below).

MeMo first defines modules of highly-connected nodes in the network, and then assesses

whether these network modules exhibit mutually exclusive mutations. MeMo has been used

in several cancer types reported in the TCGA 96,120. Another approach used in TCGA

studies120 is TieDIE125, which employs a network diffusion approach to connect genetic

abnormalities (e.g. somatic mutations) to transcriptional changes. Many other methods have

been introduced to examine networks using gene expression126, which are not discussed in

detail here.

Ding et al. Page 13

Nat Rev Genet. Author manuscript; available in PMC 2015 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The third approach that has been used to analyze combinations of mutations is the

identification of mutually-exclusive sets of mutations. For example, PIK3CA mutations and

PTEN deletion are mutually exclusive in breast cancer127. Inverting this idea, one might find

combinations of driver mutations by identifying mutually exclusive sets of mutations.

MeMo122 uses this idea to examine genes with known interactions, as noted above.

Alternatively, one may attempt to discover sets of mutually exclusive genes de novo, with

no prior restrictions on the sets of genes. This idea is the basis of the De Novo Driver

Exclusivity (Dendrix) algorithm128, as well as the Multi-Dendrix129 and RME130

algorithms. The Dendrix algorithm was used in the TCGA acute myeloid leukemia project97

and in Pan-Cancer TCGA analysis of 12 cancer types131.

Today, a substantial number of significant genes and pathways have been identified in

individual cancer types as well as across cancer types. The next challenge is to better

understand how these genes and pathways interact and function in concert in individual

cancer patient.

Genome integrity and clonal architectures

Accumulation of somatic mutations in a population of tumor cells is the foundation of the

clonal theory of cancer, as described by Peter Nowell in 197610. High-throughput

sequencing has led to new insights into this process, including the discovery of novel

mutational processes and the quantification of the clonal architecture of tumors.

Kataegis, chromothripsis and chromoplexy

One of the more fascinating observations from cancer-genome sequencing studies are

genomes with extreme numbers and types on mutations. Kataegis [G] is the occurrence of

an unusually large number of single nucleotide mutations clustered in a single locus, and

was first reported in breast tumors132 and other cancer types133. Kataegisis identified from

“rainfall plots” that illustrate the frequency of single nucleotide mutations across the

genome.

The analogous phenomenon of many genome rearrangement breakpoints clustered at a

single locus has long been observed from lower resolution microarray and cytogenetic

studies134. However, genome sequencing has revealed a different phenomenon of

chromosome shattering, or chromothripsis [G], where one or more loci undergo a

catastrophic event of simultaneous breakage and aberrant repair at multiple breakpoints in a

single cell division70. Chromothripsis was originally reported in ~2–3% of all cancers, but

was shown to be particularly common in bone cancers (~25%). It was later reported in

pediatric medulloblastomas135, and associated with TP53 mutations, suggesting a possible

mechanism for its appearance136,137. A related process called chromoplexy [G] has now

been observed in prostate cancers138.

Distinguishing chromothripsis/chromplexy from sequential accumulation of chromosomal

rearrangements over multiple cellular generations is a challenge. Secondary rearrangements

often obscure the signatures of chromothripsis and chromoplexy. The distinction between

simultaneous and sequential rearrangement is typically made via simulations70,135,139,
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although there have been criticisms of these approaches140. In lieu of simulation, putative

signatures of chromothripsis have been proposed141. Tools, such as PREGO142, nFuse72 and

extensions of Hydra139 that simultaneously analyze multiple rearrangement breakpoints

facilitate the evaluation of these signatures. However, more work is needed to find

quantitative measures that distinguish chromothripsis and chromoplexy from sequential

accumulation of rearrangements.

Defining clonal architecture in heterogeneous tumours

All genomic alterations discussed above have a role in clonal evolution [G]. Tumour clones

are subject to changing selective pressures and continually accumulating mutations (Figure

4A). Genomic alterations collectively reflect this evolutionary history and can be used to

reconstruct the subclonal architectures and progression processes that might have led to

relapse or metastasis. Such information is enormously important, as clonality has already

been implicated in numerous aspects of cancer, including clinical outcome143, increased

progression and malignancy144 and drug resistance145.

