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Abstract. plant DNA barcoding currently relies on the application of a two-locus combination, matK + rbcL. Despite
the universality of these two gene regions across plants, it is suspected that this combination might not have sufficient
variation to discriminate closely related species. In this study, we tested the performance of this two-locus plant bar-
code along with the additional plastid regions trnH-psbA, rpoC1 and rpoB and the nuclear region internal transcribed
spacer (nrITS) in a group of 38 species of Lotus from the Macaronesian region. The group has radiated into the five
archipelagos within this region from mid-Miocene to early Pleistocene, and thus provides both early divergent and
recent radiations that pose a particularly difficult challenge for barcoding. The group also has 10 species considered
under different levels of conservation concern. We found different levels of species discrimination depending on the
age of the lineages. We obtained 100 % of the species identification from mainland Africa and Cape Verde when all six
regions were combined. These lineages radiated >4.5 Mya; however, in the most recent radiations from the end of the
Pliocene to the mid-Pleistocene (3.5-1.5 Mya), only 30 % of the species were identified. Of the regions examined, the
intergenic region trnH-psbA was the most variable and had the greatest discriminatory power (18 %) of the plastid
regions when analysed alone. The nrITS region was the best region when analysed alone with a discriminatory
power of 26 % of the species. Overall, we identified 52 % of the species and 30 % of the endangered or threatened
species within this group when all six regions were combined. Our results are consistent with those of other studies
that indicate that additional approaches to barcoding will be needed in recently evolved groups, such as the inclusion
of faster evolving regions from the nuclear genome.
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Introduction

DNA barcoding is a procedure that uses universal DNA se-
quences to assign species names to sampled individuals
(http://www.barcodeoflife.org/). Plant DNA barcoding is
currently performed with the two-locus (matK and rbcl)
recommended by the CBOL Plant Working Group (2009).
This suggested combination is able to discriminate
~72 % of the samples used by the CBOL Plant Working
Group at the species level, with the remaining samples
assigned to congeneric species groups.

Many of the studies that have tested regions as
barcodes in plants have focused on large data sets that
span a wide range of land plants, or at least angiosperms
(Kress and Erickson 2007; Fazekas et al. 2008; Lahaye
et al. 2008; CBOL Plant Working Group 2009; Ford et al.
2009). Their purpose has been the assessment of the uni-
versal applicability of the regions in species discrimin-
ation. However, it has been argued that the success in
species discrimination of DNA barcodes will drop in (i)
some groups with complex biology and (ii) closely related
species within the same genus (or in recently evolved
groups) (Pillon et al. 2013).

To date, the level of species discrimination within the
same genus has been tested in a number of cases (Sass
et al. 2007; Newmaster et al. 2008; Newmaster and
Ragupathy 2009; Song et al. 2009; Starr et al. 2009; Clerc-
Balin et al. 2010; Liu et al. 2010; Wang et al. 2010), and at
least some groups of closely related species will be prob-
lematic for barcoding (Sass et al. 2007; Miller et al. 2009;
Seberg and Petersen 2009). When individual genera are
sampled more extensively, the percentage of species
discrimination tends to decrease, even when several re-
gions are combined (Kondo et al. 2007; Sass et al. 2007;
Edwards et al. 2008; Seberg and Petersen 2009).

The Macaronesian Lotus has colonized and radiated
into the five volcanic archipelagos (Azores, Madeiraq,
Salvage Islands, Canary Islands and Cape Verde) within
this region from mainland Africa (Allan et al. 2004;
Ojeda et al. 2012). This group comprises ~41 described
species, divided into two sections: Pedrosia and Rhyncho-
lotus (or the ‘rhyncholotus group’) (Degtjareva et al.
2006). Section Pedrosia comprises 37 recognized species,
while section Rhyncholotus comprises only four species
(Allan et al. 2004). The two groups are distinguished by
contrasting floral morphology associated with different
pollination syndromes, but within each group vegetative
features are more useful for species recognition and iden-
tification (Sandral et al. 2006). Based on these vegetative
and reproductive structures, Sandral et al. (2006) further
subdivided this group into nine informal taxonomic
groups (Table 1), which reflects the lineages recovered
in the most recent phylogenetic analysis (Ojeda et al.

