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AIMS
The accuracy of model-based predictions often reported in paediatric
research has not been thoroughly characterized. The aim of this
exercise is therefore to evaluate the role of covariate distributions
when a pharmacokinetic model is used for simulation purposes.

METHODS
Plasma concentrations of a hypothetical drug were simulated in a
paediatric population using a pharmacokinetic model in which body
weight was correlated with clearance and volume of distribution. Two
subgroups of children were then selected from the overall population
according to a typical study design, in which pre-specified body weight
ranges (10–15 kg and 30–40 kg) were used as inclusion criteria. The
simulated data sets were then analyzed using non-linear mixed effects
modelling. Model performance was assessed by comparing the
accuracy of AUC predictions obtained for each subgroup, based on the
model derived from the overall population and by extrapolation of the
model parameters across subgroups.

RESULTS
Our findings show that systemic exposure as well as pharmacokinetic
parameters cannot be accurately predicted from the pharmacokinetic
model obtained from a population with a different covariate range
from the one explored during model building. Predictions were
accurate only when a model was used for prediction in a subgroup of
the initial population.

CONCLUSIONS
In contrast to current practice, the use of pharmacokinetic modelling in
children should be limited to interpolations within the range of values
observed during model building. Furthermore, the covariate point
estimate must be kept in the model even when predictions refer to a
subset different from the original population.

WHAT IS ALREADY KNOWN ABOUT
THIS SUBJECT
• Modelling and simulation (M&S) is often

applied as a design tool for pharmacokinetic
and pharmacokinetic–pharmacodynamic
bridging in paediatric research.

• When models are used for the selection of
dose and prediction of drug exposure
and/or effects in a new population the
identification of influential covariates can
play a major role in the accuracy of
parameter estimates and subsequent
predictions.

• The identification of the correct covariates
in children is often complex due to the
presence of correlations and co-linearity
between covariates.

WHAT THIS STUDY ADDS
• Unless a mechanism-based model can be

warranted, the use of a stepwise approach
for covariate analysis is not recommended
when small datasets are available.

• Extrapolation of the covariate effects
beyond the parameter distributions
explored during model building cannot be
performed without bias and, consequently,
lead to erroneous dosing recommendations.

• The covariate point estimate must be
retained in the model when predictions
refer to a population in which median or
mean values differ from the population
used during model building.
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Introduction

Modelling and simulation (M&S) of clinical data represents
a powerful approach for evidence synthesis and conse-
quently for a more comprehensive interpretation of the
data available at any point in time during the process of
drug development. Ideally, it should also provide the basis
for inferences and extrapolation of findings from a sub-
group to the entire target population [1, 2]. At present,
regulatory bodies in Europe encourage the application of
the M&S approach during drug development [3], as it may
circumvent some practical and ethical difficulties in the
evaluation of paediatric medicines. In fact, industry and
academia have been developing and applying models
under the assumption that non-linear mixed effects mod-
elling methods are robust enough to enable the charac-
terization of pharmacokinetics and pharmacodynamics
even when sparse sampling and unbalanced data sets are
used [4–8].

More recently, M&S has been applied as a
design tool for pharmacokinetic and pharmacokinetic–
pharmacodynamic bridging. In this case, the main objec-
tives of such models include the selection of dose and
prediction of drug exposure and/or effects in a new popu-
lation, for which no data have been generated. In this
context, the identification of influential covariates such as
demographic characteristics can play a major role in the
accuracy of parameter estimates and subsequent predic-
tions. The assessment of the correct correlations between
covariates and parameters is crucial, given that it will have
direct implication for the dose selection in a new popula-
tion with different demographic characteristics. In paedi-
atric research, however, the identification of the correct
covariates is often complex due to the presence of corre-
lations and co-linearity between covariates. As shown by
a previous investigation from Ribbing et al., competition
between multiple covariates may further increase selec-
tion bias, especially when there is a moderate to high cor-
relation between the covariates [9].

Different methods are available to select significant
covariates during model building. The one most used is
the stepwise covariate selection in which two processes,
forward inclusion and backward elimination, are applied
[10, 11]. Alternative methods, such as genetic algorithms
for covariate selection [12] and automated covariate
model building [13, 14] are also becoming more common,
but have not been scrutinized to the same extent in
pharmacokinetic research. In contrast to traditional data
analysis, where the objective is primarily parameter esti-
mation, models developed by stepwise covariate selection
are also being used to predict drug exposure and conse-
quently define the dose rationale in new patients, whose
characteristics differ from the original patients in the trial.

