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ABSTRACT

Motivation: Understanding gene regulation in Plasmodium, the
causative agent of malaria, is an important step in deciphering its
complex life cycle as well as leading to possible new targets for
therapeutic applications. Very little is known about gene regulation
in Plasmodium, and in particular, few regulatory elements have been
identified. Such discovery has been significantly hampered by the
high A-T content of some of the genomes of Plasmodium species, as
well as the challenge in associating discovered regulatory elements
to gene regulatory cascades due to Plasmodium’s complex life cycle.
Results: We report a new method of using comparative genomics
to systematically discover motifs in Plasmodium without requiring
any functional data. Different from previous methods, our method
does not depend on sequence alignments, and thus is particularly
suitable for highly divergent genomes. We applied our method
to discovering regulatory motifs between the human parasite,
P.falciparum, and its rodent-infectious relative, P.yoelii. We also
tested our procedure against comparisons between P.falciparum and
the primate-infectious, P.knowlesi. Our computational effort leads to
an initial catalog of 38 distinct motifs, corresponding to over 16 200
sites in the Plasmodium genome. The functionality of these motifs
was further supported by their defined distribution within the genome
as well as a correlation with gene expression patterns. This initial map
provides a systematic view of gene regulation in Plasmodium, which
can be refined as additional genomes become available.
Availability: The new algorithm, named motif discovery using
orthologous sequences (MDOS), is available at http://www.ics.uci.
edu/∼xhx/project /mdos/.
Contact: xhx@ics.uci.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Comparative genomics provides a powerful tool for detecting
regulatory elements in the genome. This is because functional
elements often evolve at a much slower rate than neutral sequences
due to selective pressure, and thus stand out from surrounding
sequences by virtue of their greater levels of conservation. Previous
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work has demonstrated the utilities of comparative genomics for
discovering novel regulatory motifs (Cliften et al., 2003) (Ettwiller
et al., 2005; Kellis et al., 2003; Stark et al., 2007; Xie et al., 2005).

However, all these methods depend heavily on our ability of
generating sequence alignments between the genomes that are being
compared. The quality of the sequence alignment often has a huge
effect on the success of the method. This could be problematic
for distantly related species, for the sequence alignment between
orthologous sequences might be impossible or be poor in quality.
For instance, the two Plasmodium genomes, P.falciparum and
P.yoelii are highly divergent, separated by over 100 million years of
evolution (Carlton et al., 2002). This, coupled to the highly skewed
AT nucleotide frequencies (∼80% AT on average) displayed in both
genomes (Carlton et al., 2002; Gardner et al., 2002), has made it
especially difficult to generate reliable sequence alignment between
non-coding sequences of these two genomes. As such, no genome-
wide motif discovery project using comparative genomics has been
carried out previously in Plasmodium.

Recently, a method for motif discovery was developed that does
not rely on sequence alignment (Elemento and Tavazoie, 2005), in
which they measured the conservation of a motif by first calculating
the frequency of motif co-occurrence in orthologous promoters, and
subsequently quantified the significance of the observed number by
assuming a null model in which the motif has equal probability to
appear in any of the promoters. Although having been successfully
applied for motif discovery in a number of species, the assumption
underlying the model is, however, an over simplification due to two
conditions. First, it does not account for the fact that orthologous
sequences have a higher probability of sharing a motif than non-
orthologous sequences due to their shared ancestries. As such, their
method often suffers from the problem of inflated P-values. Second,
the method ignores differences in promoter sequence length, which
can also lead to unequal probabilities of motif occurrences. Our
goal in this article is to propose a new method for measuring motif
conservation that can account for both the orthologous relationships
as well as unequal promoter sequence length.

