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Zero-index-metamaterials (ZIM) have drawn much attention due to their intriguing properties and novel
applications. Particularly, in a parallel plated ZIM waveguide system with defects, total reflection or
transmission of wave can be achieved by adjusting the properties of defects. This effect has been explored
extensively in different types of ZIM (e.g., epsilon-near-zero metamaterials, matched impedance ZIM, or
anisotropic ZIM). Almost all previous literatures showed that only monopole modes are excited inside the
defects if they are in circular cylinder shapes. However, the underlying physics for excited modes inside
defects is wrongly ignored. In this work, we uncover that additional modes could be excited by theoretical
analysis, which is important as it will correct the current common perception. For the case of matched
impedance zero-index metamaterials (MIZIM), the additional dipole modes can be excited inside the defects
when total transmission occurs. Moreover, we also observe the same results in Dirac-cone-like photonic
crystals which have been demonstrated theoretically and experimentally to function as MIZIM. For another
case of epsilon-near-zero metamaterials (ENZ), we find that additional higher order modes (e.g., tri-pole)
can be excited inside the defects when total transmission happens. Numerical simulations are performed to
verify our finding regarding the additional modes.

I
n the beginning of the new century, the first metamaterial was achieved to realize the function of negative
refractive index1. After that, the research on metamaterials2–7 has made great progress. Recently, attention to
zero-index-metamaterials (ZIM)8–30,32–33 has been extensive. For instance, matched impedance zero-index

metamaterials (MIZIMs), epsilon-near-zero metamaterials (ENZ), anisotropic ENZ. By utilizing ZIM, some
applications and devices with novel functionalities can be realized, such as squeezing wave energy10–14, tailoring
wave front15–17, realizing total transmission and reflection in ZIM18–22, waveguide bending23, enhancing radiation
from an embedded source24–26, controlling energy flux27, etc. Several years ago, by putting perfect electric con-
ductor (PEC) or perfect magnetic conductor (PMC) defects in ZIM in a waveguide structure, Hao et al.18

confirmed that incident electromagnetic wave can undergo total reflection or transmission. Later, Nguyen
et al.19 found similar effects by introducing dielectric defects into MIZIM. However, due to an insufficient
expression of the magnetic field, some interesting phenomena and physics are thereby missing. For example,
they claimed that for total transmission, only monopole modes exist in the dielectric defects. A lot of publica-
tions20–22,28–30 (including one from the authors20) later followed this erroneous step, albeit some other intriguing
properties found. In this letter, we will give a more comprehensive analysis and show that additional higher modes
are excited together with the monopole modes. Our paper corrects some common misunderstanding and shows
more colorful physics for ZIM systems.

Results
Now let us start from the schematic plot of a two dimensional (2D) waveguide structure in Fig. 1. Region 0 and
region 3 are free space. Region 1 is ZIM with the effective permittivity and permeability e1 and m1. Region 2
consists of N cylindrical defects embedded in region 1. The effective permittivity and permeability of the j-th
cylinder are e2j and m2j, respectively. Without loss of the generality, we suppose that a transverse magnetic (TM)
wave (its magnetic field H is along z direction) is incident from the left port of the waveguide. The outer
boundaries of the waveguide are set as PECs. If the incident wave is a transverse electric (TE) wave (with the
electric field E polarized along z direction), the outer boundaries of the waveguide should be changed into PMCs
for similar results.

For simplicity, we assume the incident magnetic field H
I

int~ẑH0zei k0x{vtð Þ, where k0 is the wave vector in free
space with k0 5 v/c, v is the angular frequency, c is the velocity of light in free space, H0z is the amplitude of the
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incident magnetic field. In the following sections, we will omit the
time harmonic factor e2ivt. The electromagnetic (EM) wave in each
region satisfies the Maxwell’s equations:

E
I

m~
i

ve0em
+|H

I

m, ð1Þ

where the integer m indicates each region and em is the relative
permittivity of each region. The magnetic field in region 0 is a sum-
mation of the incident wave and the reflected wave, and is written as,

H
I

0~ẑH0z eik0xz<e{ik0x
� �

, ð2Þ

the electric field is,

E
I

0~ŷ
k0

ve0
H0z eik0x{<e{ik0x
� �

, ð3Þ

where < is the reflection coefficient.
Likewise, we can obtain the magnetic field and the electric field in

region 3 as,

H
I

3~ẑ=H0zeik0 x{að Þ, ð4Þ

E
I

3~ŷ
k0

ve0
=H0zeik0 x{að Þ, ð5Þ

where = is the transmission coefficient. In region 1, as e1 almost

equals to zero, +|H
I

1 must be zero in order to guarantee a finite
E1. Consequently, the magnetic field in region 1 denoted as H1 should
be a constant. By applying the boundary conditions at the interfaces
of x 5 0 and x 5 a, we have,

