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Neurobiological markers of stress symptom progression for healthy survivors from a disaster (e.g., an
earthquake) would greatly help with early intervention to prevent the development of stress-related
disorders. However, the relationship between the neurobiological alterations and the symptom progression
over time is unclear. Here, we examined 44 healthy survivors of the Wenchuan earthquake in China in a
longitudinal resting-state fMRI study to observe the alterations of brain functions related to depressive or
anxiety symptom progression. Using multi-variate pattern analysis to the fMRI data, we successfully
predicted the depressive or anxiety symptom severity for these survivors in short- (25 days) and long-term (2
years) and the symptom severity changes over time. Several brain areas (e.g., the frontolimbic and striatal
areas) and the functional connectivities located within the fronto-striato-thalamic and default-mode
networks were found to be correlated with the symptom progression and might play important roles in the
adaptation to trauma.

A
severe 8.0 magnitude earthquake occurred in Wenchuan, Sichuan, China, on May 12, 2008. Although

only a minority of the survivors are likely to develop stress-related disorders such as acute stress disorder
(ASD) and post-traumatic stress disorder (PTSD), psychological support may be required for those

without stress-related disorders1, mainly because these healthy survivors are in a high risk for chronic PTSD
or other mental problems such as depressive and anxiety disorders2.

Both alterations in brain structure and function after the disaster had been previously evaluated by magnetic
resonance imaging (MRI)3–5. Furthermore, the longitudinal study of brain structure and function associated with
the progression of symptom severity might play an important role in the exploration of related brain mechanisms
and the development of effective biomarkers6. For example, one previous longitudinal study of structural MRI
examined trauma-exposed survivors and found that greater cortical thickness in the dorsolateral prefrontal cortex
was associated with greater PTSD symptom reduction4. Another longitudinal study using the structural MRI to
examine the post-earthquake subjects without PTSD found that the PTSD symptoms were negatively associated
to the regional grey matter volume (rGMV) in the right ventral anterior cingulate cortex (ACC) before the
earthquake, and the decreased rGMV in the left orbitofrontal cortex (OFC) through the earthquake5. Two
task-fMRI studies on PTSD revealed that symptom severity improvement was correlated with alterations of
brain functions in certain areas, such as the ACC7,8. Using resting state fMRI (rs-fMRI), past studies have shown
that the current or future severity of PTSD symptoms is associated with alterations of several brain areas,
including the amygdala, medial prefrontal cortex (mPFC), and hippocampus3,7, or networks including the con-
nectivity between the posterior cingulate cortex (PCC) and the bilateral amygdala9,10.

However, the relationship between longitudinal cerebral changes and symptom severity progression in trauma
exposers remains to be established. Although the trauma exposers, especially those without PTSD, may lack
structural brain change shortly after the trauma, brain functional changes had been demonstrated as short as
within just one month of the earthquake3. Thus, we focused on the rs-fMRI in the current study to explore the
relationship between longitudinal cerebral changes and symptom severity progression for trauma survivors not
yet diagnosed with PTSD.
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The amplitude of low-frequency fluctuation (ALFF) of the BOLD
signal is one of the two ways most often used in rs-fMRI data analysis
because it can provide information regarding synchronous regional
cerebral activity11. In addition to regional ALFF, functional connec-
tivity (FC) analysis allows the integrity of distributed brain networks
to be examined and it is another commonly used method in rs-
fMRI3,12. Since ALFF and FC reflected different domain of brain
functional activities, both altered regional brain functions and altered
FCs should be simultaneously monitored during the evolution of
stress-related disorders.

In the present study, we first hypothesized that alterations of brain
functional activities including ALFF and FC calculated from rs-fMRI
could be used to classify people exposed to trauma who did not
exhibit any overt stress-related disorders from controls and further-
more, they could also be used to predict current stress-related
depressive and anxiety symptom severity. Our second hypothesis is
that longitudinal alterations in rs-fMRI after trauma might be used to
predict the progression of depressive and anxiety symptom. We
tested our hypotheses by applying a multi-variate pattern analysis
(MVPA) method, which is a data-driven technique that does not
require any anatomical hypothesis regarding the functional local-
ization of relevant brain processes, to longitudinal rs-fMRI data col-
lected from survivors of the Wenchuan earthquake.

Results
Classification results. The classification accuracy curves for the data
collected at time 1 with respect to the number of selected features
(hybrid features of ALFF and FC, ALFF-only and FC-only features)
are shown in Figure 1. These curves illustrate that the accuracies were
close to be stable when the number of features was larger than 500.
Therefore, we used 500 selected ALFF and FC features to present the
detailed classification results.