We feel that the inherent difficulty in analyzing the Plasmodium
genomes provides a unique opportunity to test our new comparative
genomics approach to discovering regulatory elements. Beyond
the analytical challenge, genomic analysis of Plasmodium has
great interest to world health. Malaria infects nearly half a billion
people annually, with 1–3 million deaths occurring as a result.
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Plasmodium is a protozoan parasite that infects vertebrate hosts as
diverse as lizards (P.minasense), chickens (P.gallinaceum), rodents
(P.yoelii) and humans (P.falciparum). The life cycle of Plasmodium
is very complex, involving many distinct morphological and
biological forms transitioning between assorted tissue and cell types
as well as two obligatory hosts (vertebrate and vector insects,
e.g. mosquitoes) (Tuteja, 2007). Distinct expression patterns can be
observed for the various life stages as described by transcriptome and
proteome analysis (Kooij et al., 2006; Le Roch et al., 2003, 2004;
Llinas and del Portillo, 2005; Wilson, 2004). Despite the apparent
well-coordinated expression patterns, detailed mechanisms of gene
regulation behind the expression patterns seem rather complex and
remain elusive (Deitsch et al., 2007; Gunasekera et al., 2007;
Horrocks et al., 1998; Le Roch et al., 2004). In particular, the extent
of transcriptional regulation in Plasmodium is still unclear, and few
regulatory elements have been discovered (Deitsch et al., 2007;
Gunasekera et al., 2007; Horrocks et al., 1998; Le Roch et al., 2004).
Fully understanding these regulatory mechanisms will be essential
for deciphering the complex life cycle of Plasmodium, and may lead
to possible avenues for therapeutic development.

2 METHODS

2.1 Basic definitions
Suppose we are given N orthologous gene pairs between species A and B.
Let SA

i and SB
i denote the regulatory sequences of gene i in species A and

B, respectively, for all i = 1, … , N . Denote the length of SB
i as nB

i , which are
not necessarily equal for different sequences.

Consider a particular regulatory motif m. Suppose it occurred in the
regulatory sequences of nA genes in species A and the regulatory sequences
of nB genes in species B, and among these genes, nAB are orthologous pairs.
We would like to determine the probability for this to happen by chance.

If the motif m has equal chance to occur in any of the N sequences in
both A and B, the probability of observing nAB shared gene pairs can be
described by the hypergeometric distribution. However, in reality, this is
rarely the case due to two main reasons. First, the regulatory sequences may
differ significantly in length, which can lead to highly uneven probabilities
of random occurrences in different genes. Second, regulatory sequences of
orthologous genes share ancestries, and as such can be highly correlated.
This correlation can seriously undermine the assumption underlying the
hypergeometric distribution.

We propose a new statistical model that can correct for complications due
to the shared ancestries and the unequal sequence length. Specifically, we
model the random occurrences of a motif by two processes: (1) occurrence
through a background rate of β per nucleotide; and (2) occurrence due to
orthologous relationship: if a motif appears in the regulatory sequence of a
gene in species A, the motif will be preserved in the corresponding ortholog
of the gene in species B with probability α.

With the above model, we can now write down the probability for the motif
to occur in each sequence. Take the i-th gene in species B, for example. If the
motif did not appear in SA

i of species A (denoted as mA
i =0), the probability

of observing the motif in SB
i (denoted as mB

i =1) is

P
(

mB
i =1|mA

i =0
)
=1−(

1−β
)nB

i (1)

where we have assumed a binomial model for random occurrences of the
motif. On the other hand, if the motif appeared in SA

i of species A (mA
i =1),

the probability of observing the motif in SB
i (i.e. mB

i =1, after accounting for
the orthologous correlation, is

P
(

mB
i =1|mA

i =1
)
=1−(

1−β
)nB

i
(
1−α

)
(2)

Therefore, according to whether the motif appeared in regulatory sequences
of species A, we can determine the probability of the motif occurrence

in corresponding sequences in species B, accounting for both orthologous
relationships and sequence length. We will use this as our null model for
estimating how many genes with motif occurrence in both species are
expected by chance.

