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Abstract
Genome-wide association studies have been successful in identifying common variants that impact complex human
traits and diseases. However, despite this success, the joint effects of these variants explain only a small proportion
of the genetic variance in these phenotypes, leading to speculation that rare genetic variation might account for
much of the ‘missing heritability’. Consequently, there has been an exciting period of research and development
into the methodology for the analysis of rare genetic variants, typically by considering their joint effects on complex
traits within the same functional unit or genomic region. In this review, we describe a general framework for model-
ling the joint effects of rare genetic variants on complex traits in association studies of unrelated individuals.
We summarise a range of widely used association tests that have been developed from this model and provide an
overview of the relative performance of these approaches from published simulation studies.

Keywords: rare variant; burden test; dispersion test; statistical methodology; genome-wide association; whole-genome and
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INTRODUCTION
Genome-wide association studies (GWAS) have

been extremely successful in identifying loci contri-

buting to a wide range of complex human traits and

diseases [1]. However, association signals in these loci

are typically characterised by common lead single

nucleotide polymorphisms (SNPs), each of modest

effect, which when considered together account

for only a small proportion of the genetic variance

of the trait [2]. For example, the 180 reported loci

for human height in the general population together

explain no more than 10% of the genetic variance of

the trait [3], whilst the joint effects of lead SNPs at 63

established loci for type 2 diabetes account for less

than 6% of the familial aggregation of the disease [4].

Although there may be many additional common

SNPs with effects on complex traits that are too

modest to have been discovered through current

GWAS efforts [5], it seems unlikely that the ‘com-

mon disease, common variant’ paradigm will be all

encompassing. Consequently, there has been much

recent debate as to the role that rare genetic vari-

ation, often defined to have minor allele frequency

(MAF) of less than 1%, might play in explaining the

‘missing heritability’ of complex human traits [6, 7].

Rare genetic variants are likely to have arisen

from mutation events in the last 20 generations,

and thus are more likely than common SNPs to be
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ethnic specific or polymorphic in just one population

[8]. They are also expected to have larger effects on

complex traits than common variants because they

will not have been subject to purifying selection after

the recent expansion of the human population [9].

However, because of the low MAF, these effects are

unlikely to be sufficiently large to be detected with

the usual single SNP association tests used in the

analysis of GWAS. Furthermore, traditional geno-

typing platforms used in GWAS have primarily

been designed to capture common SNPs, taking ad-

vantage of the structure of linkage disequilibrium

throughout the genome, but offer only poor cover-

age of rare genetic variation [10].

The most comprehensive approach to assaying

rare genetic variation is through large-scale

re-sequencing studies [11]. With considerable

improvements in the throughput and efficiency of

these technologies, whole-genome or whole-

exome re-sequencing in large sample sizes is increas-

ingly becoming a realistic financial undertaking for

many research groups. Furthermore, high-density

reference panels from the 1000 Genomes Project

Consortium, derived from large-scale re-sequencing

efforts in multiple populations, provide a compre-

hensive catalogue of genetic variation with MAF as

low as 0.5% across ethnic groups, as well as many

rarer variants [12, 13]. Such reference panels could be

used to select rare variants for inclusion on custom-

designed arrays, potentially with priority given to

those with likely functional consequences, such as

the Illumina Infinium HumanExome BeadChip,

enabling cost-effective genotyping in the large

sample sizes required for complex trait association

studies. Furthermore, if samples have already been

assayed with traditional GWAS arrays, imputation

techniques can make use of this common SNP scaf-

fold to predict genotypes at variants, including those

of lower frequency, that are present in the higher

density reference panel, incurring no additional

cost, other than computation [14].

With the increasing availability of high-quality

data from large-scale re-sequencing, genotyping

and imputation studies of complex human traits,

there has been an exciting period of development

of statistical methodology for the analysis of rare gen-

etic variation from this ‘next generation’ of GWAS.

These methods have primarily focused on the ana-

lysis of rare variants within the same ‘functional unit’

(exon, gene or pathway) or genomic region, increas-

ing power to detect association over single SNP

approaches by considering their joint effects on com-

plex traits. In this review, we describe a general

framework for modelling the joint effects of rare

genetic variants on complex traits in association stu-

dies of unrelated individuals. We summarise a range

of widely used association tests that have been de-

veloped from this model and provide an overview of

the relative performance of these approaches from

published simulation studies.