The classification accuracy using the hybrid features of ALFF and
FC for discriminating individuals as either controls or survivors at
Time 1 was 92.05% (permutation test, p,0.001; 90.19% sensitive;
93.18% specific). The classification accuracy rate was 81.82% using

only the ALFF features (permutation test, p,0.001; 75% sensitive;
81.82% specific), whereas the classification accuracy rate was 84.09%
using only the FC features (permutation test, p,0.001; 81.82% sens-
itive; 86.36% specific). Thus, the classification performance using
both the ALFF and FC features was higher than that using only the
ALFF or FC features.

Prediction results. Prediction performance. The support vector
regression (SVR) model predicted the true Self-Rating Anxiety
Scale (SAS)/Self-Rating Depression Scale (SDS) scores with high/
significant accuracy at Time 1 (permutation test, both p,0.001)
and Time 2 (permutation test, both p,0.001) respectively. Figure 2
a–b shows that there was no significant correlation between the
actual SAS/SDS scores at Time 1 and those at Time 2, but the SAS/
SDS scores at Time 1 were significant higher than those at Time 2
(both p,0.05). Figure 2 c–f and Table 1 shows that there was a
significant positive correlation between the predicted and actual
SAS/SDS scores at both Time 1 and Time 2.

We also computed the average correlation coefficients between the
SAS/SDS obtained in the permutation test and the actual SAS/SDS at
Time 1 (r520.026 6 0.031/r50.037 6 0.023) and Time 2 (r50.048
6 0.052/r50.022 6 0.041), which were close to zero (both p.0.05)
and reflected the effectiveness of our predictions.

In addition, Figure 2 g–h shows that there was a significant pos-
itive correlation between the change of predicted symptom severity
at Times 1 and 2 (i.e., the predicted SAS1-SAS2 or predicted SDS1-
SDS2) and the change in the actual symptom severity at Times 1 and
2 (i.e., the actual SAS1-SAS2 or actual SDS1-SDS2) (see Table 1).
Table 1 also shows that the predicted values of SAS1-SAS2 or SDS1-
SDS2 were more highly correlated within measures than across
measures.

The spatial distribution of informative voxels for SAS/SDS prediction.
The spatial distributions of the informative voxels for SAS and SDS
prediction are shown in Figures 3a and 4a, with different colors
representing the SVR weights of ALFF features. We found that the
voxels with greater predictive power for both SAS and SDS were

Figure 1 | Classification accuracy curves with respect to the number of selected ALFF or FC features. Each curve corresponds to a feature type (hybrid

features of ALFF and FC, ALFF-only or FC-only) for the classification of survivors between healthy controls at Time 1.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6423 | DOI: 10.1038/srep06423 2



Figure 2 | (a–b) Scatterplots depicting the relationship between the SAS (left) and SDS scores (right) at Times 1 and 2. The dashed lines represent 45u,
which implies no change between Times 1 and 2. (c–f) Scatterplots depicting the correlation between the predicted SAS and actual SAS scores at Times 1

(c) and 2 (e) and between the predicted SDS and actual SDS scores at Times 1 (d) and 2 (f). (g–h) Scatterplots depicting the correlation between the

difference in the predicted SAS scores at Times 1 and 2 (the predicted SAS1-SAS2) and the difference in the actual SAS scores at Times 1 and 2 (the actual

SAS1-SAS2) (g) and the correlation between the difference in the predicted SDS scores at Times 1 and 2 (the predicted SDS1-SDS2) and the difference in

the actual SDS scores at Times 1 and 2 (the actual SDS1-SDS2) (h).
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located in brain regions including the precentral gyrus, prefrontal
cortex, caudate, insula, putamen, hippocampus, amygdala and ACC.

As shown in Figure 3b/4b, we identified several brain regions that
showed a significant positive correlation with SAS/SDS at Time 1,
such as the right amygdala, right caudate, right insula and left puta-
men. There was also a significant positive correlation between the
ALFF features of these brain regions and SAS/SDS at Time 2
(Figure 3c/4c). Furthermore, Figure 3D/4D shows that the changes

of ALFF in these brain regions were also significantly positively
correlated with the changes in the actual symptom severity of SAS/
SDS between Time 1 and Time 2. We did not find any brain region of
which the ALFF features were significantly negatively correlated with
SAS/SDS at Times 1 and 2.