2012). Many of these species are restricted to specific
habitats, such as the pine forest and the lowland scrub.
Furthermore, ~70 % of them are endemic to single
islands. Thus, the group is highly susceptible to habitat
destruction, and at least 10 species are listed under
some category of conservation threat, ranging from rare
to critically endangered (VV.AA. 2000; Martin et al. 2008;
Banares et al. 2011; Table 2).

The applicability of the recommended barcode regions
for species recognition within very recently evolved
groups, such as those resulting from island radiations,
has not being extensively tested (Mort et al. 2010; Pillon
et al. 2013). It is unclear whether the levels of DNA vari-
ation observed in the two-locus recommended barcodes
of the CBOL Plant Working Group will allow species
discrimination in groups that radiated on islands. Here
we present the assessment of five plastid regions sug-
gested as barcodes in previous studies (matK, rpoC1,
rpoB, trnH-psbA and rbcl) and the nuclear ribosomal
internal transcribed spacer (ITS) as barcodes within
the Macaronesian Lotus. Additionally, we related the per-
formance of species identification of these six barcodes
with age estimates of each lineage and the time of
most recent common ancestor (MRCA) of each lineage
within each archipelago and mainland Africa.

In this study, we aim to address the following questions:
(i) Are these six DNA regions (matK, rpoC1, rpoB, trnH-psbA,
rbcl and ITS) variable enough to allow species discrimin-
ation within the different age lineages in the Macaronesian
Lotus group? (ii) Are these six barcodes variable enough
to allow species discrimination for the endangered species
of this group? and (iii) Can these regions reliably identify
assemblages (informal taxonomic groups) of species re-
cognized on morphological grounds?

Methods

Taxon sampling

Our sampling included 78 accessions representing all the
species currently described within the sections Pedrosia
and Rhyncholotus, except for three species (Lotus lowea-
nus, L. chazalei and L. tibesticus) that were not available
for this analysis. For 10 species we were unable to add
more than one sample to represent the species and we
included more than one accession for 27 species. Our
analysis also included accessions from some populations
that (based on previous molecular and morphological
analyses) may represent four new undescribed species
within the section Pedrosia (Oliva-Tejera et al. 2005, 2006;
Sandral et al. 2006; A. Santos-Guerra, Unidad de Botanica-
ICIA, pers. comm.). For comparison, we also included
five accessions from section Lotus [see Supporting
Information].
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Table 1. Dates of divergence from the MCRA in the eight informal taxonomic groups within Pedrosia and the Rhyncholotus group. *Taxonomic
groups following morphological features according to Sandral et al. (2006). The remaining groups classified in this study. “Species not sampled in

this analysis.

Informal taxonomic groups below
section level

Species

Identification success

L. purpureus group

L. jolyi group*

L. arenarius group*

L. sessilifolius group*

Rhyncholotus group*

L. argyrodes group*

L. campylocladus group*

L. glaucus group*

L. assakensis group*

. arborescens
. bollei

. brunneri

L. jacobaeus

L.
L.

purpureus

latifolius

L. jolyi

L.

- - ~rH~r~-~r~r~or~r~r~rnr-r~r~onr~-rnr~r~rnr-r~rnr~r~~rnr~rnr~nr-~-- - - rr-rnr—rr

tibesticus’

. arenarius

. maroccanus

. eriosolen

. sessilifolius

. mascdensis

. arinagensis

. emeroides

. kunkelii

. berthelotii

. eremiticus

. maculatus

. pyranthus

. argyrodes

. macranthus

. azoricus

. loweanus®

. callis-viridis

. campylocladus
. aff. spartioides
. holosericeus

. hillebrandii

. spartioides

. dumetorum

. glaucus

. tenellus

. leptophyllus

. salvagensis

. lancerottensis
. erythrorhyzus
. assakensis

. creticus

. pseudocreticus

. chazalei®

Distribution Age of divergence
(Mya)