<z1ð ÞH0z~H1 and H1~=H0z: ð6Þ

Therefore, <z1~=:
In region 2, the magnetic field inside each cylindrical defect fol-

lows the Helmholtz equation,

+2H
I

2ze2jm2jk
2
0H
I

2~0: ð7Þ

The solution can be written as a summation of infinite number of
Bessel functions with angular terms. Therefore, the magnetic field in
region 2 should be written as,

H
I

2~ẑ
PN
j~1

P?
n~{?

tjnJn(k2jrj)einhj , ð8Þ

where tjn are the coefficients to be determined for the n-th order
Bessel functions.

By applying Dirichlet boundary conditions at the surface of each
defect, the magnetic field in region 2 becomes,

H
I

2~ẑH1

XN

j~1

J0 k2jrj
� �

J0 k2jRj
� �zajnJn k2jrj

� �
cos (nhj)zbjnJn k2jrj

� �
sin (nhj)

 !
,ð9Þ

where Jn(x) is the n-th order Bessel function with Jn(k2jRj) 5 0. ajn

and bjn are coefficients of the excited higher order modes,
k2j~k0

ffiffiffiffiffiffiffiffiffiffi
e2jm2j

p
is the wave vector in the j-th cylindrical defect, Rj is

the radius of the j-th cylinder, rj is relative radial coordinate in the j-th
cylinder, hj is relative angular coordinate in the j-th cylinder, as
mentioned in Ref. 19. We note that the original expression of the
magnetic field in each defect is wrongly assumed in Ref. 19 from the
two missing terms that typify the additional modes in the defects.
However, if Jn(k2jRj) ? 0, the two additional terms should not be
included so that at each circular boundary rj 5 Rj, the magnetic field
takes the constant value H1.

With Eq. (9), the electric field inside each defect could be obtained
as follows by recalling Eq. (1),

E
I

2~iH1

XN

j~1

J1 k2jrj
� �

J0 k2jRj
� �{ajnJn

’ k2jrj
� �

cos (nhj){bjnJn
’ k2jrj
� �

sin (nhj)

 ! ffiffiffiffiffiffi
m2j

e2j

s
ĥj, ð10Þ

where ĥj is the azimuthal unit vector for the j-th cylindrical defect.
By using the Maxwell–Faraday equation,þ

E
I

dl~{

þ
LB

I

Lt
ds, ð11Þ

and after some meticulous calculations, we could obtain the trans-
mission coefficient as20,

=~
1

1{
ik0m1 S{Sdeð Þ

2h { ip
h

PN
j~1

RjJ1 k2jRjð Þ
J0 k2jRjð Þ

� � ffiffiffiffi
m2j

e2j

q , ð12Þ

where S 5 a 3 h is the entire area of region 1 and region 2,

Sde~
XN

j~1

pR2
j is the total area of region 2, which consists of N

cylinders.

For the system of MIZIM
For matched impedance zero-index materials (MIZIM), m1%0, Eq.
(12) changes into the following formula,

=~
1

1{
ip
h

XN

j~1

RjJ1 k2jRj
� �

J0 k2jRj
� �

" # ffiffiffiffiffiffi
m2j

e2j

s , ð13Þ

which has been derived in Ref. 19 (the Eq. (8) therein). From the Eq.
(13), we see that to achieve total transmission (=?1), J1(k2jRj) must
be equal to zero. Therefore, we should select n 5 1 in Eq. (9), the
magnetic field in region 2 is then written as,

H
I

2~ẑH1

XN

j~1

J0 k2jrj
� �

J0 k2jRj
� �zaj1J1 k2jrj

� �
coshjzbj1J1 k2jrj

� �
sinhj

 !
: ð14Þ

It is not only a function of rj but also a function of hj, aj1 and bj1 are
coefficients to be determined. Eq. (14) is the unique solution for total
transmission with J1(k2jRj) 5 0. According to Eq. (14), we note that the
magnetic field inside each defect consists of not only monopole modes,
but also additional dipole modes.

