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SUMMARY

Relative risks (RRs) are often considered the preferred measures of association in prospective studies,
especially when the binary outcome of interest is common. In particular, many researchers regard RRs to
be more intuitively interpretable than odds ratios. Although RR regression is a special case of generalized
linear models, specifically with a log link function for the binomial (or Bernoulli) outcome, the resulting
log-binomial regression does not respect the natural parameter constraints. Because log-binomial regres-
sion does not ensure that predicted probabilities are mapped to the [0,1] range, maximum likelihood (ML)
estimation is often subject to numerical instability that leads to convergence problems. To circumvent
these problems, a number of alternative approaches for estimating RR regression parameters have been
proposed. One approach that has been widely studied is the use of Poisson regression estimating equations.
The estimating equations for Poisson regression yield consistent, albeit inefficient, estimators of the RR
regression parameters. We consider the relative efficiency of the Poisson regression estimator and develop
an alternative, almost efficient estimator for the RR regression parameters. The proposed method uses
near-optimal weights based on a Maclaurin series (Taylor series expanded around zero) approximation
to the true Bernoulli or binomial weight function. This yields an almost efficient estimator while
avoiding convergence problems. We examine the asymptotic relative efficiency of the proposed estima-
tor for an increase in the number of terms in the series. Using simulations, we demonstrate the potential for
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convergence problems with standard ML estimation of the log-binomial regression model and illustrate
how this is overcome using the proposed estimator. We apply the proposed estimator to a study of predic-
tors of pre-operative use of beta blockers among patients undergoing colorectal surgery after diagnosis of
colon cancer.

Keywords: Bernoulli likelihood; Convergence problems; Maclaurin series; Poisson regression; Quasi-likelihood.

1. INTRODUCTION

We consider prospective study designs where it is of scientific interest to estimate relative risks (RRs) con-
ditional on covariates. Interestingly, in many studies where RRs are the parameters of primary scientific
interest, odds ratios (ORs) are reported instead. This can be explained in part by the technical advantages
of logistic regression (e.g. no constraints on the regression parameters) and the widespread availability of
appropriate software. Although RR regression is a special case of generalized linear models, specifically
with a log link function for the binomial (or Bernoulli) outcome, the resulting log-binomial regression does
not respect the natural parameter constraints. Because log-binomial regression does not ensure that pre-
dicted probabilities are mapped to the [0,1] range, maximum likelihood (ML) estimation is often subject
to numerical instability that leads to convergence problems. It has been noted by several authors that con-
vergence problems are especially likely to arise when the predicted probabilities are close to 1 (Wacholder,
1986; Lu and Tilley, 2001; Zou, 2004; Carter and others, 2005). Several approaches have been proposed
to circumvent the convergence problems associated with ML estimation of log-binomial regression. These
include: (1) directly estimating RR using a constrained ML method that truncates the range of the prob-
abilities (Wacholder, 1986); (2) adding a small constant to each subject’s Bernoulli outcome in the sam-
ple (Clogg and others, 1991; Deddens and others, 2003); (3) indirectly estimating RR using the math-
ematical relationship between OR and RR for a single binary covariate (Zhang and Yu, 1998); and (4)
quasi-likelihood method of moments techniques (Traissac and others, 1999; McNutt and others, 2003;
Zou, 2004; Carter and others, 2005).

One approach that has been widely studied is the use of Poisson regression estimating equations
(Traissac and others, 1999; McNutt and others, 2003; Zou, 2004; Carter and others, 2005). That is, the
Poisson likelihood equations are used to estimate the RR regression parameters without constraints. The
estimating equations for Poisson regression yield consistent, asymptotically normal (CAN) estimators of
the RR regression parameters. Moreover, Carter and others (2005) found that they alleviate convergence
problems associated with ML estimation of log-binomial regression parameters. Although estimating equa-
tions for Poisson regression yield consistent estimators of the RR regression parameters, they are ineffi-
cient because the “weight function” is misspecified as Poisson instead of bionomial or Bernoulli. As we
demonstrate later, the loss of efficiency tends to be greatest in the very setting where their use is required,
i.e. when predicted probabilities are far from zero.