2.2 Calculating statistical significance
We now go back to our original question on how to calculate statistical
significance of observing nAB shared gene pairs for a motif, given that it
occurred in nA genes in species A and nB genes in species B. Denote by
mA

i ∈{0,1} the motif occurrences in genes of species A. Using Equations (1)
and (2), we can calculate the probability for the motif to occur in
the regulatory sequence of each gene in species B. Let pi denote such
probabilities for all i = 1, … , N . Suppose we pick nB genes randomly without
replacement from the list of N genes in species B, with probability of
choosing each gene proportional to p. The number of chosen genes with
corresponding mA

i =1 defines a null model on the distribution of nAB.
The null model described earlier can be viewed as a generalization of

the standard hypergeometric distribution, which corresponds to a special
case where pi = 1/N for all i. However, unlike the standard hypergeometric
distribution, the distribution of nAB for more general forms of p is difficult
to obtain analytically, and in most cases one has to resort to numerical
simulation for estimating the distribution. This brings in considerable
computational burden and is not desirable for motif discovery since we are
testing tens of thousands of candidate motifs. Fortunately, we demonstrate
in the Supplementary Material that the numerical sampling step can be
eliminated entirely. This is due to the fact that nAB can be viewed as a sum
of nB binary random variables. When nA and nB are not too small (which
is case for real motifs), the distribution of nAB can be well approximated
by a normal distribution. If we know the mean and variance of nAB, its
distribution can then be fully specified. In the Supplementary Material, we
prove that both the mean (µ) and the variance (σ 2) of nAB for any form of
p can be derived analytically and be calculated via the following formula:

µ=nBφ (3)

σ 2 =nBφ+nB(nB −1)
N∑

i=1

(φ−pi)pi(1−pi)
−1zi −(nBφ)2 (4)

where φ=∑
i pi m

A
i .

Provided with µ and σ , we define a conservation z-score to quantify the
significance of the observed nAB as z-score = (nAB −µ)/σ . Because both
µ and σ can be calculated analytically, the generalized hypergeometric
distribution provides a fast and flexible statistical framework for defining
the conservation score.

2.3 Learning parameters
We estimate parameters α and β based on the given regulatory sequences.
Consider a motif with occurrences in species A denoted by mA

i ∈{0,1},
and occurrences in species B denoted by mB

i ∈{0,1}. The estimation of
background rate β is relatively easy. We use the empirical frequency in all
regulatory sequences of species B as an estimation of the background rate.

We use maximum likelihood method to estimate the parameter α. First, we
notice that the log likelihood of observing motif occurrences in the regulatory
sequences of species B can be written as

logL∼
∑

{i|mA
i =1}

mB
i log

[
1−(

1−β
)nB

i
(
1−α

)]+(
1−mB

i

)
log

(
1−α

)

where we have excluded terms independent of α. The optimal α can be
found by setting ∂ logL/∂ α=0, which is equivalent to finding the root of
the following equation:

∑
{i|mA

i =1&mB
i =1}

(
1−β

)nB
i

1−(
1−β

)nB
i
(
1−α

) =
∑

{i|mA
i =1}

1−mB
i

1−α

which can be solved numerically, using, for instance, the Newton’s method.
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We assume equal β for motifs with the same size and similar AT content.
For all k-mers with size k, we group them into k + 1 classes depending on the
number of CG nucleotides they contain. Within each class, we assign one
β, which is taken to be the median of the estimated β values of all k-mers
in the class. By using median, we hope to reduce the estimation error of the
maximum likelihood estimator and to dilute the effect of increased β caused
by true functional motifs.