METHODOLOGY FORTHE
ANALYSIS OF RAREGENETIC
VARIATION
Consider a sample of unrelated individuals who have

been typed for rare variants within some functional

unit or genomic region. Within a generalised linear

modelling (GLM) framework, we can model the

phenotype, yi, of the ith individual as

gðE½yi�Þ ¼ �þ f ðGiÞ,

where g(.) is the link function. In this expression, f(.)
is some function on the genotypes, Gi, of the ith
individual, typically coded as Gij¼ {0, 1, or 2} ac-

cording to the number of minor alleles they carry at

the jth variant. In an imputed GWAS, Gij is most

often replaced by the expected genotype, E[Gij],

under a dosage model. Specifically,

E½Gij� ¼ pij1 þ 2pij2,

where pij1 and pij2 denote the imputed probabilities

that the ith individual carries heterozygous and rare

homozygous genotypes, respectively, at the jth vari-

ant. The properties of the rare variant association test

are then determined by the form of the function f(.),
as described in detail below.

Most rare variant statistical methodologies have

been developed for quantitative traits (identity link

function) or dichotomous phenotypes (logistic link

function). However, the GLM can also incorporate

more complex phenotypes including categorical re-

sponses and ‘time to event’ outcomes. Furthermore,

the flexibility of the GLM framework facilitates in-

corporation of covariates to allow for adjustment for

confounders, including non-genetic risk factors and

indicators of population structure.

Burden tests
Burden tests of association have been developed by

modelling the effect of accumulations of minor
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alleles at rare variants, referred to as the ‘mutational

load’, within some functional unit or genomic

region. Under this model, f(.) is a simple linear func-

tion of the genotypes, G, given by

f ðGiÞ ¼ �
X

j
!jGij,

where � denotes the effect on the trait (log-odds

ratio for a dichotomous phenotype) of each copy

of a minor allele at rare variants within the functional

unit or genomic region, and !j 2 ½0,1� corresponds

to the weight given to the jth rare variant.

Consequently, each rare variant has the same direc-

tion, but not necessarily the same magnitude, of

effect on the phenotype.

The simplest approach is to assume ‘unit

weighting’, where !j is an indicator variable, such

that !j¼ 1 if the jth rare variant is to be included

in the analysis, and !j¼ 0 otherwise. This ‘masking’

scheme may reflect annotation and/or frequency, so

that only coding or non-synonymous variants are

included in the analysis, for example, for some pre-

specified MAF threshold. Such an approach has been

implemented in GRANVIL [15, 16], where

f ðGiÞ ¼
�

W

X
j
!jxij,

and W ¼
P

j !j. Furthermore, in GRANVIL,

genotypes are recoded under a dominant model

such that xij¼ 1 if Gij> 0, and xij¼ 0 otherwise, or

by xij¼ pij1þpij2 for an imputed GWAS, because the

rare homozygous genotype is so infrequent.

GRANVIL then uses a likelihood ratio test of the

null hypothesis of no association, �¼ 0, of the trait

with rare variants in the functional unit or genomic

region.

An alternative approach to modelling the muta-

tional load of a functional unit or genomic region is

to ‘collapse’ rare variants into a ‘super-allele’ such

that

f ðGiÞ ¼ I
X

j
!jGij

�h
,

where I½
P

j !jGij� ¼ 1 if
P

j !jGij>0, and

I½
P

j !jGij� ¼ 0, otherwise. This collapsing tech-

nique has been implemented in a Fisher’s exact test

for a 2� 2 contingency table for dichotomous

phenotypes in CAST [17] and CCRaVAT [18],

and in an ANOVA framework for quantitative

traits in QuTie [18]. The combined multivariate

and collapsing method extends this approach to

allow for simultaneous analysis of multiple

super-alleles in a regression framework [19]. In this

context, each super-allele might correspond to alter-

native non-overlapping masking schemes for the

same set of variants, for example, different MAF

thresholds and/or annotation categories, or to vari-

ants in different functional units or genomic regions.

One of the disadvantages of the unit-weighting

scheme described above is that a MAF threshold for

inclusion of rare variants in the analysis must be spe-

cified in advance. Setting the MAF threshold too

low might exclude important causal variants from

the burden test, thereby reducing power.