Functional connectivity with high discriminative power for SAS/SDS
prediction. In this investigation, we observed 85 and 80 most inform-

Table 1 | The correlation coefficients between the predicted and actual symptom levels

Actual SAS (Time 1/2) Actual SDS (Time 1/2) Actual SAS1-SAS2 Actual SDS1-SDS2

Predicted SAS (Time 1/2) 0.748/0.727 0.574/0.548
Predicted SDS (Time 1/2) 0.621/0.569 0.757/0.751
Predicted SAS1-SAS2 0.677 0.508
Predicted SDS1-SDS2 0.462 0.785

Figure 3 | The distribution of the most informative voxels in the SAS prediction. (a) The SVR weight map: the color intensities indicate the signed SVR

weights. Brain areas showed significant correlations between the ALFF features and SAS are indicated by rectangles. There are significant positive

correlations between the ALFF features and SAS at Time 1 (b) and Time 2 (c) for each indicated brain area. And there are also significant positive

correlations of the changes of ALFF and the alterations of the actual symptom severity of SAS between Time 1 and Time 2 (d). Note: **p,0.01, t-test. No

brain region was found, of which the ALFF features were significantly negatively correlated with SAS at Times 1 and 2.
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ative FCs for SAS and SDS predictions, respectively, at Time 1
through a permutation test at p,0.05 with a family-wise error
(FWE) correction procedure, as shown in Figures 5a and 6a. Two
networks including the fronto-striato-thalamic network and the
default-mode network were identified for both SAS and SDS predic-
tions. We found that most of the brain regions had negative weights
for the prediction and several brain regions exhibited more negative
weights than others: i.e., the bilateral amygdala, right putamen, right
hippocampus, bilateral insula, right caudate, and left ACC, which
were mainly located within the default-mode network.

Furthermore, based on the data in Time 1, these most informative
FCs exhibited two classes: (i) their strengths were significantly nega-
tively correlated with SAS or SDS (p,0.05, black lines in Figures 5a and
6a) and (ii) their strengths were not significantly correlated with SAS or
SDS (p.0.05, yellow lines in Figures 5a and 6a). No informative FCs
were found to show significant positive correlation with SAS or SDS.
The FCs weakening with respect to SAS or SDS were mainly located
within the default-mode network. Similar correlation results were
obtained using the data at Time 2 (Figures 5b and 6b). Furthermore,
Figure 5c/6c showed the distribution of the FCs with significant nega-
tive correlation between the changes of FC and the alterations of the
actual symptom severity of SAS/SDS between Time 1 and Time 2.

Discussion
In the present longitudinal rs-fMRI study, we investigated the poten-
tial alterations of brain functions related to the severity of current

depressive or anxiety symptoms and their changes over time, which
began after the 2008 Wenchuan earthquake in China. By applying a
sparse MVPA method to the rs-fMRI data, we successfully discrimi-
nated the survivors of an earthquake from controls with 92.05%
accuracy at Time 1, and predicted depressive or anxiety symptom
severity at both Times 1 and 2 and its changes over time (p,0.001).
Moreover, we demonstrated that the performance of the classifica-
tion and prediction could be improved using the hybrid features of
ALFF and FC. The most informative voxels for symptom severity
prediction were mainly located in the mPFC, pre-frontal limbic sys-
tem, pre-SMA, and striatal system, which are associated with emo-
tion processing and memory13,14. Furthermore, the informative FCs
were mainly located within the fronto-striato-thalamic network and
default-mode network.

In this study, we first demonstrated the effectiveness of the MVPA
method for the detection of mental disorder-risk group. Neural sig-
natures of stress and anxiety are often quite subtle, and reside only in
a very small set of discreet circuits3,15. This challenges the effective
detection of mental disorder-risk group, as well as the prediction of
changes in their symptom severity over time. This problem may be
surmounted to some degree by a methodological shift to an MVPA
approach, which can boost sensitivity by pooling the contributions of
multiple voxels, including those with and without significant res-
ponses to any of the conditions of interest16. Several brain imaging
studies have applied MVPA methods to distinguish psychiatric
patients (e.g., depressive disorders and Alzheimer’s disease) from

Figure 4 | The distribution of the most informative voxels in SDS prediction. (a) The SVR weight map: The color intensities indicate the signed SVR

weights. Brain areas showed significant correlations between the ALFF features and SDS are indicated by rectangles. There are significant positive

correlations between the ALFF features and SDS at Time 1 (b) and Time 2 (c) for each indicated brain area. And there are also significant positive

correlations of the changes of ALFF and the alterations of the actual symptom severity of SDS between Time 1 and Time 2 (d). Note: **p,0.01, t-test. No

brain region was found, of which the ALFF features were significantly negatively correlated with SDS at Times 1 and 2.
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healthy controls11,12. In particular, using an MVPA method,
Koutsouleris et al. obtained an accuracy of over 80% for differenti-
ating patients with prodromal symptoms of schizophrenia from con-
trols17. Our results also suggested that the MVPA approach could be
used to perform classification between mental disorder-risk and
control groups and to make predictions about depressive or anxiety
symptom severity for healthy survivors of earthquakes. Furthermore,
compared to the voxels obtained with a univariate region of interest
(ROI) method, those selected with an MVPA method could be more
widely distributed as shown in Figures 3a and 4a.