2.4 Expanding k-mers to include degenerate code
We started by calculating conservation z-scores for all k-mers with size
ranging from 6 bp to 8 bp. After identifying significantly conserved k-
mers (with z-score above 2), we further proceeded to optimize these
k-mers by introducing degenerate codes to certain positions. We used the
conservation z-score as our objective function, and checked whether making
any position degenerate could lead to an increased z-score. We used six
types of 2-fold degenerate codes (R = [GA], Y = [CT], M = [AC], K = [GT],
S = [GC], W = [AT]) and one 4-fold generate code (N). The degenerate
codes are introduced iteratively. To calculate the conservation z-score of
a degenerate motif, we first enumerate all potential k-mers consistent with
the motif, and then calculate a new probability vector p for the motif using

pmotif
i

=1−
n∏

j=1

(1−pj
i)

where n is the total number of k-mers consistent with the motif, and pj
i is

the probability of the j-th k-mer to occur in sequence i of species B. At each
iteration, the motif with the highest z-score after introducing one degenerate
code is kept and used for next round of optimization. For our analysis, we
only allowed at most two degenerate codes in the motifs.

2.5 Gene orthology, upstream and downstream
sequences

We used the orthologous gene maps between P.falciparum, P.yoelii generated
by the OrthoMCL database (version 2, Li et al., 2003). Only gene pairs
with one-to-one mapping were used. Overall, we curated 3512 gene pairs
between P.falciparum and P.yoelii, and similarly 4084 gene pairs between
P.falciparum and P.knowlesi. Sequences upstream and downstream of these
genes were extracted from the PlasmoDB database (version 5.4, Bahl et al.,
2003). For upstream sequences dataset, we extracted sequences in regions
1 kb upstream of the reported start codon, and 1 kb downstream from the
reported stop codon for the downstream dataset. If there was a gene predicted
to occur in either of these regions, the sequence was truncated accordingly
to remove its presence.

3 RESULTS

3.1 Motif discovery in Plasmodium
We first checked the occurrences of all 7mer motifs in the upstream
sequences of the 3512 (N) curated orthologous gene pairs of
P.falciparum and P.yoelii. For each 7mer, we counted the number of
genes containing at least one instance of the 7mer in its upstream
sequence for each species separately (denoted the numbers by nF for
P.falciparum and nY for P.yoelii). In addition, we also counted the
number of genes containing at least one instance in the orthologous
upstream sequences of both species (nFP). If the 7mer has equal
probability to occur upstream in each of the genes, the number of
co-occurrences nFP should follow the hypergeometric distribution
with mean number nFnY /N . However, we noticed that there are
many 7mers with an observed number of co-occurrences much
higher than what is expected by chance. For instance, the 7mer
AAAGACA appeared in 135 genes of P.falciparum and 201 genes

of P.yoelii. By chance, only 7.7 genes are expected to possess
the motif in both species. Instead, we observed 30 genes with
co-occurred instances, nearly 4-fold higher than the expected
number. This suggests that this 7mer motif showed a much higher
level of evolutionary conservation than what we would expect by
chance.

Of course, in reality the probability for a 7mer to occur in a
promoter region for each of the genes is unlikely to be equal due
to two main conditions. First, upstream sequences of orthologous
genes share the same ancestry, and consequently if a 7mer occurs
in P.falciparum, it will have a higher probably to also appear
its P.yoelii ortholog, as opposed to a non-orthologous sequence.
Second, upstream sequences can be of different lengths (e.g. a close
neighboring gene can limit the intergenic region shared between
both genes), which could lead to a bias of a higher probability for
longer sequences as compared to shorter sequences (i.e. there is
a greater probability of a motif occurring in a longer sequences
simply by chance). These two factors could potentially complicate
the conservation analysis performed earlier.

We have developed a new computational method to measure
the conservation level of a motif, which accounts for the above-
mentioned complications (see Section 2). The method does not
require sequence alignment, and thus is particularly suitable for
motif discovery in highly divergent genomes, such as the two
Plasmodium genomes in the current study (separated by over 100
million years; Carlton et al., 2002). Importantly, our method also
accounts for the increase in probability for motif co-occurrences in
orthologous sequences. In our 7mer example discussed earlier, after
correcting for orthologous correlation and unequal sequence length,
we estimated that the AAAGACA motif has a conservation z-score
of 7.5, which means that the number of observed co-occurrences is
7.5 SDs away from what is expected by chance.