Cape Verde 4.78

Africa

Africa, Spain 4.55

Canary Islands 3.71

Azores, Madeira 2.5

Canary Islands 4.34

Canary Islands, Salvage Islands
and Madeira

Africa, Mediterranean

100

30

33

40
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Table 2. Macaronesian Lotus species considered under different levels of threat, according to Red List of Spanish Vascular Flora based on the
IUCN Red Data Book (IUCN) (VV.AA. 2000), the Atlas of Endangered Spanish Vascular Flora (AESVF) (Banares et al. 2011) and the ranking
according to the top 100 endangered species of Macaronesia (Martin et al. 2008). Numbers indicate their rank under the top 100 lists, -, not
considered within the 100 most endangered species. CR, critically endangered; EN, endangered; VU, vulnerable.

Species Distribution IUCN 2000
L. arinagensis Canary Islands CR
L. berthelotii Canary Islands CR
L. callis-viridis Canary Islands EN
L. dumetorum Canary Islands VU
L. eremiticus Canary Islands CR
L. off. spartioides Canary Islands -
L. kunkelli Canary Islands CR
L. maculatus Canary Islands CR
L. mascaensis Canary Islands VU
L. pyranthus Canary Islands CR
L. spartioides Canary Islands -

AESVF 2004 Rank within the top 100
in Macaronesia
CR -
CR 7
EN -
CR 25
CR -
CR 6
CR 3
CR -
vu -

Dating the phylogeny of Macaronesian Lotus

The Macaronesian Lotus seems to have colonized this
region from mainland Africa more than once (Allan
et al. 2004) and the ornithophilous traits present in the
four species of the Ryncholotus group evolved recently,
within the last 2 Mya (Ojeda et al. 2012) from a group of
entomophilous ancestors (Ojeda et al. 2013). The group
has colonized the five volcanic archipelagos of this region
at different times and it has recent species radiations in
some of these archipelagos (e.g. Canary Islands) (Ojeda
et al. 2012). The most recent phylogenetic analysis of
the group recovered four major clades using a combined
analysis of four nuclear (ITS, three CYCLOIDEA homolo-
gues) and two chloroplast (trnH-psbA and matK) regions
(Ojeda et al. 2012). Despite the nearly complete sampling
of the group and the number of gene regions used, the
most recently diverged clades had moderate-to-low
bootstrap support. In order to obtain an estimate of the
divergence times of the nine informal taxonomic groups
identified within the Macaronesian Lotus, we used a
combined matrix of 52 samples and four gene regions
(ITS, matK, trnH-psbA and CYB6) with a total of 2092 bp.
Divergence times were obtained using the program
Beast v1.5.4 (Drummond and Rambaut 2007), and the
analysis was done using a constant-rate Yule (speciation
process) prior and all other priors and operators with the
default settings. Four independent runs were performed
using the uncorrelated lognormal relaxed-clock model
(Drummond et al. 2006) for 50 000 000 generations.
Trees and parameters were sampled every 5000 genera-
tions, yielding a total of 10 000 trees, with a burn-in of

5000 000. All analyses were run using the HYK + gamma
substitution model. The Beast file was created using the
BEAUti program v 1.5.4 within Beast. The performance of
each run was further analysed with the program Tracer.
Mean parameter estimates and 95 % highest posterior
densities were determined by analysing the Beast tree
files with TreeAnnotator v 1.5.4 (Drummond and Rambaut
2007). Trees were visualized and edited with Figtree v1.3.1.
This analysis was constrained with the best hypothesis of
relationship (topology) of this group obtained from MP
and ML (Ojeda et al. 2012).

The topology was calibrated in three points. Two
points were calibrated using two endemic taxa from
two different islands, Lotus sessilifolius subsp. villossisi-
mus (El Hierro, 1.12 Mya) and L. sessilifolius subsp.
sessilifolius (La Palma 1.77 Mya) (Ancochea et al. 1994;
Carracedo 1994). The third calibration point of 20.6 Mya
was based on the age of the oldest island, Fuerteven-
tura, as an upper limit for the colonization of the Canary
Islands (Carracedo 1994) and therefore an upper
limit for the age of the MRCA for the species of this
archipelago.