The brain regions with significant predictive power for the pre-
diction of current depressive or anxiety symptom severity were
obtained by applying the MVPA method with a permutation test
to the data collected at Time 1, where the predictive power was
assessed using the SVR weights of the ALFF features (see Materials
and methods, Figures 3a and 4a). These most informative brain
regions included the right amygdala, right caudate, right insula and
left putamen, which showed a significant positive correlation with
SAS/SDS at Time 1 (Figure 3b/4b) and Time 2 (Figure 3c/4c). These
results are partially consistent with the findings from previous stud-

Figure 5 | The distribution of the most informative FCs. (a) and (b): for SAS prediction at Time 1 and Time 2, respectively. The line color represents the

significance of the correlation between the FC values and the SAS (black: significant negative correlation with p,0.05; yellow: insignificant correlation

with p.0.05; no significant positive correlation was found). (c): the FCs with significant negative correlation of the changes of FC and the alterations of

the actual symptom severity of SAS between Time 1 and Time 2. Regions indicated by the nodes are colors-coded by category (cyan: fronto-striato-

thalamic network; magenta: default-mode network; blue: other region); and for (a), the radius of each node is scaled with the sum of the corresponding

SVR weights of all the connections to and from that region.

Figure 6 | The distribution of the most informative FCs. (a) and (b): for SDS prediction at Time 1 and Time 2, respectively. The line color represents the

significance of the correlation between the FC values and the SDS (black: significant negative correlation with p,0.05; yellow: insignificant correlation

with p.0.05; no significant positive correlation was found). (c): the FCs with significant negative correlation of the changes of FC and the alterations of

the actual symptom severity of SDS between Time 1 and Time 2. Regions indicated by the nodes are colors-coded by category (cyan: fronto-striato-

thalamic network; magenta: default-mode network; blue: other region); and for (a), the radius of each node is scaled with the sum of the corresponding

SVR weights of all the connections to and from that region.
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ies investigating the underlying brain regions related to the symptom
severity of stress-related disorders. For instance, Lui et al.3 analyzed
rs-fMRI data from earthquake survivors and healthy controls and
observed a significant correlation between stress symptom severity
and ALFF in several brain regions, including the putamen, amygdala,
caudate, and hippocampus. Using a variety of tasks and stimuli for
the recollection of traumatic memories and processing of fear and
pain, several studies observed a significant correlation between the
current depressive or anxiety symptom severity and the amygdala18,19

and mPFC activity15,20–22. Hopper et al.23 observed a positive correla-
tion between the activation of the insula and symptom severity. The
demonstration of involvement of similar regions in the current study,
not only replicated the already known mechanism, but also shed light
on the potential translational application of those intrinsic activity
alterations.

Two main resting-state connectivity networks, the fronto-striato-
thalamic and default-mode networks, identified with samples from
Time 1, were shown to have significant predictive power for symp-
tom severity at both Times 1 and 2 (Figures 2, 5, and 6). The fronto-
striato-thalamic network contains the mPFC, caudate, putamen,
insula, and thalamic cortex24, whereas the default-mode network
includes the PCC, ACC, hippocampus, parahippocampus, and
amygdala25. Both of these brain networks play important roles in
the regulation of emotional processing3,26. By analyzing the SVR
weights, and the correlations between the FC features and SAS/
SDS at Times 1 and 2, we found that there were significant alterations
of some FCs in the survivors. Specifically, the strengths of these FCs,
which were mainly located in the default-mode network, showed a
significant negative correlation with the post-traumatic depressive or
anxiety symptoms. The other FCs mainly in the fronto-striato-tha-
lamic network, which did not show significant alterations in the
survivors, were also identified by the MVPA method and contributed
to the SAS and SDS predictions. Previous studies suggested that these
two brain networks are associated with stress-related symptom
severity over time. Lanius et al.9 studied a group of acutely trauma-
tized survivors six weeks after trauma and observed a correlation
between post-traumatic stress symptoms and the strength of resting
state connectivity of the PCC with the perigenual anterior cingulate
and amygdala. Based on the rs-fMRI of the acutely traumatized
survivors within six months post-accident, Zhou et al.10 observed
that the strength of the resting-state connectivity between the PCC
and the hippocampus/amygdala was related to the severity of PTSD
symptoms. In addition, we revealed that not only were the inform-
ative FC features/strengths negatively correlated with the depressive
or anxiety symptoms at Time 1 (Figures 5a and 6a), the changed FC
features/strengths were also negatively correlated with the depressive
or anxiety symptom severity at Time 2 (Figures 5b and 6b).