Clonal inference can be challenging. The number and positioning of clones within a tumour

is often unknown, so uniform sampling is routinely presumed. Dot-plots are often used to

obtain visual estimates of clones. For example; each heterozygous SNV event can be

represented by a dot positioned on orthogonal axes of VAF versus frequency or total reads

representing the event. Because the process is stochastic, such plots cluster into “dot clouds”

(Figure 4) that are suggestive of clones. If the collective distribution is non-Gaussian (as

determined by tests like Shapiro-Wilk or D’Agostino K-squared), multiple clones are

presumed to be present. The process of discerning clones individually then encounters more

confounders from both experimental contingencies (such as mutual impurities of the tumor

and normal samples owing to suffusion or insufficient margin) and biological complications

(such as copy number variations within the tumor genome). There are also subtle statistical

factors, including differences in variances of clonal VAF distributions. Specifically,

mutations that exist in all tumour cells, namely those present in the most recent common

ancestor, have a variance (σ2) proportional to unity (σ2 ∝ 1). Conversely, mutations present

in a minor subclone whose mass is a fraction μ of the total tumor have σ2 ∝ μ, meaning its

distribution is “flattened” in this dimension.

Some clonal discovery methods center around the mathematical concept of density

estimation, a process through which a probability density function (PDF) that best describes

the observed data is constructed, for example using the Parzen-Rosenblatt146,147 “window”

method. If clusters are sufficiently separated by VAF, the PDF readily identifies the tumour

clones. There are a variety of more recent and sophisticated methods. For example

ABSOLUTE148 adds an optimally-fitted copy number alteration model and karyotype

likelihood model. Conversely, PyClone149 and the methods of Nik-Zainal et al. identify

clones using hierarchical Bayesian clustering11,150. We have developed a method called

SciClone (Miller et al. unpublished observations) (Figure 4B) that uses Bayesian mixture

modeling to examine multiple samples from a patient over time (initial and relapsing tumour

samples) or space (multiple biopsies). The THetA algorithm151 accounts for the presence of

copy number aberrations, which can confound analysis of VAFs. Like the variant calling
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problem, progress has been significant, but substantial improvement is still needed. Not only

will better variant detection improve clonal analysis, but also additional classes of

information, including cancer-specific and pan-cancer population data, as well as

information from other affected family members, will help to better define tumour

architecture. Finally, direct integration with phylogenetic analysis algorithms may help to

arbitrate among certain kinds of multiple alternatives that are currently undecidable148.

Conclusion: basic and clinical applications

In the short time since cancer genomics burst onto the biomedical scene it has made

numerous fundamental contributions: 1) cancer-associated genes and pathways have been

identified; 2) germline predispositions have been established; 3) technologies and algorithms

have been improved; 4) vast datasets have been organized and recorded; and 5) knowledge

has been classified into new databases. These accomplishments can be attributed to many

individual research lab driven projects as well as large scale collaborative projects

conducted by The Cancer Genome Atlas (TCGA) and International Cancer Genome

Consortium (ICGC) using cutting edge computational approaches152,153. TCGA has

completed nearly 10,000 cancer cases across 20 cancer types and ICGC will be sequencing

approximately 25,000 additional genomes across 50 cancer types over the next several

years. Further, efforts by the Cancer Cell Line Encyclopedia154 and Genomics of Drugs

sensitivity in Cancer (http://www.cancerrxgene.org/) will help establish genomic

determinants of resistance or sensitivity to drugs. The information and knowledge that will

pour out of such projects are expected to have enormous implications for understanding

cancer broadly, as well as for diagnosing and treating tumours at the individual patient level.

This will be a tangible step towards personalized medicine.

