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Abstract
The use of genetically isolated populations can empower next-generation association studies. In this review, we dis-
cuss the advantages of this approach and review study design and analytical considerations of genetic association stu-
dies focusing on isolates.We cite successful examples of using population isolates in association studies and outline
potential ways forward.
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Genome-wide association studies (GWAS) have met

with widespread success in identifying common-

frequency variants associated with complex diseases

and medically relevant quantitative traits. Technolo-

gical advances in genotyping and sequencing have

recently enabled access to low-frequency and rare

variant genotypes at the population level. The iden-

tification of modest effects at individual low fre-

quency and rare variants requires very large sample

sizes. Power can be boosted by using statistical

approaches to aggregate rare variants across chromo-

somal regions or functional units. Power can also be

increased by leveraging the unique characteristics of

isolated, or founder, populations in genetic associ-

ation studies. In the past, population isolates have

typically been used in family-based genetic studies

of Mendelian traits [1, 2]. Advances in genotyping

and sequencing technologies have catalysed the use

of founder populations in genetic association studies

of complex traits. Here, we review the population

genetics characteristics of isolated populations, out-

line study design and analytical considerations and

discuss examples of next-generation association stu-

dies in population isolates.

PROPERTIES OF POPULATION
ISOLATES
Population isolates can be defined as subpopulations

derived from a small number of individuals who

became isolated because of a founding event (e.g.

settlement of a new territory, famine, war, environ-

mental disruption, infectious disease epidemics, social

and/or cultural barriers) and have stayed so for many

generations. The resulting geographical and/or

cultural isolation of these populations has genetic

consequences, as, for example, endogamy (within

community marriage) along with very restricted

gene flow (immigration) from neighbouring popula-

tions can often be observed. Thus, genomes tend to

show higher homogeneity in isolates compared with

cosmopolitan populations, which is reflected by a

reduced effective population size (Ne or the effective

number of individuals required to explain the

observed genetic variability) [3] (Figure 1).

Another potentially advantageous property of

population isolates is environmental and cultural

homogeneity. In addition to reduced genetic com-

plexity, individuals from an isolated population tend

to share a common lifestyle, including diet, physical
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activity levels and other cultural habits, and, import-

antly, are exposed to similar environmental and

sanitary conditions and disease vectors. Phenotype

definition and diagnosis harmonization can also be

achieved through standardized clinician training, a

model adopted, for example, by Finland.

Isolates can branch and develop independently;

geographical proximity and common origins do

not imply identical evolution. Many isolates experi-

ence more than one founding event, which can

result in population bottlenecks [4] or the creation

of regional subisolates [5]. A typical example is

Finland, where both older (�2000 years) and

younger (�500 years) population isolates have

appeared within one geographical region due to in-

ternal migration [6]. Various factors such as the total

number of founders, number and intensity of bottle-

necks, levels of endogamy, age and duration of iso-

lation shape the demographic history of isolates

(Figure 1). Detailed genealogical records are some-

times available for isolated populations. For example,

the Icelandic population has an extensive genealo-

gical and disease history database [7, 8]. Given

genome-wide data availability, the individual char-

acteristics of isolates can be examined using popula-

tion genetics analysis tools [9–12].

GENETIC CONSEQUENCESOF
ISOLATION
Reduced haplotype complexity
Thanks to the HapMap [13] and 1000 Genomes

Projects [14], we now have a good understanding

of linkage disequilibrium (LD) patterns across the

human genome for several human ethnic groups.

In isolated populations, LD tends to extend over

longer distances compared with non-isolated popu-

lations, as exemplified by studies in the populations

of the Central Valley of Costa Rica [15], Palau [16]

and Val Borbera in northwest Italy [9]. As expected

through ancestral recombination, the LD intervals of

older isolates tend to be shorter than those of

younger isolates [17]. Moreover, relatively higher

levels of LD are observed in isolates with a small

number of founders that experience slow growth

during the early generations following the initial

bottleneck [18]. Longer stretches of LD in isolates

mean longer haplotypes, thus facilitating disease as-

sociation studies and empowering imputation

approaches that infer genotypes at untyped variants

based on regional LD information [19]. The

disadvantage of high levels of correlation among

sequence variants is a reduction in resolution of the

localization of causal variants within a wide associ-

ation peak signal. Trans-ethnic meta-analysis has

been proposed as an approach to synthesize data

across populations with diverse LD patterns to

enable fine-mapping of the causal variant(s) [20].