Barcode regions selected

We sequenced six regions: the recommended two-locus
cpDNA barcode (matK + rbcL; CBOL Plant Working Group
2009), three other cpDNA regions (trnH-psbA, rpoB and
rpoC1) and the nuclear ITS region, which has been as-
sessed in some plant groups as a barcode (Chase et al.
2005; Kress et al. 2005; Kress and Erickson 2007).
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Molecular analysis

Genomic DNA was extracted from fresh leaves, silica-gel
dried leaf material or voucher specimens following stand-
ard procedures (Doyle and Doyle 1987). Amplification
was carried out with the following PCR conditions for all
the plastid regions: 94 °C for 3 min, 30 cycles of 94 °C
for 3 min, 45 °C for 1 min and 72 °C for 2 min, with a
final cycle of 72 °C for 5 min. The nuclear ribosomal inter-
genic spacer ITS was amplified using the following condi-
tions: 94 °C for 3 min, 30 cycles of 94 °C for 1 min, 55 °C
for 1 min and 72 °C for 1.5 min, with a final cycle of
72 °C for 5 min. Each locus was sequenced and the raw
sequence data were imported to Sequencher 4.1 for
editing and constructing contig sequences. Consensus
sequences were imported to Se-Al ver. 1.0 (Rambaut
1996). To eliminate sequencing error, sequence quality
was carefully assessed. Polymorphisms were sequenced
on both strands and dubious cases re-sequenced. Each
region was analysed separately and the accessions with
failed amplifications were removed.

Assessment of the barcode regions

Three requirements have been suggested for the official
barcodes: universality, sequence quality and coverage,
and discrimination (CBOL Plant Working Group 20009).
We evaluated these three parameters in the six regions
tested within this group.

Universality: we estimated the percentage of amplifica-
tion success on the first trial as an indicator of universality,
using the same PCR conditions.

Sequence quality and coverage: we estimated the per-
centage of bidirectional sequences with few or no ambigu-
ous bases for each region.

Discrimination: we evaluated discrimination at two
levels: species discrimination and discrimination of
informal taxonomic groups following previous taxonomic
analysis based on morphological features (Sandral et al.
2006). Nine informal taxonomic groups at the infragene-
ric level have been suggested within the Macaronesian
assemblage (Table 1). We considered that useful discrim-
ination at this level was achieved when at least 50 %
of the species were assigned within the same group. For
species discrimination we used a distance-based method
to assign species. Each region was analysed separately
and in various combinations with neighbour-joining (NJ)
using Kimura two-parameter as the standard in barcoding
applications. We also analysed the data using unweighted
pair group method with arithmetic mean and parsimony
(Lahaye et al. 2008) as implemented in PAUP4b10 (Swofford
2001). However, those methods did not result in any major
differences in species discrimination. We also tested
whether the inclusion or exclusion of missing sequences

affected species discrimination in two-locus combinations
and when all five plastid regions were combined with ITS.

Results

We found that the barcode regions tested successfully
identified early diverged species from Cape Verde and
mainland Africa and Europe but the success was reduced
in more recent speciation events. The different lineages
included within Macaronesian Lotus diverged and radiated
within this archipelago at different times. The earliest di-
vergent lineages include two African groups (Lotus
arenarius and L. jolyi) and the lineage that colonized
Cape Verde (Lotus purpureus). All the species included
within these three groups had 100 % of species discrim-
ination when all five regions were combined, and even
when individual regions were analysed alone (Table 3
and Fig. 1). Species discrimination was greatly reduced
on the lineages that diverged at the end of the Pliocene
and beginning of the Pleistocene (3.5 to 2 Mya) within
the Canary Islands, Madeira and the Salvages.

All regions had >95 % sequencing success, except
for the matK region with 83 % success, due to failure of
amplification or due to regions with T or A repeats that
caused failure during sequencing. This region had the
lowest level of bidirectional sequence quality (Table 4).