We consider the relative efficiency of the Poisson regression estimator and develop an alternative,
almost efficient estimator for the RR regression parameters. The proposed method uses near-optimal
weights based on a Maclaurin series (Taylor series expanded around 0) approximation to the true Bernoulli
weight function. If the Maclaurin series is truncated at its first term, this yields the Poisson regression esti-
mator. Truncation at higher terms in the series yields near-optimal weights and almost efficient estimators.
Using method-of-moments, assuming the RR regression model is correctly specified, the estimators are
consistent for any given truncation of the Maclaurin series approximation to the optimal weight function.
We examine the asymptotic relative efficiency (ARE) for an increase in the number of terms in the series.
We also make recommendations for choice of the number of terms to avoid similar finite sample con-
vergence problems as with ML estimation of log-binomial regression parameters. We present results of a
simulation study that highlight the potential gains in efficiency in finite samples.
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Table 1. Descriptive statistics for patient characteristics
from study of pre-operative use of beta blockers among

patients undergoing colorectal surgery

Variable Level Number (%)

Pre-operative beta blockers Yes 130 (61.9%)

No 80 (38.1%)

ASA score 0 92 (43.8%)

1 118 (56.2%)

Gender Male 98 (46.7%)

Female 112 (53.3%)

Race White 182 (86.7%)

Other 28 (33.3%)

Number of comorbidities 0 30 (14.3%)

1 62 (29.5%)

2 58 (27.6%)

3 36 (17.4%)

4 17 (8.1%)

5 4 (1.9%)

6 3 (1.4%)

Age, median (range) 68.5 (26–95)

The proposed method is motivated by a study of best practices for patients undergoing surgery for col-
orectal cancer (Arriaga and others, 2009). A panel of colorectal and general surgeons was assembled to
ascertain a set of 37 evidence-based practices that they considered to be the most pertinent to the evaluation
and management of a patient undergoing colorectal surgery after diagnosis of colon cancer. Patients with
known heart disease who are given beta blockers prior to surgery have been found to have a significantly
reduced risk of post-operative death (Poldermans and others, 1999). Thus, one of the key practices is giv-
ing beta blockers when indications (heart disease) are present. In this study, the medical records of 210
cancer patients with cardiac conditions from three hospitals were reviewed (due to confidentiality, hospital
names must remain anonymous). Here the binary outcome of interest is whether the patient was given beta
blockers (yes, no) prior to surgery. Upon review of the medical records, it was found that beta blockers
were given to 130 out of the 210 (61.9%) patients, indicating that many doctors are not meeting the best
practices guideline for almost 40% of the patients. The goal of this study is to determine predictors of
pre-operative use of beta blockers in these patients. The main predictors of interest are the patient’s age (in
years), race (categorized as white versus other), gender, number of comorbidities, and “American Society
of Anesthesiologists (ASA) score.” The ASA score is a global assessment of the physical status of the
patient (Owens and others, 1978) and yields a two-level indicator of a patient’s pre-operative disease sta-
tus at diagnosis (0 = mild disease, 1 = life-threatening disease). Table 1 presents the overall distributions
of beta blocker use, age, race, gender, number of comorbidities, and ASA score. Although all of these car-
diac patients should receive pre-operative beta blockers, it is of interest to explore whether pre-operative
disease status (ASA score), age, race, gender, and number of comorbidities are predictive of those patients
who were given beta blockers. The study investigators conjectured that patients with higher risks of com-
plications, i.e. patients who are older, with worse ASA score and more comorbidities, are more likely to
receive pre-operative beta blockers. It is also of interest to examine whether there are any differences by
race and gender.

In Section 2, we describe the RR regression model, the corresponding Bernoulli likelihood, and the
proposed estimating equations for the RR regression parameters. In Section 3, we present results of a study
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examining the ARE of the proposed estimator for increasing number of terms in the series. In Section 4,
we present results of a simulation study that demonstrate the potential gains in efficiency in finite samples.