However, on the other hand, setting the MAF

threshold too high might result in inclusion of

many non-causal variants in calculating the muta-

tional load, again resulting in a decrease in power.

To overcome this problem, the variable threshold

method considers multiple masking schemes for the

same set of variants in a given functional unit or

genomic region on the basis of MAF [20]. This ap-

proach has been motivated by the concept that there

is some unknown ‘optimal’ MAF below which vari-

ants are most likely to have a direct impact on com-

plex traits. Consequently, a test of association of the

trait with the super-allele is performed at multiple

MAF thresholds, with significance assessed by

means of permutation.

Under the unit-weighting model, all rare variants

included in the masking scheme are assumed to have

the same magnitude of effect on the phenotype, as

well as the same direction. As an alternative, the

Madsen and Browning weighting scheme [21]

allows lower-frequency variants to have a greater

impact on the phenotype than on those that are

more common, such that

!j ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qjð1� qjÞ
p ,

where qj is the MAF of the jth variant. The weighted

sum statistic for dichotomous disease phenotypes

makes use of this weighting scheme, based on the

MAF in controls, to rank individuals according to

their mutational load Mi ¼
P

j !jGij in the func-

tional unit or genomic region [21]. A Wilcoxon

test with permutation is then used to evaluate the

significance of association by comparing ranks in

cases and controls. The cumulative minor allele test

provides a unified framework, allowing for general

weighting schemes, taking account of both MAF and

annotation [22].
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Generalised burden tests
As described above, an implicit underlying assump-

tion of burden tests is that of the same direction of

effect on phenotype of all rare variants in the same

functional unit or genomic region. To remove this

restrictive assumption, Han and Pan [23] proposed

the data adaptive sum test (aSUM), which redefines

the weighting scheme as !j¼ 1 if yj
�� �� � 0, and

!j¼�1 otherwise, where � j is an estimate of the

effect of the minor allele for the jth variant on the

phenotype from a single variant GLM, for example.

Under this model, a score test of the null hypothesis

of no association between the trait and rare variants

in the functional unit or genomic region is given by

X ¼

P
i Ui

� �2
P

i U
2
i

,

where

Ui ¼ ðyi � yÞ
X

j
!jðGij � 2qjÞ:

In this expression, y is the mean trait across individ-

uals, and qj is the MAF of the jth rare variant.

However, in aSUM, the same data are used to de-

termine the weights, !j, and to perform the score test

of association. Consequently, the significance of the

association is determined by permuting phenotypes,

and recalculating weights and the test statistic across

replicates. As an alternative, the data can be split,

with weights derived in a training set and association

testing undertaken in the remainder of samples,

eliminating the need for computationally demanding

permutations [24].

The aSUM test was extended by Hoffman et al.
[25] by means of a ‘step-up’ approach, which con-

siders a more general weighting scheme, defined by

!j¼ aj�jvj. In this expression, �j depends on the dir-

ection of the effect of the jth variant, as in the aSUM

test. For dichotomous disease phenotypes, �j¼�1 if

the jth variant is more prevalent in controls than

cases, and �j¼ 1 otherwise, whilst for quantitative

traits, �j denotes the sign of the correlation coefficient

with the minor allele at the jth variant. The quantity

aj is a continuous weighting function for the jth vari-

ant which could, for example, allow for Madsen and

Browning weights [21]. Finally, vj is an indicator

variable representing the masking scheme, taking

the value vj¼ 1 if the jth variant is included in the

analysis, and vj¼ 0 otherwise. This indicator variable

could be defined to reflect annotation and/or fre-

quency. In the ‘step-up’ approach, forward selection

is used to identify the subset of variants that maximise

the evidence of association with the trait. At each

stage of this iterative process, the variant that maxi-

mises the increase in the score statistic, X, is selected

in the model and continued until no further variants

increase the evidence of association. The significance

of the association is then determined by permuting

phenotypes and repeating the model selection in

each replicate.

