
PROCEEDINGS Open Access

Near-optimal assembly for shotgun sequencing
with noisy reads
Ka-Kit Lam1, Asif Khalak2, David Tse1*

From RECOMB-Seq: Fourth Annual RECOMB Satellite Workshop on Massively Parallel Sequencing
Pittsburgh, PA, USA. 31 March - 05 April 2014

Abstract

Recent work identified the fundamental limits on the information requirements in terms of read length and
coverage depth required for successful de novo genome reconstruction from shotgun sequencing data, based on
the idealistic assumption of no errors in the reads (noiseless reads). In this work, we show that even when there is
noise in the reads, one can successfully reconstruct with information requirements close to the noiseless
fundamental limit. A new assembly algorithm, X-phased Multibridging, is designed based on a probabilistic model
of the genome. It is shown through analysis to perform well on the model, and through simulations to perform
well on real genomes.

Background
Optimality in the acquisition and processing of DNA
sequence data represents a serious technology challenge
from various perspectives including sample preparation,
instrumentation and algorithm development. Despite
scientific achievements such as the sequencing of the
human genome and ambitious plans for the future [1,2],
there is no single, overarching framework to identify the
fundamental limits in terms of information requirements
required for successful output of the genome from the
sequence data.
Information theory has been successful in providing the

foundation for such a framework in digital communication
[3], and we believe that it can also provide insights into
understanding the essential aspects of DNA sequencing.
A first step in this direction has been taken in the recent
work [4], where the fundamental limits on the minimum
read length and coverage depth required for successful
assembly are identified in terms of the statistics of various
repeat patterns in the genome. Successful assembly is
defined as the reconstruction of the underlying genome,
i.e. genome finishing [5]. The genome finishing problem is
particularly attractive for analysis because it is clearly and

unambiguously defined and is arguably the ultimate goal
in assembly. There is also a scientific need for finished
genomes [6,7]. Until recently, automated genome finishing
was beyond reach [8] in all but the simplest of genomes.
New advances using ultra-long read single-molecule
sequencing, however, have reported successful automated
finishing [9,10]. Even in the case where finished assembly
is not possible, the results in [4] provide insights on opti-
mal use of read information since the heart of the problem
lies in how one can optimally use the read information to
resolve repeats.
Figure 1a gives an example result for the repeat statis-

tics of E. coli K12. The x-axis of the plot is the read
length and the y-axis is the coverage depth normalized
by the Lander-Waterman depth (number of reads
needed to cover the genome [11]). The lower bound
identifies the necessary read length and coverage depth
required for any assembly algorithm to be successful
with these repeat statistics. An assembly algorithm
called Multibridging Algorithm was presented, whose
read length and coverage depth requirements are very
close to the lower bound, thus tightly characterizing the
fundamental information requirements. The result
shows a critical phenomenon at a certain read length
L =ℓcrit: below this critical read length, reconstruction is
impossible no matter how high the coverage depth;
slightly above this read length, reconstruction is possible

* Correspondence: dnctse@gmail.com
1Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, California, United States
Full list of author information is available at the end of the article

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

© 2014 Lam et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:dnctse@gmail.com
http://creativecommons.org/licenses/by/4.0
http://�creativecommons.org/publicdomain/zero/1.0/

with Lander-Waterman coverage depth. This critical read
length is given byℓcrit = max{ℓint,ℓtri}

, whereℓint is the
length of the longest pair of exact interleaved repeats
andℓtri is the length of the longest exact triple repeat in
the genome, and has its roots in earlier work by Ukkonen
on Sequencing-by-Hybridization [12]. The framework
also allows the analysis of specific algorithms and the
comparison with the fundamental limit; the plot shows
for example the performance of the Greedy Algorithm
and we see that its information requirement is far from
the fundamental limit.
A key simplifying assumption in [4] is that there are

no errors in the reads (noiseless reads). However reads
are noisy in all present-day sequencing technologies,
ranging from primarily substitution errors in Illumina ®

platforms, to primarily insertion-deletion errors in Ion
Torren ® and PacBio ® platforms. The following ques-
tion is the focus of the current paper: in the presence of
read noise, can we still successfully assemble with a read
length and coverage depth close to the minimum in the
noiseless case? A recent work [13] with an existing
assembler suggests that the information requirement for

genome finishing substantially exceeds the noiseless
limit. However, it is not obvious whether the limitations
lie in the fundamental effect of read noise or in the
sub-optimality of the algorithms in the assembly pipeline.