2. RR REGRESSION MODEL

Let Yi denote the binary response (success or failure) for subject i , i = 1, . . . , n, where n is the number of
independent subjects. Then E[Yi |xi ] = P(Yi = 1|xi ) = pi is the success probability, where xi is a (K × 1)

vector of covariates. In RR regression, the success probability is modeled using the log link,

log(pi ) = x ′
iβ,

or, equivalently, pi = ex ′
i β , where β is the vector of regression parameters. One can easily show that the

elements of β (with the exception of the intercept) have interpretation as log-RRs (see, for example, Jewell,
2003). For the remainder of this paper, we assume that the main interest centers on estimating the regression
parameter vector β.

The Bernoulli likelihood is

L(β) =
n∏

i=1

pYi
i (1 − pi )

1−Yi . (2.1)

The ML estimating equations for β are S(β̂) = 0, where

S(β) = ∂ log L(β)

∂β
=

n∑
i=1

xi (Yi − pi )

1 − pi
. (2.2)

The MLE is the asymptotically efficient estimate. However, when the success probability approaches 1,
the denominator of (2.2) approaches 0, resulting in convergence problems. Wacholder (1986) constrained
the likelihood to prevent (1 − pi ) from approaching 0; however, these modifications are still subject to
convergence problems (Baumgarten and others, 1989).

In general, to estimate β, one can use estimating equations (or quasi-likelihood equations; Wedderburn,
1974) of the form U (β̂) = 0, where

U (β) =
n∑

i=1

w(pi )xi (Yi − pi ), (2.3)

with w(pi ) being a “weight” function of pi . Assuming that the regression model for pi has been correctly
specified, i.e. E(Yi − pi ) = 0, these estimating equations yield CAN estimators of β for any bounded
weight function w(pi ) (see, for example, Rotnitzky, 2009). Specifically, it can be shown that the asymptotic
distribution of β̂, the estimator for β with a particular choice of w(pi ), satisfies

√
n(β̂ − β) → N (0, Cβ), (2.4)

where

Cβ = lim
n→∞ I −1

0 I1 I −1
0 ,

I0 = 1

n

n∑
i=1

w(pi )pi xi x
′
i ,
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and

I1 = 1

n

n∑
i=1

w2(pi ) Var(Yi )xi x
′
i .

Note that the asymptotically efficient estimate is the MLE, with weight function w(pi ) = (1 − pi )
−1,

and asymptotic covariance determined by I0. Consistent estimators of the asymptotic covariance of the
estimated regression parameters can be obtained using the empirical estimator of Cβ proposed by Huber
(1967), White (1982), and Royall (1986). The empirical variance estimator is obtained by evaluating pi at
pi (β̂) and substituting (Yi − p̂i )

2 for Var(Yi ); this is widely known as the sandwich variance estimator.
The use of Poisson regression for estimating β has received much attention recently (e.g.

Traissac and others, 1999; McNutt and others, 2003; Zou, 2004; Carter and others, 2005). The Poisson
regression estimating equations are S2(β̂) = 0, where

S2(β) =
n∑

i=1

xi (Yi − pi ). (2.5)

It is apparent that the Poisson regression estimating equations are simply a special case of (2.3) with
w(pi ) = 1. Thus, although the Poisson regression estimating equations produce consistent estimators of
β, they can be quite inefficient because w(pi ) = 1 is not the optimal or asymptotically efficient weight
function. In general, weight functions closer to w(pi ) = (1 − pi )

−1 will have higher efficiency. Thus, the
goal of this paper is to choose a w(pi ) close to (1 − pi )

−1, but one that also avoids the convergence
problems associated with ML. Lumley and others (2006) considered the weights w(pi ) = 1, w(pi ) = pi ,

and w(pi ) = (1 + pi )
−1 and estimated their relative efficiency (relative to the MLE). Lumley and others

found that with pi close to 1 these three estimating equations can give inefficient estimates; this is due to
the fact that the three weight functions considered do not closely approximate the optimal weight function.