The trnH-psbA and rpoB regions showed the highest and
the lowest level of variation and species discrimination of all
regions evaluated, respectively (Table 3). The combination
trnH-psbA + matK showed the highest level (34 %) of dis-
criminatory power at the species level for two-locus combi-
nations. Three two-locus combinations (trnH-psbA + matK,
matK + rpoC1, rpoC1 + trnH-psbA) showed slightly better
discriminatory power than the barcode recommended by
CBOL (matK + rbcl) (Fig. 2 and Table 3).

When all five plastid regions were combined, we
achieved the identification of 14 species (36 %) of the
38 species in our sample (Table 3). Even using five regions
only 3 of the 10 species (30 %) of conservation concern
were identified at the species level.

We were able to identify only four informal taxonomic
groups with the combination of matK + trnH-psbA and
no improvement was observed when all regions were
combined, or with any region when analysed alone
(Table 3). The intergenic spacer trnH-psbA was the only
plastid region in which we observed intraspecific vari-
ation, due to two indels and a small inversion.

The ITS region showed the highest level of variability
of all regions tested in this study when analysed alone,
with a species identification rate of 26 %. The overall
level of species discrimination increased substantially
when we combined this region with a plastid region,
with the best two combinations being ITS + trnH-psbA
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Table 3. Performance of the five plastid regions tested separately and in some combinations with the nuclear ITS gene region. *Informal
sections according to Sandral et al. (2006). A, including all accessions; B, excluding accessions with missing sequences in two-pair combinations.

Aligned sequence (bp)

One region
ITS 621
trnH-psbA 342
matK 867
rpoC1 511
rbcl 588
rpoB 354
Plastid combinations
matK + trnH-psbA 1209
matK + rpoC1 1378
rpoC1 + trnH-psbA 853
rbcl + trnH-psbA 930
matK + rbcL 1455
matK + rpoB 1221
rpoB + trnH-psbA 696
rbcl + rpoC1 1099
rpoB + rpoC1 865
rbcl + rpoB 942
All plastids combined 2662
ITS + plastid
ITS + trnH-psbA 963
ITS + rpoC1 1132
ITS 4+ matK 1468
ITS + rpoB 975
ITS + rbcl 1209
All six regions combined 3283

No. of species No. of informal

discriminated: taxonomic groups

total/endangered discriminated*

10/0 3

7/1 4

7/1 4

5/1 0

2/0 0

0/0 0
A B A B
11/2 13/2 4 4
10/2 10/3 4 3
10/1 9/0 3 3
7/11 91 3 3
711 711 3 2
6/1 6/0 3 2
5/0 6/0 4 4
3/0 3/0 0 0
5/1 51 0 0
4/0 3/0 1 0
9/2 14/3 4 4
15/3 14/3 4 4
12/1 11/1 3 3
111 7/0 4 4
11/1 111 3 3
10/0 9/0 3 3
19/4 17/3 4 4

and ITS + matK (Table 3). The addition of ITS increased
the discriminatory power in the species sampled overall,
with 52 % species discrimination when all six regions
were combined (Fig. 3). However, even with six regions
we were able to identify only 30 % of the species of
conservation concern.

Discussion

Plant DNA barcoding of phylogenetically diverse assem-
blages has proven successful with high levels of species
discrimination, e.g. Panamanian trees with 98 % of spe-
cies identification (Kress et al. 2009) and Mesoamerican

orchids with >90 % of species identification (Lahaye
et al. 2008), but the success of species discrimination
tends to decrease as the number of species within
families or genera is increased (Gonzalez et al. 2009;
Xiang et al. 2011; Yesson et al. 2011; Zhang et al.
2011; Arca et al. 2012; Maia et al. 2012; Saarela et al.
2013). Previous studies have reported relatively low
(55 % using trnH-psbA in Aspalathus) to moderately
high percentages (e.g. 92 % in Crocus) of species dis-
crimination in several congeneric plant groups (Sass
et al. 2007; Edwards et al. 2008; Seberg and Petersen
2009), and it has been suggested that barcodes
will have some limitations in closely related species
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Figure 1. Chronogram obtained for the divergence of MRCA of the nine informal taxonomic groups within Pedrosia and Rhyncholotus
(number in circles). The following informal taxonomic groups were considered: (1) L. purpureus/L. jolyi group, (2) L. arenarius group, (3)
L. sessilifolius/Rhyncholotus group, (4) L. argyrodes group and (5) L. campylocladus/L. glaucus/L. assakensis group. The tree was calibrated
using a data set of 52 samples and a data set of four gene regions (ITS, matK, trnH-psbA and CYB6) (Ojeda et al. 2012) under a Bayesian relaxed-
clock, uncorrelated clock model using BEAST. Upper limits of the ages of La Palma (1.77 Ma), El Hierro (1.12 Ma) and Fuerteventura (20.6 Ma)
were used as calibration points (black circles). Age estimates with their 95 % credibility intervals are shown on nodes. Values in grey squares
represent bootstrap values from MP/posterior probabilities inferred from the Bayesian inference.