Reduced allelic variability and
genetic drift
Isolation can influence the patterns and prevalence of

disease. Notably, owing to the enrichment of some

rare alleles resulting from the combined effect of en-

dogamy, bottlenecks, genetic drift, recurrent muta-

tion and selection, isolates have been shown to

potentially exhibit an increased incidence of recessive

disorders. Each isolate shows a unique profile of rare

disease alleles [21], which can be expressed through a

higher prevalence of some diseases and lower inci-

dence of others [22, 23]. For example, the Pima

Indians of Arizona have a very high prevalence of

type 2 diabetes (�20%) [24, 25] and near absence of

type 1 diabetes [26].

In population isolates, certain alleles reach fixation

or extinction at a particular locus, thus reducing the

extent of genetic variability [27, 28]. Some variants

that contribute to complex traits/diseases are rare in

the parent population and drifted to higher fre-

quency in the isolate. The enrichment of low-

frequency alleles in the study population can

Figure 1: Factors that shape population isolate
characteristics.
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empower the identification of these variants with

smaller discovery sets. For example, a null mutation

in APOC3 that had risen in frequency in the Amish

founder population was found to be associated with a

favourable plasma lipid profile. Association with this

variant (previously thought to be private to the

Amish) was recently replicated in an exome chip-

wide association scan for lipid traits in �1200 indi-

viduals from a Greek population isolate [29]. To

achieve 80% power to detect the observed effect

size in the general European population (in which

the variant has 40-fold lower frequency), a sample

size of 67 000 individuals would have been required.

The phenomenon of reduced allelic variability, com-

bined with extended LD, is expected to improve

power for trait association at rare variants compared

with populations with wider allelic diversity (noting

that other rare variants will be lost).

STUDYDESIGN
Population choice is an important consideration in

designing a genetic association study focusing on iso-

lates. Factors such as the number of founding haplo-

types, age of divergence from the parent population,

effective sample size and degree of admixture with

neighbouring populations, all play a role in the

population’s allelic architecture. For initial GWAS

as well as rare Mendelian gene discovery, the study

of young founder populations with recent expansion

(e.g. late-settlement Finland) is a powerful strategy

[30] because of their higher degree of LD and

reduced genetic diversity. It has been suggested

that small populations that have remained stable

throughout most of their history could lead to

more economical locus discovery efforts [31]. Drift

of rare alleles occurs at random and for a small set of

variant sites; therefore, the power of a genetic asso-

ciation study in a population isolate will depend on

the enrichment of alleles that are relevant to a

phenotype of interest [32–34], which requires the

alleles in question to have passed through the initial

population bottleneck. An association study in an

isolate can often be motivated by a suspected

higher prevalence of a trait or disease in that particu-

lar population.

TOTYPEORTO SEQUENCE?
GWAS arrays by definition assay primarily variants

selected to represent common frequency variation

across the genome. Low-frequency and rare variants

genome-wide cannot be easily captured on a geno-

typing array because of their large numbers and low

levels of correlation. Recently, a genotyping chip

focused on likely functional coding low-frequency

and rare variants—the exome chip—has been used

successfully in founder populations to associate rare

variants with proinsulin [35] and HDL cholesterol

[29] levels. The decreasing cost of sequencing

makes it increasingly easier to study the complete

variation landscape irrespective of allele frequency

[36].

Whole exome sequencing has the advantage of

reduced cost compared with whole-genome sequen-

cing, but does not capture variation in non-genic

regions. Previous experience from GWAS strongly

indicates that the majority of complex trait signals

reside outside of genes. High-depth sequencing is

considered necessary to call high-quality variants

across the allele frequency spectrum [37].

However, it has been shown that in the context of

a population study, whole-genome sequencing many

individuals at low depth can have variant detection

power advantages over fewer individuals sequenced

at higher depth [38, 39]. This approach was tested by

the 1000 Genomes Project pilot and has been used

to generate the widely used phase 1 and phase 2

variant sets.

When not all samples can be sequenced, whole-

genome sequencing of a subset of cases and controls

following an initial GWAS has proven to be a suc-

cessful strategy for empowering rare variant associ-

ation in dichotomous trait studies [40, 41]. Variants

from the sequenced samples are phased using long-

range haplotype phasing (LRP; see Imputation), then

imputed back into the whole sample set, which is

equivalent to using the sequenced subset as a refer-

ence panel for imputation.

ANALYTICALCONSIDERATIONS
Relatedness
One intrinsic consequence of genetic isolation is re-

latedness among individuals, which can conflict with

the assumptions of independence of many com-

monly used analysis tools and inflate test statistics

affecting association signals. An efficient approach is

to account for relatedness in the association analysis

through the use of a linear mixed model (LMM).