To develop more efficient estimating equations, we first note that the Maclaurin series
(Abramowitz and Stegun, 1970) of (1 − pi )

−1 is

1

1 − pi
= 1 + pi + p2

i + p3
i + p4

i + · · · =
∞∑

m=0

pm
i .

This series converges for |pi | < 1. For our proposed estimating equations for β, we consider using weight
functions of the form

w(pi , M) =
M∑

m=0

pm
i , (2.6)

for different finite values of M . Note that the Poisson regression estimating equations can be considered
the Maclaurin series truncated at M = 0 (i.e. constant weights). Higher values of M will more closely
approximate the optimal weights associated with the MLE and should yield more efficient estimates.

For any finite value of M, the proposed weight function can be implemented in standard statistical
software for generalized linear models that allows user-defined variance functions (e.g. PROC GLIMMIX
in SAS); there is negligible increase in computational time for larger values of M. However, some care
must be exercised in the choice of value for M ; for very large values of M, w(pi , M) will be very close to
(1 − pi )

−1, and the resulting estimating equations will be unstable when pi is close to 1. Recall that
convergence problems with ML estimation arise when pi is close to 1 and the i th observation receives
excessively large weight in the estimating equations. We note here that, because pi = ex ′

i β > 0, w(pi , M)
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will always be positive. Also, for success probabilities close to 1 the weights are bounded, with largest
w(pi , M) ≈ M + 1, so that convergence problems are less likely unless very large values of M are cho-
sen. In the next section, we examine the ARE for increasing number of terms (M) in the series and make
recommendations for the choice of the number of terms to avoid similar finite sample convergence prob-
lems as with ML estimation. The challenge is to find some minimum value of M that provides near-optimal
weights but essentially bounds the largest weights when pi is close to 1.

3. ASYMPTOTIC RELATIVE EFFICIENCY

The goal is to find a weight function that approximates the optimal weight function, w(pi ) = (1 − pi )
−1,

but avoids assigning extremely large weights when pi is close to 1. Using the truncated Maclaurin series of
(1 − pi )

−1, w(pi , M) = ∑M
m=0 pm

i , we examine the ARE for increasing finite values of M . For this study
of ARE, we consider a log RR regression model with a single covariate,

log(pi ) = β0 + β1xi ,

where, for simplicity, we let xi × 100 have a discrete uniform distribution on the set {0, 1, 2, . . . , 100}.
We let β1 be negative, so that exp(β0) is the maximum value for any pi ; in contrast, exp(β0 + β1) is the
minimum value for any pi . For the study of ARE, we first specify the maximum, pmax, and minimum, pmin,
values for pi , which in turn fully specifies the parameters β0 = log(pmax) and β1 = log(pmin) − log(pmax).

Specification of the model in this way allows us to explore properties of the estimators as pi approaches 1.
For different choices of values of pmax and pmin, we examine the ARE of the estimator of β1 based on
w(pi , M) for increasing values of M ranging from 0 to 100. Recall that, when M = 0, the weights are
constant and equivalent to the Poisson regression estimator. Fixing pmax = 0.99, we let pmin range from
0.2 to 0.8.

Given a discrete uniform distribution for xi , and a Bernoulli distribution for Yi given xi , the asymp-
totic variance of β1 can be obtained from (2.4) by simply considering an artificial sample comprised of
one properly weighted observation for each possible realization of (Yi , xi ). The weights are determined
by the respective joint probabilities of the given realizations. Following Rotnitzky and Wypij (1994), the
asymptotic variance of β1 can be ascertained by weighting each contribution to I0 and I1 by its respective
probability. That is, we take the expectations of I0 and I1, the components of Cβ in (2.4), by summing all
of the possible realizations weighted by their respective probabilities.