Dispersion tests
The aSUM and ‘step-up’ methods alleviate the re-

strictive assumption of burden tests of the same dir-

ection of effect of all rare variants on the trait within

the same functional unit or genomic region, but re-

quire permutation procedures to assess statistical sig-

nificance, which may not be computationally feasible

for genome-wide analyses in large samples. To over-

come this limitation, dispersion tests consider a more

general function f(.), given by

f ðGiÞ ¼
X

j
�jGij,

where �j denotes the effect of each copy of the

minor allele at the jth rare variant. Of course, for

rare variants, the allelic effects, b, cannot be reliably

estimated. Consequently, the sequence kernel asso-

ciation test (SKAT) [26] makes the assumption that

�j � N
�
0,�!2

j

�
, where, as before, the weights !j

denote the masking scheme, and now � is an un-

known variance component parameter. Under the

null hypothesis of no association between the trait

and rare variation in the functional unit or genomic

region, �j¼ 0 for all j, and is thus equivalent to

�¼ 0. SKAT uses a variance-component score test,

given by

QSKAT ¼
X

j
!jS

2
j ,

where

Sj ¼
X

i
Gij yi � �̂ð Þ,

and �̂ ¼ g�1ð�̂Þ is the expected trait value under the

null hypothesis of no association. In the special case

of a dichotomous phenotype with no covariates,

SKAT is equivalent to the C-alpha test [27].

QSKAT follows a weighted sum of �2
1 distributions

under the null hypothesis, the significance of

which can be determined analytically, without the

need for permutations.

Burden and dispersion tests have been designed to

test for association of rare variants in the same
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functional unit or genomic regions under different

models of the effect of minor alleles on a complex

trait, in particular, their direction of effect on pheno-

type. In an attempt to develop an approach that

would be applicable across a wider range of associ-

ation models, Lee et al. [28] proposed a linear com-

bination of burden and dispersion score tests,

constructed within the SKAT analysis framework.

More specifically,

Q	 ¼ ð1� 	ÞQSKAT þ 	QBURDEN,

where

QBURDEN ¼
X

j
!jSj

� 	2

:

For a fixed mixture parameter, 	, the test statistic Q	
follows a weighted sum of �2

1 distributions under

the null hypothesis of no association. Alternatively,

	 can be treated as an unknown nuisance parameter,

and a data-driven procedure, SKAT-O, used to

evaluate significance, without the need for compu-

tationally intensive permutations. A similar frame-

work, combining a variance component and

generalised burden test as independent score statistics,

using Fisher’s or Tippett’s procedures, has been

implemented in the Mixed effects Score Test

(MiST) [29].

Adaptive clustering methods
An alternative approach to allow for rare genetic

variants within a functional unit or genomic region

to have different direction and/or magnitude of

effects on a complex trait is to make use of a

kernel-based adaptive cluster (KBAC) [30], which

categorises individuals according to ‘genotype

groups’. In general, there are 3J possible genotype

groups across a set of J variants. However, for rare

variants, most of these possible genotype groups will

not be seen because of low MAF, and, instead, we

observe only Mþ 1 patterns, denoted P0, P1, . . . ,

PM, where P0 represents a pattern of common

homozygotes only. The advantage of KBAC is that

the genotype patterns encompass a wide range of

possible models of association; for example, allowing

for interactions between rare variants that cannot be

easily incorporated with simple linear functions, f(.).
For KBAC, a kernel Km is defined for each pattern

Pm of genotypes. Consequently, the function f(.) can

be expressed as f(Gi)¼ �Km, where Pm is the pattern

of genotypes carried by the ith individual, and a

score test of the null hypothesis of no association

of the trait with rare variants in the functional unit

or genomic region, �¼ 0, constructed for the speci-

fied kernel.

For dichotomous disease phenotypes, a hyper-

geometric kernel is appropriate, and it is given by

Km ¼
X

r2f0,1,...NA
m g

Nm
r

� � N�Nm
NA�r

� �
N
NA

� � :

In this expression, N is the total number of individ-

uals in the study, of which Nm carry genotype pattern

Pm across rare variants in the functional unit or

genomic region, and NA and NA
m denote the same

quantities, respectively, in cases. For this kernel, in

the absence of covariates, the KBAC score test is

given by

QKBAC ¼
X

m
Km

NA
m

NA
�
Nm �NA

m

N �NA


 �� 
2

,

with significance assessed via permutation.