Widespread clinical application of cancer genome and transcriptome sequencing is a

certainty, although the timing remains unclear because of several outstanding issues related

to both cost and reliability. First, the “data spectrum” and associated analysis tools are not

yet complete. A significant portion of driver events in cancer are DNA or RNA alterations

that affect protein expression, but proteomics has not yet ramped to the same high-

throughput rates and sample census that genomic sequencing has. In our view, proteomic

data are increasingly important in ascertaining driver genes and pathways, especially in

terms of winnowing false positives from the large lists of hypotheses generated by pathway,

network and significant gene mutation algorithms. However, it is clear that the proteomic

gap is starting to close. For example, the Clinical Proteomic Tumor Analysis Consortium

(CPTAC) launched by the National Cancer Institute (NCI) will further many goals,

including characterizing tumour protein inventories, integrating genomics with proteomics

and developing biomarker assays for high-priority proteins. Associated bioinformatics tools

will be further developed, as well. This will be an increasingly fertile area of research. The

second factor is the reality of cost. The sequence of an individual genome has dropped about

5 orders of magnitude, from about $1B for the first human genome to around $10K today.

Technology development continues apace, but the overall cost for an entire “package”

(DNA, RNA, and proteomic sequencing and companion systematic analysis) will likely

have to drop yet another order of magnitude before sequencing can become anything like a
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routine clinical test. There will probably be some form of certification process for analysis

software, as well.

There have even been a few early clinical victories, like the amazing case of Dr. Lukas

Wartman, where comprehensive genome, exome and RNA analysis implicated FLT3 over-

expression in his particular form of leukaemia (In Treatment for Leukemia, Glimpses of the

Future, The New York Times, July 7th, 2012). This analysis led to the decision to administer

Sutent, an FDA-approved tyrosine kinase inhibitor targeting FLT3 expression that quickly

put Dr. Wartman’s disease into remission, which continues today. The next chapter of

cancer research will undoubtedly see further pushes toward clinical application, as well as

increased involvement of big pharmain developing new therapeutic agents. The cancer

landscape will look vastly different from today in a decade and we will be at the threshold, if

not well into the era of finding cures (or means of conferring long-term remission) for some

cancers. Stay tuned.
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Glossary

Background
mutation rate

Rate at which spontaneous mutations occur due to uncorrected

copying errors

Chromoplexy A mutational event that results in significant, complex

rearrangements involving multiple loci, though not as dramatic

as chromothripsis and involving less clustering of rearrangement

breakpoints

Chromothripsis A catastrophic mutational event that “shatters” one or more

chromosomes, with simultaneous loss and rearrangement of

multiple chromosomal segments

Clonal evolution the emergence of novel clones having improved survival or

propagational fitness according to the particular sets of somatic

mutations they have accumulated

Driver mutation A somatic mutation that plays a causal role in initiation,

progression, metastasis, or recurrence of cancer

De novo assembly Reconstruction of a genomic target by assessing consensus

sequence from alignments of overlapping reads and clones

Gapped alignment Alignment process where small gaps are allowed if they support

a better fit

Kataegis The appearance of regions of local hyper-mutation in a tumor

genome
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Paired-end mapping Coordinated mapping of both sequenced ends of a fragment to a

reference genome, where their approximately known separation

furnishes extra information against misalignments

Passenger mutations Somatic mutations that arise incidentally and play no

mechanistic role in cancer initiation or progression

Precision The fraction of the total number of called events that are true,

sometimes called the positive predictive value

Pyrosequencing Specific sequencing-by-synthesis method where detection is

based on chemiluminescent signals from luciferin conversion

Sequence coverage
theory

Characterization of sequencing processes mathematically in

order to support development of detection methods and analysis

and design of sequencing projects

Sequencing-by-
ligation

Sequencing based on using the mismatch sensitivity of DNA

ligase to detect nucleotides

Sequencing-by-
synthesis

Sequential polymerization of nucleotides to a template with each

incorporation inferred by an imaging process, usually from a

fluorescent dye attached to the added nucleotide

Significantly
mutated gene

A gene having a rate of somatic mutation that is higher than what

can be attributed to a random background rate, suggesting a role

in tumor initiation or progression

Split read The phenomenon in which a read spans a deleted site, whereby it

appears to be split in its alignment to a reference

Type I error Declaring an effect where none actually exists, which leads to a

“false positive”

Type II error Overlooking an actual effect, which leads to a “false negative”
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Online summary

• High-throughput sequencing of cancer genomes, exomes, and transcriptomes

has enabled the identification of many novelsomatic aberrations, providing new

insights into cancer biology and new therapeutic targets.