A plot of the ARE for increasing values of M is given in Figure 1. The four panels of Figure 1 dis-
play the AREs for pmin = 0.2, 0.4, 0.6, 0.8, respectively. As pmin increases, the concentration of success
probabilities that are close to 1 increases as the median of the probabilities increases from 0.44 when
pmin = 0.2 to 0.89 when pmin = 0.8. In the four panels of Figure 1, the ARE for the Poisson regression
estimator (M = 0) is in the 60–70% range. This highlights the loss of efficiency associated with the use
of constant weights when the probabilities are not small. These results are in close agreement with those
reported by Lumley and others (2006). As anticipated, the ARE increases monotonically with increasing
values of M . AREs of approximately 95–97% are obtained for the proposed estimator when M is between
40 and 60. We note that, for pi close to 1, M = 40 and M = 60 bound the maximum weights at approx-
imately 41 and 61, respectively. For larger values of M , there appears to be diminishing returns in terms
of increases in efficiency. More importantly, however, larger values of M seem far more likely to produce
problems with convergence in finite samples due to excessive weight assigned to observations with pi

close to 1. In the next section, we examine the finite sample performance of the proposed estimator when
M = 20, M = 40, and M = 60.
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Fig. 1. ARE for increasing number of terms (M) in Maclaurin series expansion of the optimal Bernoulli weight
function.

4. SIMULATION STUDY

In this section, we consider the finite sample properties of the proposed estimator. For the simulations, we
used a similar configuration as in the study of ARE presented in Section 3:

log(pi ) = β0 + β1xi ,

where, for simplicity, we let xi have a uniform (0,1) distribution. For the different values of pmax and pmin

(or equivalently, β0 and β1), we conducted simulations for n = 100 with 2500 simulation replications per-
formed for each configuration. We performed simulations fixing pmax = 0.99 and letting pmin range from
0.2 to 0.8 in 0.2 unit increments. The simulations were used to compare the MLE (unconstrained), the Pois-
son regression estimator (M = 0), and the proposed estimator based on a Maclaurin series approximation
with M = 20, M = 40, and M = 60.

Table 2 presents the relative bias, defined as 100(β̂1 − β1)/β1, the root mean square error, the coverage
probabilities of 95% Wald confidence intervals for β1, as well as the percentage of simulation replications
in which the convergence criterion was met. From Table 2, we see that the percent convergence for ML is
less than 50% for all configurations; for ML, we report the results only for those simulations that converged
for ML; the latter results can be considered “conditional on the likelihood convergence criterion”. In con-
trast, there were no convergence problems for any of the estimating equations approaches. In terms of bias,
standard ML has non-negligible relative bias, and the relative bias increases as pmin increases. The relative
bias varies from approximately 8% to 30%. All other approaches have negligible (<5%) relative biases.
For the estimating equations approaches, the relative efficiencies can be estimated as the square of the ratio
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Table 2. Simulation results for estimation of β1 for log(pi ) = β0 + β1xi , xi ∼ Uniform(0, 1), and
n = 100

pmin Method Percent relative bias of β1 Root MSE Coverage probability (%) Percent converged (%)

0.2 Standard ML −7.51 3.103 95.6 47.9
Poisson 2.64 3.767 95.8 100.0
MS (M = 20) 0.97 3.097 95.7 100.0
MS (M = 40) 0.50 3.019 96.1 100.0
MS (M = 60) 0.21 2.985 96.0 100.0

0.4 Standard ML −12.02 2.278 94.0 48.2
Poisson 1.60 2.657 94.5 100.0
MS (M = 20) −0.45 2.183 94.2 100.0
MS (M = 40) −0.97 2.131 94.4 100.0
MS (M = 60) −1.33 2.106 94.3 100.0

0.6 Standard ML −17.53 1.668 93.3 48.0
Poisson 0.81 1.877 95.0 100.0
MS (M = 20) −1.50 1.553 95.3 100.0
MS (M = 40) −2.10 1.505 95.0 100.0
MS (M = 60) −2.51 1.482 94.9 100.0