We applied our method to characterize the conservation of all
7mer motifs. Because the Plasmodium genomes are AT-rich (∼80%
of the genomes consists of AT nucleotides), we focused on motifs
that contain at least one C or G nucleotide. The distribution of
z-scores for these motifs is shown in Figure 1A. Overall, the
distribution roughly follows a normal distribution. However, while
the left side of the curve fits a normal distribution, the right-hand
side deviates significantly from the normal distribution, displaying
a much fatter tail. We estimated about 9% of the 7mers located to
this tail, and thus, have extra levels of conservation than would be
expected by chance.

As a comparison, we also generated a set of control sequences
by randomly shuffling nucleotide sequences in P.yoelii, while
keeping the sequence length and background levels of orthologous
conservation levels unchanged. We calculated the conservation
z-scores of 7mers in the control sequences using the same method
described earlier. In contrast to the real sequences, the z-score
distribution fits the normal distribution well on both sides (Fig. 1B).
This suggests that the high level of conservation observed for
some 7mers in the Plasmodium genomes is unlikely caused purely
by chance.

3.2 Testing the algorithm against model organisms
Little is known about the transcriptional regulation in the
Plasmodium genome and only a few motifs have been reported.
To test the performance of our algorithm, we checked whether our
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A

B

Fig. 1. Distribution of conservation z-score for all 7mers. Shown here are
histograms of the z-scores for (A) measured between orthologous promoter
sequences of P.falciparum and P.yoelii, and (B) measured between control
orthologous promoter sequences. The dotted lines are normal distribution
with mean 0 and variance 1. The blue region represents the portion of 7mers
with z-score above the normal distribution and larger than 1.

method could identify functional motifs in three model organisms—
Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila
melanogaster, representing three phyla (yeast, worm and fly).
For yeast, we used the upstream sequences of 4358 orthologus
genes between S.cerevisiae and S.bayanus. For worm, we used the
upstream sequences of 10 894 orthologous genes between C.elegans
and C.briggsae. For fly, we used the upstream sequences of 11 306
orthologous genes between D.melanogaster and D.pseudoobscura
(Supplementary Material).

For each genome pair, we calculated the conservation z-scores
of all 7mers, and ranked the 7mers based on their z-scores from
high to low. We then determined whether our 7mers matched to
the known motifs deposited in the Transfac database, and whether
the ranks of these 7mers are biased. A bias toward the lower ranks
would indicate an enrichment of the matching k-mers with high
conservation z-scores. To test the significance of the enrichment,
we used Kolmogorov–Smirnov statistics. Based on the statistics,
we found that the P-values of the enrichment for the three species
are 10−14, 10−15 and 10−34 for yeast, worm and fly, respectively,
suggesting that the algorithm is indeed able to separate functional
motifs from neutral ones. More detailed analysis of the motifs in
these organisms is presented in the Supplementary Material.

3.3 Expanding to degenerate codes and clustering
Regulatory motifs are frequently degenerate, that is, they often
tolerate sequence variation at certain positions. After identifying
an initial list of significant 7mers (with z-score >3) in Plasmodium,
we further determined whether making nucleotides degenerate at
some positions would improve the conservation z-score received.