To solve the coefficients of dipole modes, we suggest an approx-
imate system, i.e., a dielectric cylinder embedded in MIZIM as the
background. As the waveguide system supports TM0 mode, which
resembles a plane wave, we suppose the incident wave is a plane wave

Figure 1 | The schematic description of the 2D waveguide structure.
Region 0 and 3 is air. Region 1 is ZIM. Region 2 is the cylindrical defects.

The parallel red lines are PEC boundaries of the waveguide. A TM wave is

incident along x-direction from the left port of the waveguide.
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along x-direction. The magnetic field in MIZIM could be expressed
as31,

H
I

zim~ẑH1

X?
n~{?

½inJn(k1r)zgnHn(k1r)�einh, ð15Þ

where Hn(x) is the n-th order Hankel function of the first kind, H1

takes the same value of the constant magnetic field in the MIZIM
area, gn is the scattering coefficients, k1~k0

ffiffiffiffiffiffiffiffiffi
e1m1
p

is the wave vector
in MIZIM. When total transmission occurs, the scattering coeffi-
cients should be very tinny, that is gn < 0.

The magnetic field in the dielectric cylinder could be written as,

H
I

2~ẑ
X?

n~{?

t1nJn(k21r)einh: ð16Þ

At the boundary of the cylinder r 5 R1, we should have,

H1

X?
n~{?

inJn(k1r)einh~
Xz?

n~{?

t1nJn(k21r)einh: ð17Þ

We can easily obtain the coefficient of each mode,

t1n~inH1
Jn k1R1ð Þ
Jn k21R1ð Þ : ð18Þ

By combining Eq. (16) and (18) with Eq. (9), we could obtain the
relationship between t1n and a1n as follows,

a1n~t1n=H1~in Jn k1R1ð Þ
Jn k21R1ð Þ , n~0, ð19Þ

a1n~2t1n=H1~in 2Jn k1R1ð Þ
Jn k21R1ð Þ , n§1: ð20Þ

For MIZIM, as Eq. (14) only has two terms (n 5 0 and n 5 1). We
could therefore obtain that,

a0~a10~
J0(k1R1)

J0(k21R1)
<

1
J0(k21R1)

, ð21Þ

a11~i
2J1(k1R1)

J1(k21R1)
: ð22Þ

a0 is the coefficient of the monopole mode, and a11 is the coefficient
of the dipole mode. Due to the symmetry in y-direction, the degen-
erate state of dipole mode inside the defect (Jn(k2jrj)sin(nhj) in Eq.
(9)) could not be excited out, the coefficient of the degenerate state
(bjn) should be zero.

We plot the relationship between the parameter ja11j/ja0j and
different frequencies for three types of MIZIM (with e1 5 m1 5

1023, 1024 and 1025) from Eq. (21) and (22), as shown in Fig. 2.
We also plot the related numerical result from the waveguide struc-
ture (the simulation results in the following sections are all from
COMSOL). We find that dipole mode is much more dominative than
monopole mode at the resonance frequency that J1(k21R1) 5 0.
While for the frequencies slightly away from the resonance fre-
quency, dipole mode becomes very weak or diminishes. When e1

5 m1 tends to zero gradually, the coefficient of dipole mode will
decrease accordingly, and the resonance peak becomes narrower.
The resonance frequencies from the numerical results have tiny shifts
due to the effect of PEC boundaries of the waveguide. When e1 5 m1

tends to zero gradually, they will get closer to the analytic resonance
frequency.

We will verify the above findings from the numerical simulations.
For simplicity, we assume that there is only one cylindrical defect in
the region of ZIM. The radius of the cylindrical defect is 0.2 m. Its
dielectric constant is e21 5 4, and its relative permeability is m21 5 1.
In order to achieve total transmission, the term J1(k21R1) should be
equal to zero. As a result, the working frequency is 0.45737 GHz.
However, due to the effect of PEC boundaries of the waveguide, this
frequency is slightly away from the real resonant frequency, leading
to diminishing dipole mode. Therefore, in the simulations, we select
the frequency of 0.457 GHz so as to obtain more clear dipole mode.
In the region of ZIM, we set a 5 h 5 0.8 m. The magnetic field
distributions for the above waveguide system are shown in Fig. 3
for ZIM with different permittivities. In Fig. 3(a), we set e1 5 m1 5