Model-based predictions can be considered for a
population with similar characteristics as the one under
investigation during model building (interpolation) or for a

new population beyond the covariate range explored
during model building (extrapolation). Many examples are
available in the published literature in which modelling
has been applied to interpolate data [15–17]. Fewer exam-
ples exist however in which extrapolations are made to a
population which does not share exactly the same charac-
teristics or includes individuals beyond the range of values
explored during model building. Yet, this is a common
practice during the clinical development of com-
pounds for paediatric indications, when typically expo-
sures in younger age groups are predicted using
pharmacokinetic parameter distributions obtained from
the analysis of data in older children and vice versa. In fact,
two recent publications by Cella et al. [18, 19] showed the
lack of predictive power of pharmacokinetic models when
they are used for extrapolation purposes.

The current analysis has two main objectives. First of
all, we want to define the feasibility and pre-requisites
to use pharmacokinetic models as an extrapolation tool,
i.e., to make predictions about a population in which the
values of the covariates are beyond the covariate range
explored during model building. Secondly, we investigate
how parameter-covariate correlations should be ex-
pressed when a model is used for simulation purposes.
From a methodological perspective, there are different
ways to express the parameter-covariate correlation
during covariate selection. Among other options, as
shown in equations 1 and 2, we evaluate the impact
of ‘centring’ on the median or the mean value of the
covariate in the population. This approach is supposed to
stabilize parameter estimation and facilitate the interpre-
tation of the coefficients in the correlation.

P COV= + ×θ θ1 2 (1)

P COV COVmedian= + × ( )θ θ1 2 (2)

In these equations P is the parameter, COV is the covariate,
COVmedian the median value of the covariate in the data set
and θ1 and θ2 are the intercept and the slope, which
describe the correlation between the parameter and
covariate. In both equations the intercept and the slope
are estimated during model building. In the first case
(equation 1), the variation in the values of the covariate
can cause instability in the estimation of slope and inter-
cept. This contrasts with the second case (equation 2) as
the intercept is centred on the mean values. For instance,
for an adult population 70 kg is commonly used as the
median value of body weight.

In addition to investigating the predictive performance
of a pharmacokinetic model for extrapolation purposes,
here we also evaluate whether the covariate point esti-
mate should be retained in the model when extrapolations
refer to a population in which the median or mean value
differs from the one in the population previously analyzed
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or whether it should be adapted to reflect the covariate
distribution of the new population.

Methods

The different steps required for this investigation are sum-
marized in Figure 1.

We would like to highlight that despite the potential
role of demographic factors on multiple pharmacokinetic

processes, e.g. effect of body weight on drug distribution
and elimination, in this manuscript scenarios have been
considered that enable the evaluation of covariate effects
from a methodological perspective. Therefore, covariate
effects were initially explored on a single parameter
(i.e. clearance) to illustrate the impact of covariate dis-
tributions on the performance of hierarchical models
when extrapolating across populations. Furthermore,
readers are reminded that physiological correlations exist
between parameters describing drug disposition, such
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Figure 1
Diagram depicting the steps of the investigation. Simulation of the pharmacokinetic profiles and subsequent model building using the data from a
population of 43 children and from the two subgroups with differing body weight ranges. The simulation scenarios are based on a model in which clearance
and body weight are exponentially correlated [i.e. CL = θ1*(WT/WTMedian)**θ2].
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as the correlation between clearance and volume. One
should also take these interactions into account when
assessing the consequences of data imbalance and cen-
sored covariate distributions.

Population demographics and
hypothetical protocol
A group of 43 hypothetical paediatric patients with a
weight range between 7.43 and 61.3 kg (median weight
14.2 kg) were sampled from a pooled dataset including
demographic characteristics from three pharmacokinetic
studies [20–22]. The sampling procedure was performed in
such a way that the age and body weight distribution
in the hypothetical population was balanced across the
weight range of interest. The population size was based on
a real-life case, in which a similar population of children
was selected for the evaluation of the pharmacokinetics
of lamivudine, an anti-retroviral drug widely used in HIV-
infected children.