0.8 Standard ML −31.42 1.153 90.5 46.7
Poisson 1.22 1.244 93.6 100.0
MS (M = 20) −2.07 1.109 93.2 100.0
MS (M = 40) −3.02 1.078 93.2 100.0
MS (M = 60) −3.65 1.063 93.2 100.0

Here, β0 = log(pmax) and β1 = log(pmin) − log(pmax), where, for a given simulation configuration, pmax = 0.99 and pmin are
the specified maximum and minimum values of pi , respectively. MS(M) denotes Maclaurin series expansion of the optimal
Bernoulli weight function with M terms.

of the root mean square errors. The relative efficiencies of Poisson regression versus the Maclaurin series
with M = 60 is between 63% and 73%, increasing from 63% when pmin = 0.2 to 73% when pmin = 0.8.

For these simulations, the relative efficiency of the Maclaurin series with M = 20 versus the Maclaurin
series with M = 60 is above 90% for all configurations (93% when pmin = 0.2 and 92% when pmin = 0.8).

Also, the relative efficiency of the Maclaurin series with M = 40 versus the Maclaurin series with M = 60
is approximately 97% for all configurations. Interestingly, for these simulation configurations, even use
of M = 20 terms in the Maclaurin series yields high efficiency.

5. APPLICATION TO STUDY OF PRE-OPERATIVE USE OF BETA BLOCKERS IN PATIENTS WITH COLON CANCER

We apply the proposed methodology to the analysis of pre-operative use of beta blockers (yes/no) among
patient undergoing colorectal surgery after diagnosis of colon cancer (Arriaga and others, 2009). To exam-
ine the relationship between the binary outcome and the five patient-level predictors of interest, we fit the
following RR regression model:

log(pi ) = β0 + β1ASAi + β2Comorbidi + β3Malei + β4Whitei + β5Agei , (5.1)

where pi is the conditional probability that the i th patient receives pre-operative beta blockers; ASAi is 1
if life-threatening disease and 0 otherwise; Comorbidi is the number of comorbidities; Malei is 1 if male
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Table 3. Comparison of (log) RR regression estimates for the
probability of pre-operative use of beta blockers among patients

undergoing colorectal surgery

Effect Approach Estimate SE Z p-value

Intercept Standard ML −1.186 0.310 −3.82 <0.001
Poisson −1.542 0.321 −4.81 <0.001
MS (M = 20) −1.445 0.262 −5.51 <0.001
MS (M = 40) −1.445 0.253 −5.71 <0.001
MS (M = 60) −1.439 0.251 −5.73 <0.001

ASA Standard ML −0.009 0.097 −0.10 0.923
Poisson −0.017 0.119 −0.15 0.884
MS (M = 20) −0.007 0.116 −0.06 0.950
MS (M = 40) −0.007 0.114 −0.07 0.948
MS (M = 60) −0.008 0.114 −0.07 0.946

Comorbid Standard ML 0.065 0.044 1.46 0.145
Poisson 0.080 0.040 2.00 0.047
MS (M = 20) 0.078 0.030 2.60 0.010
MS (M = 40) 0.076 0.028 2.74 0.007
MS (M = 60) 0.074 0.027 2.77 0.006

Male Standard ML −0.068 0.098 −0.69 0.488
Poisson −0.120 0.107 −1.11 0.266
MS (M = 20) −0.053 0.088 −0.60 0.552
MS (M = 40) −0.048 0.080 −0.60 0.551
MS (M = 60) −0.047 0.076 −0.61 0.541

White Standard ML −0.105 0.131 −0.80 0.422
Poisson −0.157 0.152 −1.03 0.303
MS (M = 20) −0.139 0.148 −0.94 0.349
MS (M = 40) −0.138 0.148 −0.93 0.351
MS (M = 60) −0.138 0.148 −0.93 0.352

Age Standard ML 0.111 0.044 2.52 0.013
Poisson 0.160 0.047 3.41 0.001
MS (M = 20) 0.139 0.037 3.76 <0.001
MS (M = 40) 0.139 0.034 4.08 <0.001
MS (M = 60) 0.139 0.033 4.18 <0.001

MS(M) denotes Maclaurin series expansion of the optimal Bernoulli weight
function with M terms.

and 0 if female; Whitei is 1 if White race and 0 if otherwise; and Agei is age in years (although the reported
effect of age is multiplied by 10 for easier comparison of results in Table 3).