Results
The difficulty of the assembly problem depends crucially
on the genome repeat statistics. Our approach to answer-
ing the question of the fundamental effect of read noise is
based on design and analysis using a parametric probabil-
istic model of the genome that matches the key features of
the repeat statistics we observe in genomes. In particular,
it models the presence of long flanked repeats which are
repeats flanked by statistically uncorrelated region. Figure
1b shows a plot of the predicted information requirement
for reliable reconstruction by various algorithms under a
substitution error rate of 1%. The plot is based on analyti-
cal formulas derived under our genome model with para-
meters set to match the statistics of E. coli K12. We show
that it is possible in many cases to develop algorithms that
approach the noiseless lower bound even when the reads
are noisy. Specifically, the X-phased Multibridging
Algorithm has close to the same critical read length
L =ℓcrit as in the noiseless case and only slightly greater
coverage depth requirement for read lengths greater than
the critical read length.
We then proceed to build a prototype assembler based

on the analytical insights and we perform experiments on
real genomes. As shown in Figure 2, we test the prototype
assembler by using it to assemble noisy reads sampled
from 4 different genomes. At coverage and read length
indicated by a green circle, we successfully assemble noisy
reads into one contig (in most cases with more than 99%
of the content matched when compared with the ground
truth). Note that the information requirement is close to
the noiseless lower bound. Moreover, the algorithm
(X-phased Multibridging) is computationally effisscient
with the most computational expensive step being the
computation of overlap of reads/K-mers, which is an una-
voidable procedure in most assembly algorithms.
The main conclusion of this work is that, with an

appropriately designed assembly algorithm, the informa-
tion requirement for genome assembly is surprisingly
insensitive to read noise. The basic reason is that the
redundancy required by the Lander-Waterman coverage
constraint can be used to denoise the data. This is consis-
tent with the asymptotic result obtained in [14] and the
practical approach taken in [9]. However, the result in [14]
is based on a very simplistic i.i.d. random genome model,
while the model and genomes considered in the present
paper both have long repeats. A natural extension of the
Multibridging Algorithm in [4] to handle noisy reads
allows the resolution of these long flanked repeats if
the reads are long enough to span them, thus allowing

Figure 1 Information requirement to reconstruct E. coli K12.
ℓcrit = 1744, �̃crit = 3393

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 2 of 14

reconstruction provided that the read length is greater

than L = �̃crit = max
{
�̃int, �̃tri

}
, where �̃int is the length of

the longest pair of flanked interleaved repeats andℓtri is the
length of the longest flanked triple repeat in the genome.
This condition is shown as a vertical asymptote of the
“Multibridging Algorithm” curve in Figure 1b. By

exploiting the redundancy in the read coverage to resolve
read errors, the X-phased Multibridging can phase the
polymorphism across the flanked repeat copies using only
reads that span the exact repeats. Hence, reconstruction is
achievable with a read length
close to L =ℓcrit,s which is the noiseless limit.

Related work
All assemblers must somehow address the problem of
resolving noise in the reads during genome reconstruc-
tion. However, the traditional approaches to measuring
assembly performance makes quantitative comparisons
challenging for unfinished genomes [15]. In most cases,
the heart of the assembly problem lies in processing of
the assembly graph, as in [16-18]. A common strategy
for dealing with ambiguity from the reads lies in filtering
the massively parallel sequencing data using the graph
structure prior to traversing possible assembly solutions.
In the present work, however, we are focused on the
often-overlooked goal of optimal data efficiency. Thus,
to the extent possible we distinguish between the read
error and the mapping ambiguity associated with the shot-
gun sampling process. The proposed assembler, X-phased
Multibridging, adds information to the assembly graph
based on a novel analysis of the underlying reads.