Furthermore, we found that the observed informative brain
regions and FCs were involved in the evolution of stress symptom
severity. In particular, the changes of the ALFF and FC were related
to the changes of the actual symptom severity over time (Figures 3d,
4d, 5c, and 6c). This gave a strong support for the validation of our
prediction model. Previous studies partially support our result. For
instance, an association between post-traumatic stress symptom
reduction through cognitive-behavioral therapy and the increased
ACC activation and decreased amygdala activation was revealed by
Felmingham et al.8. Furthermore, a longitudinal fMRI study of the
neural correlates of the recovery from PTSD found a significant
correlation between the degree of symptom improvement and
activation changes within the hippocampus and subgenual ACC7.
In addition, Lanius et al.9 observed a correlation between the con-
nectivity strength of the posterior cingulate cortex/precuneus and
right amygdala at six weeks post-trauma and the severity of the
post-traumatic stress symptoms at both six and 12 weeks in a group
of trauma survivors. Taken together, these findings suggested that
the informative brain regions and networks involving the functional

alterations with symptom changes might play important roles in the
neurophysiology of stress adaptation.

Although several brain-imaging studies have explored the rela-
tionships between the alterations in brain function and post-trau-
matic stress symptom severity3,15,18; as far as we know, no studies have
ever predicted depressive or anxiety symptom severity using imaging
data. Using the SVR model trained at Time 1, we successfully pre-
dicted the symptom severity of survivors at Time 2 (p,0.001) in this
study. We thus postulated that the relationship between the pattern
of ALFF and FC extracted with the sparse MVPA method and the
symptom severity might be stable over a long time. Our results also
supported the observation that the dysfunctions of the underlying
brain regions and FCs, which arise shortly after the traumatic event
and can persist for years or even decades, correlate with symptom
severity3,15,18,19,22. Interestingly, not only did we predict the symptom
severity of samples at Time 2 with high performance based on those
informative brain regions and FCs determined at Time 1 (Figure 2),
we also observed the significant correlation with the depressive or
anxiety symptom severity at Time 2 in those brain regions and FCs
(Figures 3–6). Thus, we speculate that these brain regions and FCs
might play a role in the neural rehabilitation process for psycho-
logical responses after a severe stress event, which might give a hint
to the selection of future therapeutic target regions.

The main drawback of the present study is the relatively small
sample size, particularly for Time 2. In addition, we were not able
to observe a group of subjects who were scanned at Time 1 and
subsequently developed PTSD. Hence, an expanded study with
PTSD patients would be necessary to confirm whether this method
can be used to predict the symptoms of psychiatric disorders. Finally,
the present study focuses only on the rs-fMRI, while the MVPA
method can also be applied to the structural MRI27. In the future, it
might be worthwhile to apply this method to the structural MRI and
finally to combine the structural and functional MRI together to
explore whole profile of cerebral changes after big traumatic events
so as to help with the intervention of those survivors.

Methods
Subjects. The participants in this study included physically healthy survivors of the
Wenchuan earthquake (Mercalli intensity scale: 8.0) from the most affected regions
and healthy controls from Chengdu city, which is 50 miles from the epicenter, who
were unaffected by the earthquake. All participants provided written informed
consent for their participation in the study. The survivors underwent resting-state
fMRI scanning twice: 25 days (Time 1) after the earthquake and two years later (Time
2). Forty-four healthy survivors were recruited at Time 1, but only 22 of these
participants were able to repeat the scanning at Time 2 because we lost contact with
the others. The data collected at Time 1 are the same as those by Lui et al.3.

The inclusion criteria for all participants were described in our previously pub-
lished paper3. In brief, the survivors at both time points underwent a structural
Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders-IV
(SCID) interview to rule out the past or current diagnosis of an Axis I disorder. Using
a questionnaire developed in house, we excluded severe life events before the earth-
quake and a family history of psychiatric disorders for the survivors. For the survivors
who attended the second scanning, no new severe life events were reported since the
earthquake. The SAS28 and the SDS29 were used to evaluate the levels of anxiety and
depression in the survivors at both time points, as shown in Table 2. The SAS and SDS
are valuable in documenting and quantifying initial symptoms and complaints, as
verified in a previous study28, and are easy to administer.

Forty-four healthy controls were recruited shortly before the earthquake for
another study and were scanned only once using identical parameters3,30. All controls
were screened using the SCID-non-patient version to confirm a lifetime absence of
psychiatric illness and using a questionnaire developed in house to exclude severe life
events and a family history of psychiatric disorders.