Table 3 presents the estimates of β obtained using standard ML (as implemented in SAS PROC GEN-
MOD), the Poisson quasi-likelihood approach (McNutt and others, 2003; Zou, 2004; Carter and others,
2005), and the Maclaurin series approach with M = 20, M = 40, and M = 60. Of note, there were con-
vergence problems with ML but not with any of the other approaches. In particular, for ML SAS PROC
GENMOD produced a warning message that “The relative Hessian convergence criterion of 0.0198000361
is greater than the limit of 0.0001. The convergence is questionable”.
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As conjectured by the study investigators, the results in Table 3 indicate that older patients and patients
with more comorbidities are significantly more likely to receive pre-operative beta blockers. From the
results presented in Table 3, it is also apparent that the quantitative variable age and the ordinal variable
“number of comorbidities” show the largest estimated efficiency gains when comparing the Poisson (M =
0) to the Maclaurin series estimators. The relative efficiencies can be estimated as the square of the ratio of
the estimated standard errors. For the covariate “number of comorbidities”, the estimated relative efficiency
of Poisson regression versus the Maclaurin series with M = 60 is approximately 46%. For the covariate
age, the estimated relative efficiency of Poisson regression versus the Maclaurin series with M = 60 is
approximately 49%. Thus, in this particular application, Poisson regression appears to be quite inefficient
compared with the proposed Maclaurin series approach.

For the covariate “number of comorbidities”, the estimated relative efficiency of Maclaurin series with
M = 20 versus the Maclaurin series with M = 60 is greater than 81%; similarly, for the covariate age, it is
above 80%. Thus, in this applications, there appears to be discernible gains from using a Maclaurin series
with M = 60 instead of M = 20. However, there is no appreciable difference between Maclaurin series
with M = 40 and M = 60. This reinforces the results from Sections 3 and 4 where it was found that there
are diminishing returns in terms of increases in efficiency when M is greater than 40–60.

6. CONCLUSION

To circumvent the usual convergence problems associated with the ML estimator, we propose estimators
that approximate the optimal weight function based on the truncated Maclaurin series of (1 − pi )

−1. This
use of a near-optimal weight function that bounds the largest weights yields estimators with relatively
high efficiency that also avoid convergence problems. In our study of asymptotic efficiency, the proposed
estimator with weight function based on 40–60 terms from the Maclaurin series was 95–97% efficient
relative to the MLE. This compares favorably to the Poisson regression estimator that was found to be only
60–70% efficient. In simulations with samples of size 50 (data not shown) and 100, we found similar gains
in relative efficiency and no convergence problems with the proposed estimator based on 40–60 terms.
In addition, the proposed estimator, using any finite number of terms, is straightforward to implement in
standard statistical software for generalized linear models that allows user-defined variance functions (e.g.
PROC GLIMMIX in SAS). Finally, we note that estimators that approximate the optimal weight function
based on truncated series expansions may also be useful for other generalized linear models in which the
link function does not respect the natural parameter constraints (e.g. linear or linear-expit models for binary
data (Kovalchik and others, 2013)).

In general, RR regression is most useful when the scientific goal is to estimate the association between
an exposure or intervention and a commonly occurring binary outcome, with appropriate adjustment for
additional covariates. However, we note that although the estimating equations (2.3) yield consistent esti-
mators of β for any choice of weight function, including the optimal weight function and the approximation
to it proposed in this paper, the estimators are not constrained to produce estimated pi � 1. As a result,
RR regression should be avoided altogether when the scientific goal is to make predictions; when the goal
is prediction, models where the constraints on the probabilities are automatically satisfied (e.g. logistic
regression) should be adopted instead.
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