• Computational and statistical tools are necessary to interpret the large and

complex datasets that result from high-throughput sequencing approaches.

• Mature software for detecting single-nucleotide variants, indels, copy number

aberrations, structural aberrations, and gene fusions in cancer genomes are now

available. Additional challenges remain in increasing the sensitivity and

specificity of these algorithms.

• Computational techniques are essential to prioritize somatic aberrations that are

likely to be functional for further experimental validation. Two common

approaches are to predict functional impact of individual mutations using prior

biological knowledge, and to identify recurrently mutated genes, pathways, and

networks across many samples.

• Algorithms to infer the clonal structure and evolutionary history of a tumor from

ultra-deep sequencing data have recently been introduced. Applications of these

techniques have shown that minority mutations in primary tumors may rise to

majority in relapse/metastasis.

• Sequencing of cancer genomes has shown wide range of specialized mutational

processes including features like kategis, chromothripsis, and chromoplexy that

result in rapid genomic change and punctuated tumor evolution.
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Figure 1. Sample procurement, sequencing, and analysis roadmap
(A) Sequencing strategy: Most cancer genomics investigations sequence the genome of a

tumour sample from primary or metastatic lesion, starting with a non-specific ‘global’

sample pooled from biopsy or resection. Because the spatial distribution of any resident

subclones is not known a priori, it will become increasingly common to sequence specific

regions from a tumor section separately. In the limit, single-cell sequencing can also be

performed on flow-sorted nuclei to assess cellular diversity (B) Overview of the sequencing

and analysis process: tumour and adjacent healthy tissue samples are sequenced using high-

throughput instruments to obtain genome, exome, RNA and other types of data. After

alignment, a battery of detection tools identifies both small (SNV, indel) and large (copy

number, structural variation, gene fusions) alterations, which are then annotated and

analyzed individually (Level I) —for example, for likely functional implications — and

collectively (Level II) —for example, to identify relevant gene pathways and networks
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Figure 2. Biological factors relevant to assessing significant genes in cancer
Genomic analysis establishes mutation frequencies of genes and helps characterize

background mutation rates. Specific mutation hot spots have been found in the various

cancer types. Other factors have also been shown to affect the background mutation rate of a

gene, including gene length, expression level, and replication timing. State-of-the-art tools,

such as MuSiC and MutSig give proper consideration to these and many other factors, for

example transition versus transversion frequency, in determining the significantly mutated

genes that contribute substantively to cancer initiation and progression.
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Figure 3. Significantly mutated genes, pathways and networks
Given the mutational status of genes across multiple patients, one can distinguish driver

from passenger mutations using several strategies. Single-gene tests determine whether the

observed number of samples having a mutation in the gene is significantly greater than what

is expected under an appropriate null model. Pathway or gene set approaches examine

whether multiple genes in pre-defined sets, as obtained for example from a curated database

like KEGG, GO, or MSigDB, have more mutations than expected. These tests are biased to

the prior knowledge of gene cascades residing in these databases, but the numbers of tests

are relatively small, so the risks associated with Type I error [G] tend to be manageable.