The demographic information of the participants is presented in Table 2 and
illustrates that the 44 survivors and 44 healthy controls were matched with regard to
age, gender, and years of education. There were no significant differences between the
22 follow-up survivors and the 22 survivors lost to follow-up in terms of age, gender,
or years of education. All participants gave their written informed consent prior to the
study, which was in accordance with the Declaration of Helsinki and approved by the
local ethics committee.

Resting experiment and data acquisition. A 3-T MR imaging system (EXCITE;
General Electric) was used for scanning with a gradient-echo echo-planar imaging
sequence. All MR imaging data acquisitions were conducted with the same
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equipment and procedure. The imaging parameters included the repetition time/echo
time (2,000/30 ms), flip angle (90u), slice thickness (5 mm), matrix (64 3 64), field of
view (FOV) (240 3 240 mm2), and voxel size (3.75 3 3.75 3 5 mm3). There were 30
axial slices in each brain volume. Each functional run contained 205 image volumes,
corresponding to 410 s. In each rs-fMRI scanning session, the participants were
required to close their eyes, relax, remain awake, and perform no specific cognitive
tasks.

Data preprocessing. All participants were allowed adequate head motion during the
scan acquisition with ,0.5 mm head translation movement and ,0.5u rotation. The
toolkit used for rs-fMRI data preprocessing and analysis included a statistical
parametric mapping software package (SPM8, http://www.fil.ion.ucl.ac.uk/spm/)
and the rs-fMRI Data Analysis Toolkit (REST, http://rest.restfmri.net)31. For each
participant, only the final 200 volumes of scanned data were used for further data
analysis (the initial five volumes, collected before magnetization equilibrium was
reached, were discarded). The preprocessing steps included slice timing, realignment
to the initial image, head-motion correction, normalization, and smoothing with a
Gaussian filter of 4 mm full-width half-maximum kernel. During the normalization,
each voxel was resampled to 3 3 3 3 3 mm3. The resulting images were detrended to
abandon the linear trend and then temporally filtered with a Chebyshev band-pass
filter (0.01–0.08 Hz).

ALFF calculation. For the ALFF calculation, we used the REST software with a
procedure similar to that in our previous study3. Briefly, a Fast Fourier Transform
(FFT) was initially used to convert the time series from each voxel into the frequency
domain. The square root power spectrum was then computed and averaged across
0.01–0.08 Hz at each voxel. The averaged square root power in this frequency band
was used as the ALFF for this voxel. For each participant, the ALFF of each voxel was
divided by the global mean ALFF value to reduce the global effect of variability across
participants.

Functional connectivity calculation. For the FC calculation, we initially created
regions of interest (ROIs) for each participant by applying the free software
WFU_PickAtlas (version 2.0, http://www.ansir.wfubmc.edu)32. According to the
automated anatomical labeling atlas, we divided the fMRI volumes, registered with
the Montreal Neurological Institute (MNI) template, into 116 regions33,34. Of the 116
regions, there were 90 regions in the cerebrum (45 in each hemisphere) and 26 in the
cerebellum (nine in each cerebellar hemisphere and eight in the vermis). The fMRI
signals over all voxels in each of the 116 regions were averaged to obtain the regional
mean time series. Furthermore, for each regional mean time series, we regressed out
the global mean, head motion, and confounding effects of cerebrospinal fluid (CSF)
and white matter as well as the first-order derivative terms for the global, white
matter, and CSF average signals12,35–38. Using the residuals of these regressions as the
set of regional mean time series, we calculated the Pearson correlation coefficient
between each pair of regions. This procedure resulted in a resting-state functional
network described by a 116 3 116 symmetrical matrix for each participant. The FC
features were spanned by the upper triangle elements of the FC matrix with 6670
dimensions.

MVPA procedure. Based on the MVPA method, we first performed the classification
with the samples of controls and the survivors of the earthquake at Time 1.
Furthermore, we performed the prediction of the psychological symptom severity
only with the samples of the survivors of the earthquake at both Times 1 and 2.

Specifically, the MVPA for classification or prediction was performed by a leave-one-
out cross-validation (LOOCV), as described in the following.

1) LOOCV for classification. In each fold of the LOOCV for classification, a sample
from a control or a survivor at Time 1 was used for label prediction (test), and the
remaining 87 samples including controls and survivors at Time 1 were used for
selecting features and training the support vector machine (SVM) classifier (Spider
Machine Learning Toolbox, http://www.kyb.tuebingen.mpg.de/de/bs/people/
spider). After the LOOCV, the classification accuracy was determined as the ratio of
the number of correctly classified samples to the total number of samples. The
sensitivity represented the proportion of survivors been correctly classified, while the
specificity represented the proportion of controls been correctly classified. We now
explained the procedure of feature selection, model training, and test in one fold.