These patients were then treated with a hypothetical
drug, given orally every 12 h. A total of eight plasma
samples per subject was then simulated throughout the
dosing interval. Using data from the overall population
(group C), two subgroups were selected based on different
body weight ranges. It is worth mentioning that, despite
the fact that children are commonly stratified by age, body
weight was used for the purposes of stratification in the
simulations. This choice was based on the co-linearity
between age and body weight. As shown in Table 1, the
first subgroup (subgroup A) comprised 20 children with
weight between 10 and 15.4 kg (median body weight
12 kg), whilst the second group (subgroup B) included
eight children with weight between 30 and 45 kg (median
body weight 37 kg).

Predefined covariate effects
The pharmacokinetics of the compound were assumed to
be described by a one compartment pharmacokinetic
model with first order absorption and elimination. A base
model previously developed by our group for lamivudine
[23] was used for simulations.

Various scenarios were simulated, in which body
weight was linearly and/or exponentially correlated to
clearance and volume of distribution. Allometric scaling
concepts were also taken into account, but the expo-
nents were explored with values higher and lower than
0.75. Four different scenarios in which one covariate was
significant were simulated, based on previously reported,
realistic parameter-covariate correlations:

• Body weight linearly correlated with clearance (with a
slope of 0.65)

• Body weight linearly correlated with clearance (with a
slope of 1.5)

• Body weight exponentially correlated with clearance
(with an exponent of 0.65)

• Body weight exponentially correlated with clearance
(with an exponent of 1.5)

To ensure further insight to the impact of covariate effects
on overall drug disposition taking into account known
physiological changes associated with developmental
growth and size, two additional scenarios were simulated
in which a second covariate was incorporated into the
model.

• Body weight linearly correlated with volume of
distribution (with a slope of 1.8) and exponentially
correlated with clearance (with an exponent of 0.65)
[15]

• Body weight exponentially correlated with volume of
distribution (with an exponent of 0.807) and exponen-
tially correlated with clearance (with an exponent of
0.84) [23]

The relationship between parameter and covariate was
described as follows:

P WT WTMedian= + ( ) ×θ θ1 2
(3)

P WT WTMedian= × ( )θ θ1 2* * (4)

Table 1
Summary of demographic characteristics of the hypothetical population

Subgroup A Subgroup B Group C (Full population)

Subjects 20 8 43
Median weight (kg) 12.5 35.05 14.2

Minimum weight (kg) 10.3 30.05 7.43
Maximum weight (kg) 15.4 43.8 61.3

Median age (years) 2.18 8.85 2.81
Minmum age (years) 0.99 8.1 0.42

Maximum age (years) 3.89 12.67 12.92
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In these equations, P is the pharmacokinetic parameter
(in this case clearance or volume of distribution), WT is
body weight and WTmedian is the median of the body weight
distribution in the population analyzed during model
building. Equation 3 represents a linear relationship
between the parameter and body weight with θ1 and θ2

as the intercept and the slope of the correlation, respec-
tively. Equation 4 represents an exponential relationship
between the parameter and body weight with θ1 and θ2

as the coefficient and the exponent of the correlation, res-
pectively. The operator ** represents the exponentiation.

Analysis of simulated patient data: PK model
and covariate criteria
The simulated plasma concentration datasets (full popu-
lation and subgroup A) were subsequently fitted to a
pharmacokinetic model according to standard model
building criteria. All the available covariates, such as
body weight, age and gender, were tested according
to a stepwise covariate inclusion approach [24], i.e. the
covariates were entered one by one into the population
model. After inclusion of statistically significant factors
into the model (forward selection), each covariate was
removed one at a time (backward elimination). The likeli-
hood ratio test was used to assess whether the difference
in the objective function between the base model and
the full (more complex) model was statistically significant.
The difference in −2log likelihood (DOBJF) between the
base and the full model is approximately χ2 distributed,
with degrees of freedom equal to the difference in the
number of parameters between the two hierarchical
models. Because of the exploratory nature of this investi-
gation, an additional parameter leading to a decrease in
the objective function of 3.84 was considered significant
(P < 0.05). During the final steps of the model building
stricter criteria were applied and only the covariates
which resulted in a difference of at least 7.88 (P < 0.005)
were kept in the final model. Model selection procedures

also included standard diagnostic measures and internal
validation based on visual predictive checks.