Conversely, network approaches rely only on knowledge of known protein-protein or

protein-DNA interactions in examining combinations of mutations on whole-genome

interaction networks, for example using the analog of heat diffusion. Because these
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approaches are unbiased, they furnish the possibility of inferring novel combinations of

genes relevant to cancer, but larger numbers of hypothesis tests imply that greater care must

be taken for multiple testing correction.
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Figure 4. Conceptual example of clonal evolution model and clonality analysis
(A) The founding clone (yellow) persists during the course of the disease. Another clone

(green) present at time point 1 faces extinction before time point 2, but new subclones (blue/

time point 2 and orange/time point 3) emerge during disease progression. (B) SciClone

algorithm detects the three mutation clusters present at time point 3.
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Table 1

Computational tools for detecting and interpreting cancer genome alterations.

SV / Indel Detection

Program Analysis Synopsis

Bassovac (unpublished, Wendl, C et al.) SNV/indel detection Bayesian with tumor/normal impurity and clonality

GATK23 SNV/indel detection analysis framework using MapReduce

JointSNVMix31 SNV detection binomial/multinomial probability with pre-filtering

Mutect28 SNV/indel detection Bayesian probability with pre- and post-filtering

Pindel38 Indel detection pattern growth learning method

SomaticSniper27 SNV/indel detection Bayesian probability with posterior filtering

Strelka29 SNV/indel detection Bayesian probability with posterior filtering

SNVMix30 SNV detection Binomial mixture model

VarScan24,25 SNV/indel detection Fisher exact test, fitering, and FDR correction

Copy Number / SV / Fusion Detection

Program Analysis Synopsis

BreakDancer54 SV/indel detection Kolmogorov-Smirnov test on discordant reads

BreakFusion68 fusion detection alignment-based pipeline for transcriptome data

BreakTrans73 fusion mapping integrate fusion discovery and breakpoint tools

ChimeraScan67 chimeric transcription discordant read pairs with posterior filtering

CREST55 SV detection heuristics/binomial test on soft-clipped reads

DeFuse65 fusion detection dynamic programming split and discordant reads

Delly40 SV detection integrated method of discordant and split reads

GASV-pro57 SV detection plane sweep for segment intersection

GenomeStrip59 SV detection depth and split/discordant reads on populations

Hydra139 SV detection discordant reads with assembly validation

Lumpy (unpublished, Layer, RM et al.) SV detection integrated method of discordant and split reads

TIGRA42 SV detection DeBruijn graph-based assembly

Level I Annotation & Interpretation

Program Analysis Synopsis

Absolute148 purity/ploidy/clonality optimization of log scores

Annovar74 functional prediction annotation-based prediction

ASCAT166 purity/ploidy/clonality goodness of fit ranking of candidate solutions

TUSON Explorer100 Gene classification Oncogene or suppressor using mutation signatures

Classy (unpublished, Bharadwaj, M et al.) gene classification oncogene or suppressor using nearest neighbor

CHASM84,85 functional preduction random forest classifier

MutationAssessor83 functional prediction conservation-based prediction (entropy score)

PolyPhen281,167 functional prediction structure and alignment based probability model

SciClone (unpublished, Miller, C et al.) tumor clonality Bayesian mixture model

Sift82 functional prediction conservation-based prediction
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Level I Annotation & Interpretation

Program Analysis Synopsis

Snpeff75 functional prediction annotation and coding effect prediction

THetA151 purity/ploidy/clonality maximum likelihood of mixture composition

VEP168 functional prediction annotation-based prediction

Level II Annotation & Interpretation

Program Analysis Synopsis

Dendrix128 mutation analysis de novo discovery of mutual exclusive mutations

HotNet119 network analysis diffusion model for significant networks

MeMO122 network analysis network modules with mutual exclusivity

MuSiC92 mutation analysis framework for significance analysis of mutations

Multi-Dendrix129 mutation analysis de novo discovery of multiple sets of exclusive mutations

MutSigCV93 mutation analysis gene significance with variable background rate

NBS121 network analysis clustering using non-negative matrix factorization

OncoDrive-CIS169/-CLUST170 mutation analysis z-statistics for copy numbers of driver genes

Paradigm126 gene expression network analysis of gene expression

PathScan109 pathway analysis probability model for mutation-enriched pathways

TieDIE125 network analysis network diffusion model linking mutations to gene expression
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