Feature selection. Feature selection was performed based on the training data set in
this fold. Specifically, a sparse representation-based MVPA algorithm, developed in
our previous paper39, was utilized for selecting informative features. Two types of
features, i.e., ALFF and FC features, were used in the present study. We performed
ALFF and FC feature selections separately. Firstly, we describe the sparse repres-
entation-based method for ALFF feature selection below.

Initial selection of features based on a univariate method. Because the number of
ALFF features (i.e., the number of voxels) was too large, we initially reduced it to 4000
by applying a univariate method to the training data. The initial feature dimension
reduction method was a two-sided t-test, through which we compared two different
classes of training data (survivors vs. controls). We then selected the 4000 features
with the highest absolute t-scores. Based on the initially selected 4000 ALFF features,
the following sparse representation method was used for further feature selection.

The sparse representation method for feature selection39: A sparse representation-
based feature selection algorithm was used to build a set of sparse coefficients cor-
responding to the features. The absolute values of these coefficiens represented the
importance of the corresponding features, feature selection was thus performed based
on these coefficients. Assume that the data matrix A[RM0|K0 is a rs-fMRI feature
matrix and that M0 and K0 are the number of subjects (87 subjects) and features (4000
ALFF feature values), respectively. Let y[RM0 denote the vector of the sample labels
(11 for survivors in the earthquake and -1 for controls).

The algorithm contained l0 repeats of sparse representation (a bootstrapping
processing). For the kth repeat, the data matrix Ak was constructed by randomly
extracting L rows from A. The data vector yk[RL was formed with L entries of y. In this
paper, we set L 5 0.3M0 and l0 5 200. We then solved the following optimization
problem, which could be converted to a standard linear programming problem40:

min jjwjj1, s: t: Akw~yk: ð1Þ

The optimal solution of (1) was denoted by �w(k) , which was a weight vector of features.
After l0 repeats, we set

w~j 1
l0

Xl0

k~1

�w(k)j, ð2Þ

where w was a weight vector of features.
Using the weight vector w, we selected 500 features with the highest weights as in39.
Secondly, we also applied the above-described sparse representation-based method

for the FC feature selection. Because the original number (i.e., 6670) of FC features
was not very large, no initial feature selection/dimension reduction was used before

Table 2 | Demographic information and clinical characteristics of the participants in this study

Survivors (Mean 6 SD) Controls (Mean 6 SD) p-value

Time 1
Sample size 44 44 —
Gender (male/female) 27/17 25/19 0.664a

Age (years) 37 6 10.6 35.8 6 12.2 0.521b

Education (years) 8.6 6 4.1 9.8 6 4.6 0.432b

Days after earthquake 21 6 3 — —
SAS 48.4 6 11.4 — —
SDS 46.8 6 10.8 — —

Time 2
Follow up subjects Subjects lost

Sample size 22 22 — —
Gender (male/female) 13/9 14/8 — 0.724a

Age (years) 39.3 6 10.2 38.7 6 11.5 — 0.476b

Education (years) 8.8 6 5.6 8.4 6 4.7 — 0.536b

Days after earthquake 753 6 28 — — —
SAS 34.1 6 10.2 — — —
SDS 37.7 6 9.7 — — —

aChi-square test.
btwo-sample t-test.
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the sparse representation-based feature selection. After the feature selection pro-
cedure based on the training data, 500 FC features were also selected for classification.

Feature extraction. We concatenated the selected ALFF and FC features to con-
struct a 1000-dimensional feature vector for each subject of the training data set and
test data set.

Model training. Using the feature vectors of training data with labels (87 samples
including controls and survivors at Time 1), a linear SVM was trained.

Classification. We applied the trained SVM to the test feature vector to determine
whether this subject was a control or a survivor of the earthquake.

In the above LOOCV procedure, the dimension of feature vector was set to be 1000
(500 for ALFF features and 500 for FC features). We also systematically varied the
number of selected ALFF and FC features from 50 to 2000 and performed clas-
sification for each dimension number.

2) LOOCV for prediction.. In each fold of the LOOCV for prediction, the fMRI data
from one survivor at Time 1 were used for predicting the symptom level SAS/SDS
(test), and the fMRI data and SAS/SDS scores from the remaining 43 survivors at
Time 1 were used for selecting features and training a linear SVR model (Spider
Machine Learning Toolbox, http://www.kyb.tuebingen.mpg.de/de/bs/people/
spider). Then using the SVR model established at Time 1, we also predicted the
symptom level at Time 2 whenever the data for the test survivor at Time 2 were
available. After the LOOCV, the mean squared error (MSE) and the correlation
coefficient between the predicted SAS/SDS and the actual SAS/SDS for all samples
were used as the prediction performance indices. We explained the detailed
procedure of feature selection, model training, and test in one fold as below.