Table 1. List of motifs discovered in regions upstream of genes

Number Number Number in Z-score Z-score
Motif in PF in PY PF and PY (PF:PY) (PF:PK)

TGTCTW 537 531 192 13.91 17.73
TGTSTR 1492 1414 786 12.29 12.41
NTTGTCTN 325 323 93 10.80 11.11
GTGTRY 1345 1305 648 9.78 8.44
GTSTAN 1701 1654 945 8.91 8.28
TTKNTTG 2536 2045 1585 6.35 2.04
ATSTST 1578 1356 719 6.34 6.51
TTTKTTK 2533 1984 1535 6.10 2.74
TTNTTTKG 2198 1640 1135 5.93 1.93
YCTAYA 1705 1505 834 5.84 6.45
NKTGTC 1048 995 376 5.84 5.58
TTNTTGTY 1601 1077 583 5.71 3.40
AYACATM 2490 1765 1357 5.40 1.21
TTNTTTTWG 1860 1182 714 5.26 2.94
TGWTCTA 235 164 29 5.22 0.37
GTTSTM 905 758 261 5.21 1.85
TAKASA 2904 2480 2143 5.10 0.05
GATAKATR 981 621 236 5.04 −0.49
TWNTTTG 2878 2444 2087 5.03 1.06
TRTACR 2872 2403 2056 5.02 1.87
KACATWTAT 1872 760 487 5.00 1.96
ACKAGC 63 199 15 4.98 0.76
YTMTGATT 267 228 39 4.93 0.10
TKTCTAWA 557 459 116 4.93 0.74
ATAMTAMG 362 311 60 4.85 −2.14
TTNGTY 2719 2382 1934 4.82 1.70
TCTNTAWT 938 710 245 4.78 1.53
MATATACTA 92 111 12 4.75 0.40
WAWAATGA 1284 1005 440 4.74 2.48
AAACRR 1846 2108 1205 4.73 4.40
RTGTNG 1416 1275 596 4.68 2.93
TANAYAT 2986 2357 2088 4.67 0.77
AMTTAGRT 113 99 13 4.66 −0.75
AAGMAATWA 394 278 59 4.65 −2.00
TRYATATA 2671 1760 1428 4.62 1.90
RCACATKTT 165 210 29 4.61 0.76
ARAGAGAAR 241 200 36 4.60 −2.63
TYCTNTA 1714 1230 678 4.60 3.28

PF, P.Falciparum; FY, P.yoelii; PK, P.knowlesi.

We hypothesized that as the z-score increased we were likely
deriving the ‘truer’ motif. We have developed an efficient procedure
for optimizing this motif pattern discovery process, and have
identified motifs delivering the highest z-scores (see Section 2). For
instance, the 7mer AAAGACA discussed earlier can be optimized to
be WWAGACA with a z-score = 11. This analysis represents a proof-
of-principle analysis, because of course, regulatory motifs can be
>7 nt in length, and thus, a better but albeit more computationally
expensive process would be to expand such an analysis in both
directions from the core of our discovered motifs.

We also performed the same procedure for k-mers motifs with
size 6 and 9 bp. Because many of the discovered motifs are similar
and likely represent different variants of the same motif, we further
combined the identified motifs, and grouped them into distinct
clusters, using a procedure developed previously (Xie et al., 2005).
This exercise leads to a final list of 38 distinct motifs (Table 1,
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A

B

Fig. 2. Comparison of conservation z-scores derived from two sets of
genome comparison. The blue bar represents z-scores derived from the
P.falciparum (pfa) and P.yoelii (pyo) comparison, whereas red bar presents
z-scores derived from the P.falciparum and P.knowlesi (pkn) comparison.
(A) 38 motifs with z-score >4.6. (B) all motifs with z-score >3.

Supplementary Material), using a stringent cutoff of z-score = 4.6
(or P-value <2e−6)

3.4 Additional evidence for functionality of the motifs
As these motifs are identified from purely computational procedures,
next we asked whether we could find additional, independent
evidences to support the functionality of these motifs.