POWEROF RAREVARIANT
METHODSTODETECT
ASSOCIATIONWITH COMPLEX
TRAITS
As described above, there is a huge range of meth-

odology available to detect association of complex

traits with rare genetic variation in the same func-

tional unit or genomic region. The majority of

methods have been developed in the flexible GLM

framework, but impose different underlying models

of association that would be expected to be most

powerful when the specific modelling assumptions

are correct. For example, we might expect that the

burden tests will be most powerful when all rare

variants, after application of an appropriate masking

scheme, have the same direction of effect on the

complex trait. However, dispersion tests would be

expected to be more robust to neutral variants, or

to those with opposite directions of effect on the

trait. Consequently, it seems unlikely that there

will be a single ‘uniformly most powerful’ rare vari-

ant association test over all possible underlying gen-

etic architectures.

Ladouceur et al. provide one of the most compre-

hensive evaluations of rare variant methodology to

date [31]. They assess the comparative power of sev-

eral burden tests, as well as SKAT and an adaptive

clustering method (inspired by KBAC). They

employ Sanger sequencing data from �2,000 indivi-

duals at seven genes, and simulate continuous traits
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over a range of genetic models spanning different

hypotheses for the effects of rare genetic variation

in the genes. They also investigate the performance

of rare variant methods for dichotomous traits by

using 500 cases and 500 controls selected from the

extremes of the distribution. As seen previously [32],

the power across tests was found to be affected by the

proportion of causal variants in a gene, as well as

their effect sizes. While the power of tests on con-

tinuous traits increased monotonically with larger

effect sizes, tests on dichotomous traits seemed to

be less affected. The power of collapsing tests

increased more sharply as the number of causal var-

iants increased. The VT method outperformed alter-

natives in scenarios where rarer variants had stronger

effects, but only for continuous phenotypes. SKAT

was found to be more powerful than alternatives

when mixtures of deleterious and protective variants

were driving the association, as expected. SKAT was

also the most powerful approach when a combina-

tion of common and rare variants was driving the

association.

Given that burden and dispersion tests appear to

have differential advantages, tests combining the two

approaches seem like an attractive alternative.

Indeed, both SKAT-O and MiST have been

reported as performing well under a range of phe-

notypes with varying causal to total variant distribu-

tions, irrespective of their direction of effect [28, 29].

However, these methods are still to be subjected to

independent evaluation. A comparison of rare variant

methods on larger (>1000) sample sizes would also

be particularly informative, since most comparative

studies to date [28, 29, 31, 32] have been conducted

on smaller sample sizes than ongoing sequencing

efforts.

The power of rare variant association method-

ology is also likely to vary according to the technol-

ogy used to assay genetic variation. Magi et al. [16]

undertook simulations to evaluate the relative per-

formance of different design strategies to identify

association of a quantitative trait with rare variants

in a 50 kb gene using GRANVIL, including: (i) re-

sequencing; (ii) genotyping of all variants present in a

reference panel from the same population; and (iii)

imputation of a GWAS scaffold of primarily

common variants up to the reference panel using

IMPUTEv2 [33]. They considered a model in

which the expected trait value of an individual was

increased by the presence of a minor allele at any

causal variant in the gene. The trait association

model was then parameterised in terms of: (i) the

maximum MAF of any causal variant in the gene;

(ii) the total MAF of all causal variants in the gene;

and (iii) their joint contribution to the trait variance.

They also considered a range of sizes for the refer-

ence panel, varying from 150 to 4000 individuals,

reflecting current and future efforts from the 1000

Genomes Project [13] and the UK10K Project

(www.uk10k.org).

As expected, the most powerful strategy to

detecting rare variant association was through re-

sequencing, which, in the absence of calling and

genotyping errors, provides a complete catalogue of

genetic variation in the gene. However, a strategy of

genotyping all rare variants present in a large, popu-

lation-matched reference panel, results in a relatively

small reduction in power. Rare variants not captured

by the reference panel (such as private mutations or

those of very low frequency) are less likely to have a

major impact on the trait under their simulation

model, and thus, would not be expected to lead to

a dramatic reduction in power. In the same way,

imputation of a GWAS scaffold up to a large, popu-

lation-matched reference panel also retains much of

the power of the re-sequencing strategy. Larger ref-

erence panels provide more comprehensive coverage

of a rare variation in the gene, and higher quality

imputation, allowing recovery of genotypes at vari-

ants with MAF as low as 0.3% [34]. However, im-

putation of variation of lower MAF remains a

considerable challenge, and it is not clear that the

quality metrics used for common SNPs will be suf-

ficient for removing poorly performing rare variants

from downstream association analyses [35]. For

this reason, imputation can never replace the ‘gold

standard approach’ to assaying rare genetic variation

through re-sequencing, although it currently

provides a financially feasible, complimentary strat-

egy to detecting association with complex traits in

the required large sample sizes at a fraction of

the cost.