0.001 and H1 5 1, and it seems that only monopole mode is excited
from the field pattern. However, the field pattern just takes the real
part of the magnetic field in COMSOL. In fact, if we read from the
imaginary part, we could find that dipole mode exists. The magnetic
field inside the defect is a summation of monopole mode and dipole
mode from Eq. (14). The coefficients of monopole mode and dipole
mode have a p/2 phase difference from Eq. (21) and Eq. (22). For
instance, if we change H1 5 1 into H1 5 i, we could find that dipole
mode appears from the field pattern in Fig. 3(b). If we set e1 5 m1 5

0.0001, the dipole mode will become weaker, as shown in Fig. 3(c).
For e1 5 m1 5 0.00001, dipole mode almost disappears, see in
Fig. 3(d). We can also see this from Fig. 2. Numerically, we find that
the coefficients of dipole modes are a11 5 12.37i, a11 5 23.42i and
a11 5 20.245i for the cases of Fig. 3 (b), Fig. 3 (c) and Fig. 3 (d),
respectively. For all the above cases, the coefficients of the monopole
modes are 1/J0(k21R1) 5 22.483 and the coefficients of the degen-
erate state of dipole modes are zero (b11 5 0). For e1 5 m1 5 0.001,
dipole mode is more dominative than monopole mode. While for e1

5 m1 5 0.0001, they are comparable to each other. For e1 5 m1 5

0.00001, the monopole mode is more dominative than dipole mode.
It seems that the dipole mode is diminishing when e1 5 m1 tends to
zero gradually. It is not easy for us to choose the required resonant
frequency as the resonance goes extremely narrow. For a particular
value of near zero permittivity, we can in principle find a frequency

Figure 2 | a0 is the coefficient of monopole mode, a11 is the coefficient of
dipole mode. Here we plot the ratio of the amplitude of a11 and a0 in log

scale. The dash curves are numerical results, while the solid curves are

analytical results. The black, red and blue curves are for the cases of e1 5 m1

5 1023, 1024 and 1025, respectively. The radius of the cylindrical defect is

set to be 0.2 m. Its dielectric constant is e21 5 4, and its relative

permeability is m21 5 1. In the simulations, we set a 5 h 5 0.8 m for the

ZIM region.
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near the resonant one where dipole mode is much more dominative
than monopole mode.

To demonstrate the hybridization of monopole mode and dipole
mode more clearly, we plot the real part of magnetic field distribution
inside the defect from x 5 20.2 m to x 5 0.2 m (at y 5 0) with
different values of H1 for e1 5 m1 5 0.001, as shown in Fig. 4. For H1

5 1, only the information of monopole mode is observed from the
black curve (it is an even function of x). While for H1 5 i, the
information of dipole mode could be observed from the red curve
(it is an odd function of x). For H1 5 0.707 1 0.707i, both informa-
tion of monopole mode and dipole mode could be observed from the
blue curve. To make it more straightforward, we also plot the ampli-
tude of the magnetic field (see the green curve), which is independent
of H1 and has two symmetric peaks at the positions of x 5 0.1 m and
x 5 20.1 m because of the existence of dipole mode. If there is only
dipole mode inside the defect, the amplitude should be zero at the
position of x 5 0. However, the amplitude there is a value of about
2.5, which is equal to the amplitude of the monopole mode at the
position of x 5 0 (see also the black curve). Therefore, both mono-
pole mode and dipole mode exist inside the defect.

As it is known, Dirac-cone-like photonic crystals16 can be regarded
as MIZIM near Dirac point frequency. It should be possible to pro-

duce the above similar effect if we replace MIZIM with such photonic
crystals. It is noticed that the incident wave is now a transverse
electric (TE) wave, and the outer boundaries of the waveguide struc-
ture are PMCs. We will show that if a cylindrical defect is introduced
in MIZIM or Dirac-cone-like photonic crystals, at the condition of
J1(k21R1) 5 0 when total transmission occurs, both dipole mode and
monopole mode exist inside the defect in the waveguide system
(k21~k0

ffiffiffiffiffiffiffiffiffiffiffiffi
e21m21
p

is the wave vector of light in the defect, e21 and
m21 are the permittivity and permeability of the defect respectively,
R1 is the radius of the defect). Following Ref. 16, the Dirac-cone-like
photonic crystals consist of cylindrical alumina rods arranged in a
square lattice. The radii of the rods are 3.75 mm with a dielectric
constant 8.8. The lattice constant is 17 mm. The Dirac point fre-
quency f is about 10.3 GHz. We set a 5 h 5 0.187 m for the region
of photonic crystals in the waveguide and insert a cylindrical defect
with a radius of R1 5 0.0284 m in the center of the region (the radius
should be large enough to visualize the above effect). The dielectric
constant of the defect is e21 5 0.3905 and its relative permeability is
m21 5 1, to satisfy J1(k21R1) 5 0 at the Dirac point frequency. In Fig. 5
(a), we plot the electric field for the system of Dirac-cone-like photo-
nic crystals and choose a suitable phase of the incident plane wave (E1