Feature selection. The feature selection based on the training data set was similar to
that for the above classification except for the initial selection of features. First, for the
initial selection of ALFF features, we computed the correlation coefficient between the
feature values of the training samples in each dimension and the corresponding actual
symptom severity scores (SAS/SDS) and selected the 4000 features with the largest
absolute values of the correlation coefficients. Same as for the classification, we
further selected 500 from the initially selected 4000 ALFF features using the above
sparse representation method. Note that the rs-fMRI feature matrix A here was 43 by
4000 dimensional, and y[RM0 was the vector of symptom severity scores (SAS/SDS).
Next, we applied the sparse representation-based method to the training data and
selected 500 FC features.

Feature extraction. We concatenated the selected ALFF and FC features to con-
struct a 1000-dimensional feature vector for each subject of the training data set and
test data set. If the data at Time 2 from the test survivor were available, we also
extracted the corresponding 1000-dimensional feature vector based on the selected
ALFF and FC features.

Model training. Using the feature vectors of the training data (43 samples at Time
1) with their corresponding levels of symptom severity (i.e., SAS or SDS), a linear SVR
was trained.

Prediction. We applied the trained SVR model to the test feature vector at Time 1
to predict the level of symptom severity (SAS/SDS) of the corresponding survivor
(test sample at Time 1).

In this fold of LOOCV, if the data at Time 2 from the test survivor were available,
then the established SVR model was also used to predict the level of symptom severity
(SAS/SDS) for this sample at Time 2. Furthermore, we calculated the difference of the
test feature vectors at Time 1 and Time 2. By applying the SVR model to the difference
vector, we predicted the symptom severity change over time for this test survivor.
Because the SVR model is linear, the predicted symptom severity change over time
was equivalent to the difference between the predicted SAS/SDS at Time 1 and the
predicted SAS/SDS at Time 2.

Permutation tests. In this study, we used non-parametric permutation tests to assess
the statistical significance of all the LOOCV results (i.e., SVM classification accuracy
rates and SVR prediction results) and to determine the most informative features12,41.

1) Significance test of classification accuracy. We performed 1000 permutations as a
significance test of classification accuracy. In each permutation, we randomly
assigned the subjects’ class labels and performed the above-described MVPA
procedure, including the feature selection and classification, to compute classification
accuracy. Finally, a null distribution composed of 1000 accuracy rates corresponding
to the 1000 permutations was obtained. The p-value was estimated as the proportion
of the accuracies in the null distribution that were greater than or equal to the actual
classification accuracy, which was obtained using the non-permutated training data.

2) Significance test of prediction result. We also performed 1000 permutations for
the SVR prediction of symptom severity. In each permutation, the stress scores (i.e.,
SAS or SDS) were randomly assigned to the subjects, and the above-described MVPA
procedure, including feature selection and prediction, was performed to obtain a
correlation coefficient. Finally, a null distribution composed of the 1000 correlation
coefficients corresponding to the 1000 permutations was constructed. The p-value
was estimated as the proportion of the correlation coefficient values in the null
distribution that were greater than or equal to the actual correlation coefficient
obtained using the non-permutated training data.

3) Informative features identification. Note that the absolute weight of each feature
determines its importance in the prediction regarding the levels of emotional
distress42. Hence, our procedure for the identification of informative ALFF and FC

features was based on the absolute weights of features obtained through SVR model
training. In each fold of the LOOCV for the SAS prediction, 500 ALFF and 500 FC
features were selected through the sparse representation-based MVPA algorithm, and
their weights were obtained. The absolute values of the 500 ALFF weights and 500 FC
weights were normalized to [0, 1] and then used to construct two weight maps for the
ALFF features and the FC features, respectively (the ALFF features that were not
initially selected were assigned a weight of 0). Finally, an average weight map for the
ALFF or FC features was obtained by averaging the above weight maps across all folds.

Next, we determined a threshold to identify the most informative ALFF or FC
features through a permutation test. After 1000 permutations for the symptom
severity SAS prediction as described above, we obtained 1000 average weight maps for
the ALFF features and 1000 average weight maps for the FC features. For multiple
comparison correction, an FWE correction procedure was conducted as described
below. The maximum voxel weight was identified for each average weight map, and a
null distribution was constructed using these maximum voxel weights for the ALFF or
FC features43. Then, a weight threshold corresponding to p50.05 (FWE corrected)
was obtained from the null distribution of ALFF or FC features. Using this threshold,
we identified the significantly informative ALFF or FC features from the corres-
ponding actual average weight map. For the informative FCs, we assessed the network
affiliation of their nodes or brain regions according to previous results24,25.

For the SDS prediction, we performed a similar procedure as above to identify the
informative ALFF and FC features.
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