3.4.1 Conservation in other Plasmodium species We determined
the conservation of these motifs in a third, independent species.
Recently, the genome sequence of primate-infectious P.knowlesi
became available [PlasmoDB (Bahl et al., 2003)]. We calculated
z-scores for the 38 motifs that we identified in the previous analysis,
for conservation between P.falciparum and P.knowlesi. Interestingly,
most of these motifs also showed conservation in P.knowlesi. Of
them, 87% have positive z-scores, with 61% of them having z-scores
above 1.5 (Fig. 2). However, we also observed a few motifs that show
poor conservation in P.knowlesi. Whether these motifs are lineage-
specific and have led to diverged regulatory programs are interesting
questions that need to be studied further.

3.4.2 Positional bias of motif sites relative to genes We
determined the locations of motif instances relative to the start codon
for each gene. The upstream sequences have unequal length, and
thus, we confined our analysis to a subset of genes with sequences
predicted to be at least 500 bp in both species. We used the coding
start as our reference because the transcriptional start sites are

Fig. 3. Distribution of motif sites relative to the start codon of genes in
P.falciparum.

unknown for most genes in Plasmodium, which certainly affects
our location analysis. Nonetheless, we observed a strong bias of
positional distribution in regions near coding starts (Fig. 3). This
is consistent with the notation that these motifs are involved in the
transcriptional regulation of genes.

3.4.3 Enrichment in functional gene sets We checked the
expression patterns of the genes that possess our discovered motifs
in their upstream regions. For this analysis, we used the 21 functional
gene sets curated previously (Young et al., 2008). These gene
sets were derived using an ontology-based pattern identification
algorithm to group genes with similar expression patterns measured
in different stages of P.falciparum life cycle. For each of the 38
motifs, we identified genes that contain the motif in their upstream
regions in both P.falciparum and P.yoelii, which we refer to as
motif–gene sets. We tested the enrichment of these motif–gene sets
in each of the 21 functional gene sets as defined by Young et al.
(2008) using hypergeometric statistics. Most of the motifs displayed
a strong enrichment in at least one of the functional gene sets (Fig. 4).
Eighty-four percent of the motifs showed an enrichment P-value of
<0.01 in at least one of functional gene sets, with 15 motifs showing
especially high enrichment, with P-values <10−5.

3.4.4 Comparison to previous discovered motifs We also
compared our 38 motifs to those reported recently by Young et al.
(2008) and Gunasekera et al. (2007). Using a different strategy for
motif discovery, Young et al. identified 34 motifs and Gunasekera
et al. identified 3 motifs in P.falciparum. Using a similarity score
cutoff of 0.75 (Xie et al., 2005), seven of our motifs matched to those
previously identified (Supplementary Material). As a comparison,
we also generated a control list of 38 motifs by randomly shuffling
the bases of the discovered motifs, and none of these control motifs
matched to the previously reported motifs. It is worth noting that the
previous two papers use a different strategy for motif discovery, by
searching for motifs enriched in the promoters of functionally related
genes. The fact that the seven motifs show strong cross-species
conservation provides additional evidence supporting functionality
of these motifs. Interestingly, the most highly conserved motif we
discovered, TGTCTW, also shows the most significant enrichment
in the sexual development gene set (Young et al., 2008).

Taken together, the combined evidence suggests that the 38
motifs we discovered likely represent true functional motifs.
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Fig. 4. Enrichment of discovered motifs in different functional gene sets.
Motifs are in the rows and the functional gene sets in columns. P-values
for enrichment are coded as pseudo-color. Only motif–gene set pairs with
P-value <0.01 are shown. Scale = −log10(P-value).

Table 2. List of motifs discovered in regions downstream of genes

Number Number Number in Z-score Z-score
Motif in PF in PY PF and PY (PF:PY) (PF:PK)

TYTTTTNGT 1443 1026 552 7.50 11.46
TTKTTTTR 1783 1399 840 6.48 8.52
TAGNAKTT 221 302 46 5.45 −0.76
AGYRTTT 413 533 111 5.45 1.13
GGARGG 78 93 11 5.30 0.26
TTYGYCTA 94 129 16 5.28 0.48
ARTATKGTT 133 99 16 5.10 −1.42
CWCRAA 898 1086 355 4.77 3.24
ATTGTKT 720 879 245 4.74 1.27
TACAAKTTT 101 186 19 4.68 −2.54
ATYAAYCA 140 142 19 4.61 0.49

PF, P.Falciparum; FY, P.yoelii; PK, P.knowlesi.