5 i) so that only dipole mode is demonstrated in the cylindrical
defect. Likewise, we choose another phase of the incident plane wave
(E1 5 1), and plot the electric field in Fig. 5 (b), where only monopole
mode is shown in the defect. For comparison, we replace the Dirac-
cone-like photonic crystals with MIZIM, and plot corresponding
electric field in Fig. 5 (c) and (d). Fig. 5 (c) shows a consistent dipole
mode with Fig. 5(a), while Fig. 5(d) gives out monopole mode like
that in Fig. 5(b). Therefore we cannot neglect the existence of dipole
mode like Ref. 19. Sometime, it is more dominative than the mono-
pole term near the resonance frequency, even for such a realistic
photonic crystal system.

For the system of ENZ
After discussing the MIZIM case, we come to the ENZ case. Let us
return to Eq. (12). In order to obtain total transmission, the following
term must be zero,

ik0m1 S{Sdeð Þ
2h

{
ip
h

XN

j~1

RjJ1 k2jRj
� �

J0 k2jRj
� �

" # ffiffiffiffiffiffi
m2j

e2j

s
: ð23Þ

For simplicity, we suppose that there is only one cylindrical defect
in the ENZ area. After some calculations, we shall have,

Figure 3 | The magnetic field distribution of MIZIM waveguide system with a dielectric defect, for (a) e1 5 m1 5 0.001 and H1 5 1 (b) e1 5 m1 5 0.001 and

H1 5 i; (c) e1 5 m1 5 0.0001 and H1 5 i; (d) e1 5 m1 5 0.00001 and H1 5 i. The working frequency is 0.457 GHz.

Figure 4 | The magnetic field distribution from x 5 20.2 m to x 5 0.2 m
(at y 5 0) in the defect. The black, red and blue curves are magnetic field

distribution for the case of H1 5 1, H1 5 i and H1 5 0.707 1 0.707i,

respectively. The green curve is the amplitude of the magnetic field.
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J1 k21R1ð Þ
J0 k21R1ð Þ~

k21m1 S{Sdeð Þ
2pR1

: ð24Þ

If the n-th order Bessel function Jn(k21R1) is zero, the magnetic
field in the defect could be written as,

H
I

2~ẑH1
J0 k21r1ð Þ
J0 k21R1ð Þza1nJn k21r1ð Þcos(nh)zb1nJn k21r1ð Þsin(nh)

� �
:ð25Þ

Therefore, there is not only monopole mode excited inside the
defect, but also some other additional higher order mode emerging
as well, if both the conditions of Eq. (24) and Jn(k21R1) 5 0 are
satisfied. For example, we choose J3(k21R1) 5 0 and tune the config-
uration and material parameters to satisfy Eq. (24). Following similar
calculations to Eq. (19) and (20), we could get the coefficient of tri-
pole mode a13 5 i32J3(k1R1)/J3(k21R1) and the coefficient of mono-
pole mode a0 5 1/J0(k21R1). Likewise, we find the relationship
between the parameter ja13j/ja0j and different frequencies for three
types of ENZ (with e1 5 1023, 1024 and 1025) both theoretically and
numerically, as shown in Fig. 6. From the analytical results (solid
curves), we find that tri-pole mode is much more dominative than
monopole mode at the resonant frequency where J3(k21R1) 5 0. For
other frequencies slightly deviating from the resonant one, tri-pole
mode is disappearing. When e1 tends to zero gradually, the coef-
ficient of tri-pole mode will decrease accordingly and the resonance
peak will become narrower. However, the resonance frequencies
from numerical results have a tiny shift because of the effect of outer
PEC boundaries of the waveguide. When e1 tends to zero gradually,
the resonance frequency will approach the analytic resonance
frequency.