Model predictive performance: posterior
predictive check (PPC)
In order to evaluate model performance, a posterior pre-
dictive check (PPC) was carried out. PPC operates under
the basic assumption that if the model provides an
adequate description of the data then the simulated data
from the same model should mimic the essential features
of the observed data. In this investigation, model perfor-
mance was assessed by comparing the accuracy of area
under the curve (AUC) estimates obtained for each sub-
group, based (1) on the final model derived from the
overall population and (2) by extrapolations to subgroup B
(n = 8), using the model derived from subgroup A (n = 20).
This was done for each scenario, as described previously.
AUC estimation was performed by keeping the median
body weight of the population analyzed during model
building or by adapting the parameter correlation using
the median body weight of the new population. Integra-
tion of the concentration–time data was performed
according to the trapezoidal rule.

Results

In this paper, we summarize the results from two out of the
six simulation scenarios proposed initially for the evalua-
tion of covariate effects on the accuracy of model-based
extrapolations. These scenarios are representative of the
overall investigation, in that they capture the key issues
regarding covariate model building and the use of a
model-based approach for dose selection and extrapola-
tion of pharmacokinetics across populations. In particular,
we focus on the scenarios in which body weight is expo-
nentially correlated with clearance according to an expo-
nent different from 0.75, i.e. the value which is typically

Table 2
True and estimated parameter values for the simulation scenario in which body weight is exponentially correlated with clearance with a slope of 0.65

Parameter True value Estimated subgroup a Estimated group c

Clearance (CL)
CL/F = θ1 × (BW/med)** θ2

θ1 (coefficient) (l h−1) 13.8 12.7 13.6
θ2 (exponent) 0.65 0.941 0.767
Volume of distribution (V) (l) 40.4 45.8 43.8
Absorption rate constant (Ka) (h−1) 2.8 4.8 2.7

Interindividual variability

ηCL/F 0.079 0.0836 0.0868

ηV/F 0.056 0.0236 0.0325

ηKa/F 0.331 0.267 0.227
Residual error (proportional) 0.03 0.02 0.003

Effect of covariate distribution on model predictions
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fixed in allometric scaling exercises. Tables 2 and 3 show
the parameter values used for the initial simulations and
the values estimated for subgroup A and for the full popu-
lation (group C), including scenarios in which the expo-
nent describing the correlation between weight and
clearance is lower and higher than 0.75.

As shown in Figure 2, each pharmacokinetic model was
validated using a visual predictive check. The models
obtained from the full population (group C) and from the
subgroup of children weighing between 10 and 15 kg
(subgroup A) seem to predict accurately the observa-
tions. In contrast, in Figure 3 discrepancies are observed
between the predicted area under the curve (AUC) for the

children from subgroup B when using the model built
with the data from subgroup A. Clearly, the model does
not predict the parameter of interest accurately when the
covariate range in the new population differs from the one
of the original model. Moreover, as shown on the right
panel of Figure 3, adjusting the median of body weight to
the distribution of the new population did not result in any
improvement in model performance.

On the other hand, accurate predictions of the PK
parameter of interest were obtained in each of the sub-
groups when using the model based on the full population
data set (Figures 4 and 5). Furthermore, the model seems
to perform well if the covariate point estimate is kept in the

Table 3
True and estimated parameter values for the simulation scenario in which body weight is exponentially correlated with clearance with a slope of 1.5

Parameter True value Estimated subgroup a Estimated group c

Clearance (CL)
CL/F = θ1 × (BW/med)** θ2

θ1 (coefficient) (l h−1) 13.8 10.7 13.7
θ2 (exponent) 1.5 1.31 1.60
Volume of distribution (V) (l) 40.4 40.9 42.2
Absorption rate constant (Ka) (h−1) 2.8 3.92 3.35

Interindividual variability

ηCL/F 0.079 0.092 0.076

ηV/F 0.056 0.022 0.036

ηKa/F 0.331 0.241 0.185
Residual error (proportional) 0.03 0.002 0.003
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Figure 2
Visual predictive check of the models obtained from the fit of the simulated plasma concentrations of the children in the full population (group C) (A) in
subgroup A (B) when body weight was exponentially correlated to clearance with an exponent of 0.65
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model (left panels). These results also show that accuracy
in parameter estimates is warranted only when the model
is used for interpolation purposes, i.e. when predictions
encompass the range of covariate values used during the
model building process. Interestingly, model performance
deteriorates when the relation between clearance and
body weight is adapted to reflect the covariate distribution
in the new population. This happens irrespectively of the
magnitude of the exponent which correlates body weight
to clearance.