Table 4. The six gene regions tested in this analysis with their specific primers and performance.

No. of indels

Parsimony informative

Region Primer pair PCR success
trnH-psbA Fw PA 96
Rev TH
matK matK2.1F 83
matk3.2X

rpoC1 rpoC1F 96
rpoC14R

rbcl 80F 97
ajf634R1

rpoB rpoB2F 97
rpoB3R

ITS ITS4 100
ITS5

Sequencing
success
98 2
85 0
100 0
100 0
100 0
99 2

24

19

69
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. emeroides Epina, La Gomera
. hillebrandii Llanos Chozas, La Palma
. holosericeus Gran Canaria
. leptophylius Barranco Guayedra, Gran Canaria
. mascaensis Punta Teno, Tenerife
Lotus sp. nov. 1 Punta Hidalgo, Tenerife
L. berthelotii Tafira, La Florida, Tenerife
L. maculatus
L. mascaensis Valle Masca, Tenerife
L. sessilifolius subsp. sessilifolius Punta Llana, Gomera
L. sessilifolius subsp. sessilifolius Poris de Abona
Lotus sp. nov. 1 Roque dos Hermanos, Tenerife
L. berthelotii
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L. pyranthus
—0.0005 substitutions/site L. pyranthus
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L. maroccanus
L. leptophylius
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L. callis-viridis
— L. mascaensis Valle de Masca, Tenerife
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L. filicaulis

Figure 2. Neighbour-joining tree generated with the combination of the CBOL recommended two-locus, matK + rbcL. Grey squares represent
species with more than one sample and species in a square represent species with a single accession. Branches with black circles represent
informal taxonomic groups identified. Species in bold belong to section Rhyncholotus while species not in bold are included within section
Pedrosia. Asterisks indicate endangered species successfully barcoded.
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Lf L. jacobaeus

L. jacobaeus
Figure 3. Neighbour-joining tree generated with the combination of all six regions tested (rbcL, matK, trnH-psbA, rpoC1, rpoB, and the nuclear
ribosomal ITS). Grey squares represent species with more than one sample and species in a square represent species with a single accession.
Branches with black circles represent informal taxonomic groups identified. Species in bold belong to section Rhyncholotus while species not in
bold are included within section Pedrosia. Asterisks indicate endangered species successfully barcoded.
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(Chase and Fay 2009), and especially on island radia-
tions (Pillon et al. 2013).

In the particular case of the Macaronesian Lotus, we
were able to identify 18 % of the samples at the species
level with the CBOL suggested two-locus combination
(matK + rbcL) (Fig. 3 and Table 3) and only 52 % of
the samples when all six regions were combined. This
contrasts with the general rate of discrimination success
with matK + rbclL, which is ~70 % taking as a reference
the database used by CBOL (CBOL Plant Working Group
2009). The nrITS region showed the highest level of spe-
cies discrimination (26 %) of all regions, and trnH-psbA
(18 %) of the plastid barcodes tested. These two regions
have also low levels of variation in the recent lineages of
Lotus. The L. sessilifolius and the Rhyncholotus groups
have identical ITS sequences, despite the differences in
vegetative and floral traits between the two groups
(Ojeda et al. 2012).