The finding will be confirmed again from numerical simulations.
Suppose that there is one cylindrical defect inside the ENZ area. The
radius of the defect is 0.01 m, its dielectric constant is e21 5 16 and its
relative permeability is m21 5 1. In order to make J3(k21R1) 5 0, where
k21R1 is the first root of the third order of Bessel function, the working
frequency should be about 7.615 GHz. In addition, to satisfy Eq. (24),

we set the effective permittivity and permeability of the ENZ as e1 5

0.001 and m1 5 0.6 respectively and set a 5 h 5 0.021 m for the ENZ
area. The magnetic field distribution for the above system is shown in
Fig. 7. The tri-pole mode is demonstrated inside the defect when H1

5 i, as shown in Fig. 7(a). Likewise, we can also observe the mono-
pole mode by changing H1 into 1, as shown in Fig. 7(b). We numer-
ically find that the coefficient of tri-pole mode is a13 5 21.67i, b13 5

0 and the coefficient of the monopole is 1/J0(k21R1) 5 4.17 (the tri-
pole mode here is obvious but not dominative, to get a dominative
tri-pole mode, the working frequency should be shift to about

Figure 5 | The electric field distribution of Dirac-cone-like photonic crystals with a defect for (a) E1 5 i and (b) E1 5 1, and the electric field distribution

of MIZIM waveguide system with a defect for (c) E1 5 i and (d) E1 5 1. Here E1 is the initial phase of the incident TE plane wave in the ZIM area.

The radius of the defect is 0.0284 m, and its dielectric constant is 0.3905 and its relative permeability is m21 51. We set a 5 h 5 0.187 m for the ZIM

area. The outer boundaries of the waveguides are PMCs. In addition, we set e1 5 m1 5 0.001 for the MIZIM in (c) and (d). The working frequency is

10.3 GHz.

Figure 6 | a0 is the coefficient of monopole mode, a13 is the coefficient of
tri-pole mode. Here we plot the ratio of the amplitude of a13 and a0 in log

scale. The dash curves are numerical results, and the solid curves are

analytical results. The black, red and blue curves are for the case of e1 5

1023, e1 5 1024 and e1 5 1025, respectively. The permeability of ENZ in all

cases is set as 0.6. The radius of the cylindrical defect is 0.01 m, and its

dielectric constant is e21 5 16 and its relative permeability is m21 5 1. In the

simulations, we set a 5 h 5 0.021 m for the ENZ area.
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7.61 GHz, as already shown in Fig. 6). Hence, the simulation results
prove our finding, and the magnetic field is a summation of mono-
pole mode and tri-pole mode, which should be written as,

H
I

2~ẑH1
J0 k21r1ð Þ
J0 k21R1ð Þza13J3 k21r1ð Þcos(3h)

� �
: ð26Þ

In order to further demonstrate Eq. (25), we set J5(k21R1) 5 0,
where k21R1 is the second root of the fifth order of Bessel function.
The radius of the defect is 0.01 m, its dielectric constant is e21 5 14.44
and its relative permeability is m21 5 1. In order to satisfy J5(k21R1) 5 0,
the working frequency is about 15.5 GHz. To meet Eq. (24), we set
the effective permittivity and permeability of the ENZ as e1 5 0.001
and m1 5 0.6427 respectively and set a 5 h 5 0.021 m for the ENZ
area. Fig. 8 is the magnetic field distribution for the new system when
total transmission happens. The penta-pole mode comes up inside
the defect when H1 5 i, as shown in Fig. 8(a). By changing H1 into 1,
the monopole mode shows up inside the defect, as shown in Fig. 8(b).
Besides, we numerically find that the coefficient of penta-pole mode is
a15 5 1.83i, b15 5 0 and the coefficient of the monopole mode is
1/J0(k21R1) 5 8.46. Therefore, the magnetic field is a summation of
monopole mode and penta-pole mode, which should be written as,

H
I

2~ẑH1
J0 k21r1ð Þ
J0 k21R1ð Þza15J5 k21r1ð Þcos(5h)

� �
: ð27Þ

In addition, if only Eq. (24) is satisfied, but none of Jn(k2 jRj) is zero,
the magnetic field inside each defect is written as,

H
I

2~ẑH1

XN

j~1

J0 k2jrj
� �

J0 k2jRj
� �

 !
, ð28Þ

which is consistent with the result found in Ref. 20. In this situation,
only the monopole mode is excited inside each defect.

Discussions
We find some interesting phenomena in ZIM waveguide system
embedded with defects when total transmission occurs. For
MIZIM case, additional dipole modes, besides monopole modes,
could be excited in the defect. For ENZ case, additional higher order
modes can also be excited if two particular conditions are satisfied at
the same time. We have shown the underlying physics of why higher
modes appear. We hope that these phenomena could be observed in
experiments in the coming future, considering the current experi-
mental progress on ZIM16,32,33.
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