DISCUSSION
Statistical methodology for the analysis of rare genetic

variation in the next generation of GWAS has been

primarily developed in a flexible GLM framework,

which can be applied to directly assayed or imputed

genotype data and to quantitative traits or dichotom-

ous disease phenotypes. The majority of statistical

methods can be classified as burden tests, which
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assume the same direction of effect on the trait of all

rare variants, dispersion tests, which allow for devi-

ations from this unidirectional assumption, or a com-

bination of the two approaches. The relative utility

and power of these approaches depend on: (i) the

computational burden (e.g. the need for permutations

to evaluate statistical significance); (ii) the reliability of

annotation (e.g. identification of coding variation that

is more likely to have functional consequences); and

(iii) the alignment of modelling assumptions with the

underlying genetic architecture of the trait (e.g. ro-

bustness to neutral variants and an assumption of all

causal alleles having the same magnitude and direction

of effect). Simulations highlight that there is no uni-

formly most powerful approach but that methods that

combine burden and dispersion tests are relatively

robust to various underlying genetic architectures.

Until recently, rare variant association studies

have been limited to candidate genes (functional or

positional in GWAS loci) because of the expense of

re-sequencing in large sample sizes. Despite these

constraints, confirmed rare variant associations in-

clude: (i) plasma lipid concentrations with ABCA1,
APOA1, LCAT, NPC1L1 and ANGPTL4 [36–38];

(ii) body mass index with monogenic obesity-related

genes [39]; (iii) blood pressure with renal salt hand-

ling genes [40]; (iv) hypertriglyceridemia with lipo-

protein lipase [41]; (v) inflammatory bowel disease

with NOD2 [42]; and (vi) type 2 diabetes with

MTNR1B [43]. However, with recent improvements

in the throughput and efficiency of re-sequencing

technologies and advances in statistical methodology

to allow imputation of existing GWAS scaffolds up

to high-density reference panels, genotypes at rare

genetic variants are becoming increasingly

interrogated in the sample sizes required for complex

human traits. Consequently, genome- and exome-

wide analyses of rare genetic variation have identified

novel genes implicated in high-density lipoprotein

cholesterol [44], insulin processing and secretion

[45], and type 2 diabetes [46].

Despite these success stories, further methodo-

logical development to maximise the potential of

next-generation GWAS to identify rare variant asso-

ciations with complex human traits is required.

Improved functional annotation and a better under-

standing of the role of non-coding regulatory vari-

ation (e.g., through the ENCODE Project

Consortium [47]) will inform study design and

define powerful weighting schemes for rare variant

analyses. Methodology to enable meta-analysis of

rare variant association tests [48–50], by combining

summary statistics across GWAS, would be expected

to increase power but may be complicated by the

observation that lower-frequency variation is more

likely to be population-specific and, thus, may not be

shared between studies, particularly in a trans-ethnic

context. Nevertheless, with continued methodo-

logical development and increased availability of

next-generation GWAS of rare genetic variation,

the coming years offer an exciting opportunity to

discover novel genes implicated in complex human

traits and an improved understanding of the genetic

architecture and pathophysiology of human disease,

with the ultimate goal of developing effective clinical

intervention, resulting in improved public health.

Key points

� There has been recent speculation that rare genetic variants,
typically defined to have a minor allele frequency of less than1%,
might account for much of the missing heritability of complex
human traits.

� Traditional statistical methods for the analysis of common SNPs
in genome-wide association studies are underpowered for rare
variants.

� There has been an exciting period of research and development
into the methodology for the analysis of rare genetic variants
by considering their joint effects on complex traits within the
same functional unit or genomic region.
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