Although the percentage of species discrimination
within the Macaronesian Lotus is low overall, the discrim-
inatory power of these barcode regions is not uniformly
distributed across the lineages we analysed. Early diver-
gent groups within Africa and Europe (Lotus jolyi and
L. arenarius group in Fig. 1) have 100 % of species discrim-
ination. The same applies for lineages that presumably
colonized this archipelago early (L. purpureus group,
Fig. 1).

The successful application of barcodes in recent radia-
tions will depend on several factors, including the colon-
ization time and the time of the most recent radiations
within each particular group. To date, barcodes have
been only tested in species of Tolpis within Macaronesia
(Mort et al. 2010) and at the floristic level in 64 endemic
taxa from 23 angiosperm families within the Garajonay
National Park in La Gomera (Jaén-Molina et al. 2010).
Using two combinations of four plastid regions (matK,
rpoC1, rpoB and trnH-psbA), Mort et al. (2010) found
high levels of species discrimination in the majority of
the morphologically distinct species within the genus
Tolpis (Asteraceae), even within the relatively recent
radiated clades of the Canary Islands. Using the two-
locus (matK + rbcl) recommended barcode, Jaén-Molina
et al. (2010) found similar levels of species discrimination
compared with other geographical regions where these
two regions have been applied (CBOL Plant Working
Group 2009), suggesting that these two regions have
practical application in species discrimination in this
particular island.

Therefore, it seems that the limited success of species
discrimination we found in the Macaronesian Lotus
might be associated with their recent colonization and
diversification. In Hawadii, the recently radiated genera
Cyrtandra and Clermontia also have lower levels of species

discrimination within the rbcL, trnH-psbA and matK re-
gions (Pillon et al. 2013), suggesting that recent island ra-
diations might pose a difficulty for barcoding. Although
the current amount of examples of barcoding island ra-
diations is too limited to draw definitive conclusions, it
seems that there is a threshold at which these species
are too young to be barcoded with the current markers.
It has been suggested, for instance, that the Hawaiian
species of Cyrtandra and Clermontia have a threshold
between 3-4.7 and 2-3 Mya, respectively (Pillon et al.
2013). In the particular case of the Macaronesian Lotus,
we found that lineages <3 Mya have reduced species dis-
crimination. Kim et al. (2008) identified three windows of
colonization within other Macaronesian plant groups.
Some groups colonized Macaronesia in the late Miocene
(Aeonium, 15.2 Mya) or in the late Pliocene (Sideritis,
3.3 Mya), but most of them radiated during the Pleisto-
cene (<3 Mya). Those groups that colonized Macaronesia
relatively recently, and also those that radiated within
the last 3 Mya, might represent a particular challenge to
barcodes. Additional studies in other plant groups will be
necessary to estimate the overall success of barcodes in
this geographical region.

Besides the age of colonization and radiation of this
group, the current taxonomy and species delimitation
within the Macaronesian Lotus group could also explain
the overall low levels of species discrimination. In this
particular case we used a relatively narrow species
concept, but one that follows usual taxonomic practice
in the Macaronesian flora (Sandral et al. 2006). Further
re-assessment of the species boundaries within this
group is necessary in order to fully evaluate the effective-
ness of barcodes in this group.

Conclusions

In this study, we found that species discrimination in re-
cent radiations in oceanic islands will be lower compared
with continental counterparts. In the particular case of
Macaronesian Lotus, we have shown that the discrimin-
atory power of the barcodes is not homogeneous in
all lineages, and radiations that occurred recently
(<3.5 Mya) will have the lowest levels of species discrim-
ination. Species discrimination was successful in contin-
ental African species and lineages that radiated earlier
than 4 Mya in this group, but additional approaches will
be required for the most recent radiations.

With the reduction of costs in high-throughput next-
generation sequencing, the application of ultra-barcoding,
or the generation sequencing to produce whole organellar
genomes and substantial nuclear ribosomal sequence
(Kane et al. 2012), is potentially a suitable approach to over-
come such rapid radiation in oceanic islands. This approach
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has been successfully applied to identify subspecies,
varieties and individual genotypes in Theobroma cacao,
and it will be a suitable approach to identify more variable
regions in the genome of other plant groups in which
evolution occurred on recent island radiations.
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