The list provides a short, but reliable set of candidates for future
experimental studies.

3.5 Motifs discovered in downstream regions
So far, we have focused on motif discovery in regions upstream of
genes. It is well known that sequences downstream of genes also
play important roles in gene regulation, commonly act via post-
transcriptional mechanisms (a feature suggested for Plasmodium
gene regulation; Deitsch et al., 2007). We have also sought to

discover motifs that occur downstream of genes. However, one
caveat of the analysis is that 3′UTRs for most Plasmodium genes
have not been mapped. We, therefore, used sequences downstream
from reported stop codons up to 1 kb as a surrogate to 3′UTR
sequences. Applying the same procedure as employed for upstream
sequences, we found 11 motifs displaying high conservation
in downstream regions (z-score >4.6, Table 2, Supplementary
Material). These motifs are distinct from the motifs discovered
in upstream regions, and few of these downstream motifs have
been reported previously in Plasmodium. The initial map of the
downstream motifs could provide useful directions for future studies
on post-transcriptional gene regulation in Plasmodium.

4 DISCUSSION
In summary, we have developed a novel computational method
for motif discovery in highly divergent genomes, and applied this
procedure to the discovery of regulatory motifs in Plasmodium.
We discovered 26 highly conserved motifs and provided additional
evidences to support the functionality of these motifs.

Our prediction method depends on comparative genomics to
boost the signal-to-noise ratio of the motif signals. It is known
that many regulatory sites are lineage-specific and do not appear
to be conserved in other species (King et al., 2007). For these
motif sites, methods other than sequence comparison are required.
One potential direction could be to search for local clustering
of motif sites rather than individual sites, as well as to combine
sequence data with experimental data (e.g. microarray, high-
throughput transcriptome analysis, etc.), the utility of which has
been successfully demonstrated recently by two studies analyzing
Plasmodium regulatory motifs (Elemento et al., 2007; Young et al.,
2008). It would be interesting to develop a coherent model that can
integrate cross-species sequence data and functional data for motif
discovery.

The motifs we discovered mapped to over 13 000 sites in the
P.Falciparum genome and may be incorporated into regulatory
networks that can help in providing putative functional annotations
to uncharacterized proteins (Zhou et al., 2008) as well as employing
a systems biology approach in drug discovery (Winzeler, 2006).

The computational analysis for regulatory motif discovery
presented here is, of course, only a first step toward a comprehensive
mapping of regulatory elements in Plasmodium, and represents a
proof of principle concept. The genomes of numerous members
of the Plasmodium genus have been (and are being) sequenced
(Coppel et al., 2004; Kooij et al., 2006). With the availability of
these additional Plasmodium genomes, as well as a more exhaustive
means of identifying motifs, the catalog of regulatory motifs can
be further refined. A comprehensive mapping of regulatory motifs
and their sites will significantly enhance our understanding of gene
regulations in Plasmodium, and hopefully aid us in designing more
efficient and targeted drugs in combating malaria.

Our approach can certainly be used to discover regulatory
elements in other species, and we believe, with the flexibility of
the underlying statistical model, its non-requirement for sequence
alignment, and accounting for neutral conservation between
orthologous sequences, our method provides an opportunity to
discover regulatory elements in challenging comparisons. One such
problematic comparison that we have begun to analyze is between
the malaria mosquito, Anopheles gambiae, and the yellow fever
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mosquito, Aedes aegypti. Hopefully, our new methodology can help
to elucidate the machinery of gene regulation in these challenging
and less well-studied genomes.
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