Whilst the assessment of covariate effects on a single
parameter provides a straightforward measure of the

impact covariates can have on model-based extrapola-
tions, questions may arise about the physiological rel-
evance of such an effect. It is therefore useful to
demonstrate the overall impact of covariate distributions
when covariate effects affect more than one parameter.
Additional scenarios were considered in which body
weight is exponentially correlated with both clearance and
volume of distribution. As shown in Figure 6, similar results
were observed in terms of predictive performance, i.e. dis-
crepancies occur when extrapolations are based on model
building based on subgroups of the overall population.
In addition, model predictions are inaccurate when the
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relation between clearance and body weight is adapted to
reflect the covariate distribution in the new population.

Discussion

The main focus of our study was to investigate the
role of demographic covariates during bridging and
extrapolation of pharmacokinetic data across paediatric
populations. Undoubtedly, the identification of influential

covariate effects on pharmacokinetic parameters is crucial
to ensure accurate dose selection or dose adjustment in a
new population. This is particularly important during
the planning phase of a bridging exercise, when phar-
macokinetic models are used for simulation purposes.
Ideally, the predictive performance of population models
should be warranted before its application in paediatric
therapeutic research and drug development. Here we
have shown the potential for bias in model predictions
when extrapolating data beyond the covariate range
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explored during model building, a common practice
in industry and academic research, which relies on
small sample sizes for the characterization of the phar-
macokinetic properties of a compound. These findings
emphasize the importance of meta-analysis and other
techniques for evidence synthesis as the basis for any
quantitative evaluation of pharmacokinetics and pharma-
codynamics in children. From a methodological point of
view we have also shown the relevance of ‘centring’ on the
point estimate of the covariate distribution, which must be
retained in the model when extrapolations are performed,
irrespectively of the differences in the covariate distribu-
tion in the population or subgroup of interest.

Model-based extrapolation and interpolation
The current findings show that extrapolation to a new
population beyond the covariate range explored during
model building is not possible for exponential parameter-
covariate correlations. These results appear to be in agree-
ment with a previous publication which showed that,
irrespective of whether extrapolation methods are to be
applied during paediatric drug development, model pre-
dictions beyond the range of the data used for parameter
estimation may be biased [18, 19]. Adaptations or adjust-
ments of parameter-covariate correlations to account for
the covariate range of the new population do not improve
model predictive performance. In fact, it appears that the
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further the median of the covariate of the new population
deviates from the original one, the less accurate is the
predicted AUC distribution (right panels, Figure 3). The
only scenario which appears to yield accurate extrapola-
tion from one group to another with different covariate
values is when a linear correlation is used to describe the
covariate effects (as shown in Figure 7).

The (often physiologically-driven) exponential correla-
tion between pharmacokinetic parameter and covariate
is linked to non-linearities that cannot be predicted
without a semi- or fully mechanistic approach to bridging
or extrapolations beyond the evidence derived from the
available data. From a statistical perspective, this issue
could be handled by defining uncertainty in parameter
estimation [25, 26]. However this can potentially lead to
wide parameter distributions, with little value for dosing
recommendation purposes. It should also be noted that
this bias cannot be eliminated by the identification of addi-
tional covariates. Extrapolation to a different population
requires accurate estimation of the underlying parameter-
covariate correlations, which in turn imposes the availabil-
ity of data (likelihood) or alternatively, the use of priors that
support inferences about the parameter distribution in a
different population, including the magnitude and nature
of the covariate effects in those conditions [27, 28]. At
present, our findings suggest that only interpolation is fea-
sible when making use of non-linear hierarchical models to

describe pharmacokinetics in children. Interpolations will
be accurate independently of the nature of the parameter-
covariate correlations.

Influence of sample size on
predictive performance
In addition to the hurdles for the use of bridging and extra-
polation across populations, another issue in the covariate
analysis presented here was the limited sample size of the
data available for model building, which may clearly lead
to wrong covariate selection and inclusion bias. In some of
the simulation scenarios evaluated here, the correct
covariate (body weight) was identified when the full
dataset was analyzed, whilst a confounding factor (age) or
no covariate effects (results not shown) were detected
when evaluating the small, imbalanced subgroup of chil-
dren (n = 20). This problem, previously highlighted by
Ribbing & Jonsson in their simulation study [9], emphasizes
the importance of performing a stepwise covariate selec-
tion only when large paediatric datasets are available. If
this is not the case, meta-analysis or different methods,
such as the use of a genetic algorithm (GA) for covariate
selection [12] or automated covariate model building [13],
should be considered. GA is based on the mathematics of
evolution, i.e. natural selection and survival of the fittest.
The solution space can be seen as a population of all the
possible models to be tested and the ‘fitness’ (based on
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objective function and penalty for less parsimonious
models) is created for each model. Subsequently, the next
generation of models is created, until the ‘best’ model is
identified. The main advantage compared with the
stepwise covariate selection is that GA eliminates subjec-
tive bias from covariate selection. Furthermore, this
method also enables a more systematic analysis of con-
founders. With regard to automated covariate model
building, one should bear in mind that (i) the covariate
model is built for all parameters simultaneously, (ii) the
covariate model is built within the modelling program,
which allows better specification of significance levels
used, (iii) it can appropriately handle covariates that varies
over time and (iv) it is not dependent on the quality of the
posterior Bayes estimates of the individual parameter
values.