Until recently, computation of an exact association

test statistic such as the Wald statistic or likelihood
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ratio (implemented in EMMA [42]) was computa-

tionally impractical. Tools that compute approxi-

mate solutions, either by using the residuals from

the LMM under the null model as phenotypes,

such as GenABEL [43], or by avoiding the repeated

estimation of variance components, such as

TASSEL [44] or EMMAX [45], have recently been

developed. Mathematically optimized versions of the

exact test, such as GEMMA [46] or FaST-LMM

[47], have also been developed and are widely used.

Several methods have been proposed to improve

on the power of single-point tests for rare variants by

combining information across multiple sites in a

chromosomal region and testing for association

with the trait of interest [48–51]. Relatedness infor-

mation can be incorporated in the model, such as in

famSKAT [52] or other tools [53–57].

Imputation
When performing association based on genotyping

arrays, it is common practice to impute untyped vari-

ants based on a reference panel (e.g. the 1000

Genomes Project (www.1000genomes.org) and/or

the UK10K study data (www.uk10k.org) to enhance

the resolution of the study. This approach, where

positions that were not genotyped in the sample

are added using phase information in the reference

set, is also relevant to refining genotype calls for low-

depth sequencing data.

Imputation is closely related to phasing, a proced-

ure that infers haplotypes based on identity by state

(IBS), with other phased individuals. Relatedness is

helpful for phasing because it increases the likelihood

of finding a long IBS string of variants; the more

related the samples, the more certain it is that these

IBS sequences are actually inherited identical-

by-descent (IBD), and the probability that unobserved

positions are IBS becomes quantifiable [58, 59]. Kong

et al. [60] proposed LRP, a method that uses regions

of IBD between related individuals within the sam-

ple, to phase and impute variants. This approach has

been generalized and improved to achieve higher ac-

curacy around recombination sites in e.g. SLRP [61],

ANCHAP [62] and other methods [63].

Meta-analysis
The synthesis of data through meta-analysis can in-

crease the power of association studies. Two different

classes of methods have been typically applied in

traditional meta-analysis of GWAS: P-value-based

tests and effect size-based methods, which can be

further subdivided into fixed or random effects

models [64]. Fixed effects models assume that the

same underlying effect is present in all studies,

whereas random effects models allow for effect

sizes to be different. These approaches can be applied

to meta-analysing data across isolates. However, in

the era of rare variant association testing, allelic het-

erogeneity can decrease power either because of the

presence of similarly associated multiple rare variants

or different ethnic backgrounds in the populations

being meta-analyzed [65]. In addition, meta-analysis

generally assumes independence of the study sam-

ples, which does not hold in the case of within-

isolate meta-analysis. Research in this field is still

ongoing [20], and a continued effort in method

development is needed.

COMPLEXTRAIT LOCUS
DETECTION IN FOUNDER
POPULATIONS
Several studies from Iceland have been successful in

identifying low- /rare-frequency variants associated

with sick sinus syndrome, gout, prostate cancer and

Alzheimer’s disease [41, 66–68]. In a recent study in

Finland, four novel loci were found to be associated

with saccular intracranial aneurysms, a complex trait

with a sporadic and a familial form [69]. One of these

variants has drifted up 15 times in frequency com-

pared with the Dutch general population and is vir-

tually non-existent in other populations from the

1000 Genomes Project. A genome-wide significant

risk locus for schizophrenia and bipolar disorder has

been identified in an ethnically homogeneous cohort

of Ashkenazi Jewish individuals [70]. The top signal

(rs 11098403) is an inter-genic variant located in

NDST3 and was replicated in 11 independent

cohorts of varying ethnicities. Recently, a Greek iso-

lated population replicated a genome-wide signifi-

cant association between R19X, a cardioprotective

variant in APOC3, and low blood triglyceride levels

[29]. This study also demonstrated that associations

discovered in population isolates can be generaliz-

able, as the same variant (R19X) had previously

been discovered in the Amish founder population

[71].

FUTUREDIRECTIONS
Population isolates are uniquely positioned to usher

in the new era of sequence-based association studies.
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The relative power advantages afforded by studying

isolates have been well-documented and recently

exemplified in the literature through successful iden-

tification of complex trait loci that replicate in other

populations. Not all novel discoveries in isolates can

be recapitulated in other populations. However, pri-

vate variants detected in isolates can importantly

point to novel biology, identifying potential path-

ways and loci involved in the aetiopathogenesis of

clinically relevant traits. Large-scale efforts to

synthesize genome-wide data across isolated popula-

tions are an intuitive next step in the field, and hold

the promise of catalysing the discovery of further

complex trait-associated variants.

Key points

� The population genetics characteristics of an isolate depend on
demographic history and the number of bottlenecks/founding
events, total number of founders, levels of endogamy, age and
duration of isolation.

� Genetic consequences of isolation such as reducedhaplotype di-
versity and genetic drift can enhance the power for locus identi-
fication in genetic association studies of complex traits.
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