Recommendations on the use of models for
simulation purposes
M&S represents a powerful tool to avoid unnecessary
studies in the target population as well as facilitate
the interpretation of the limited evidence available [29].

However, our findings underscore the importance of a
careful and cautious use of models. Awareness about
model assumptions and formal evaluation of the predic-
tive performance of a model is required to avoid biased
predictions, which in turn, could lead to wrong dosing
adjustments in clinical practice.

The main recommendations from this investigation are
listed below:

• Unless a mechanism-based model can be warranted,
the use of a stepwise approach for covariate analysis is
not recommended when small datasets are available.
Instead, alternative (Bayesian) approaches should be con-
sidered for paediatric bridging and extrapolation.

• Extrapolation of the covariate effects beyond the param-
eter distributions explored during model building cannot
be performed without bias, and consequently lead to
erroneous dosing recommendations.

• Pharmacokinetic models can be used for simulation pur-
poses only when the population of interest can be con-
sidered a subgroup of the initial population.

• The covariate point estimate must be retained in the
model when predictions refer to a population in which
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Figure 7
Predicted AUC distribution in subgroup B based on the model parameter estimates obtained from data fitting of subgroup A. The histograms show AUC
predictions for a linear relation between clearance and body weight with a slope of 1.5. The line represents the true value of AUC in the population. In the
left panel the difference in the covariate distribution between subgroups A and B is not taken into account, with the median of the weight distribution of
subgroup A being used in the simulations. In the right panel a shift is observed in the predictions when the covariate range of subgroup B is used in the
simulations
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median or mean values differ from the population used
during model building.

Limitations
Two main limitations need to be acknowledged in our
study. First, we have restricted the analysis to a fixed
number of hypothetical patients. This choice was based
on the need to assess whether the data set size might
influence the final results. In addition, we have excluded
potential confounders, which may not be random in a
real population, such as bioavailability, co-medications,
co-morbidities, etc. Here, the same bioavailability was
assumed for the whole population of children and no
drug–drug interactions. We also acknowledge that from a
methodological perspective, one may wish to disentangle
some of the issues presented here from potential artefacts
due to approximate likelihood methods, as implemented
in NONMEM. Other algorithms, such as the stochastic
approximation of the standard expectation maximization
(SAEM) or Bayesian algorithms (Markov Chain Monte Carlo
simulations) need to be further tested to evaluate whether
the magnitude of the bias observed would be the same as
with the first order conditional estimation method with
interaction (FOCEI) algorithm applied during this investi-
gation [30].

In summary, model performance appears to be inde-
pendent of the nature of the parameter-covariate corre-
lations if predictions are restricted to interpolations. By
contrast, biased results may be observed when predic-
tions are aimed at extrapolations, i.e. the covariate distri-
bution lies outside the range observed during model
building. The use of meta-analysis, mechanistic models
and other alternative methods in which prior or historical
data are included for inferential purposes is therefore
recommended for bridging and extrapolation of
pharmacokinetic data across paediatric populations. In
addition, parameterization of covariate effects based
on the point estimate of the covariate distribution
imposes the use of the same point estimate even when
the population to be simulated differs from the original
population.

These findings emphasize the need to discriminate
between models for estimation (data-driven models based
on small or unbalanced sample sizes aimed at describing
pharmacokinetics in the same population, i.e. those
patients included for parameter estimation) from models
for simulation (mechanistic models whose predictive per-
formance has been thoroughly validated or models based
both on data and inferences that account for the correla-
tion between parameters and covariates), which are
required when performing bridging and extrapolations.
Unfortunately, the discrepancies observed in the pre-
dicted distributions are not detectable with standard
diagnostic tools currently used during model validation
procedures.
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