Methods
The path towards developing X-phased Multibridging is
outlined as follows.
1 Setting up the shotgun sequencing model and problem

formulation.
2 Analyzing repeats structure of genome and their

relationship to the information requirement for genome
finishing.
3 Developing a parametric probabilistic model that

captures the long tail of the repeat statistics.
4 Deriving and analyzing an algorithm that require

minimal information requirements for assembly -close
to the noiseless lower bound.
5 Performing simulation-based experiments on real

and synthetic genomes to characterize the performance
of a prototype assembler for genome finishing.
6 Extending the algorithm to address the problem of

indel noise.

Shotgun sequencing model and problem
formulation
Sequencing model
Let s be a length G target genome being sequenced with
each base in the alphabet set Σ = {A, C, G, T}. In the
shotgun sequencing process, the sequencing instrument
samples N reads, −→r 1,...,

−→r N of length L and sampled
uniformly and independently from s. This unbiased
sampling assumption is made for simplicity and is also

Figure 2 Simulation results on a prototype assembler
(substitution noise of rate 1.5 %)

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 3 of 14

supported by the characteristics of single-molecule
(e.g. PacBio ®) data. Each read is a noisy version of the
corresponding length L substring on the genome.
The noise may consist of base insertions, substitutions
or deletions. Our analysis focus on substitution noise
first. In a later section, indel noise is addressed. In the
substitution noise model, let p be the probability that a
base is substituted by another base, with probability p/3
to be any other base. The errors are assumed to be
independent across bases and across reads.

Formulation
Successful reconstruction by an algorithm is defined by
the requirement that, with probability at least 1 - �, the
reconstruction ŝ is a single contig which is within edit dis-
tance δ from the target genome s. If an algorithm can
achieve that guarantee at some (N, L), it is called �-feasible
at (N, L). This formulation implies automated genome fin-
ishing, because the output of the algorithm is one single
contig. The fundamental limit for the assembly problem is
the set of (N, L) for which successful reconstruction is pos-
sible by some algorithms. If ŝ is directly spelled out from a
correct placement of the reads, the edit distance between
ŝ and s is of the order of pG, where the error rate is p.
This motivates fixing δ = 2pG for concreteness. The qual-
ity of the assembly can be further improved if we follow
the assembly algorithm with a consensus stage in which
we correct each base, e.g. with majority voting. But the
consensus stage is not the focus in this paper.

Repeats structure and their relationship to the
information requirement for successful
reconstruction
Long exact repeats and their relationship to assembly
with noiseless reads
We take a moment to carefully define the various types
of exact repeats. Let s�

t denote the length-ℓ substring of
the DNA sequence s starting at position t. An exact
repeat of length ℓ is a substring appearing twice, at

some positions t1, t2 (so s�
t1

= s�
t2
) that is maximal

(i.e. s(t1 - 1) ≠ s(t2 - 1) and s(t1 +ℓ) ≠ s(t2 +ℓ)).
Similarly, an exact triple repeat of length-ℓ is a substring

appearing three times, at positions t1, t2, t3, such that

s�
t1

= s �
t2

= s�
t3
, and such that neither of s(t1-1) = s(t2 - 1) =

s(t3-1) nor s(t1+ℓ) = s(t2+ℓ) = s(t3 +ℓ) holds.
A copy of a repeat is a single one of the instances of the

substring appearances. A pair of exact repeats refers to
two exact repeats, each having two copies. A pair of exact
repeats, one at positions t1, t3 with t1 < t3 and the second
at positions t2, t4 with t2 < t4, is interleaved if t1 < t2 < t3 <
t4 or t2 < t1 < t4 < t3. The length of a pair of exact inter-
leaved repeats is de-fined to be the length of the shorter of
the two exact repeats. A typical appearance of a pair of

exact interleaved repeat is -X-Y-X-Y- where × and Y
represent two different exact repeat copies and the dashes
represent non-identical sequence content.
We letℓmax be the length of the longest exact repeat,ℓint

be the length of the longest pair of exact interleaved
repeats andℓtri be the length of the longest exact triple
repeat.
As mentioned in the introduction, it was observed that

the read length and coverage depth required for successful
reconstruction using noiseless reads for many genomes is
governed by long exact repeats. For some algorithms
(e.g. Greedy Algorithm), the read length requirement is
bottlenecked byℓmax

. The Multi-bridging Algorithm in [4]
can successfully reconstruct the genome with a minimum
amount of information. The corresponding minimum
read length requirement is the critical exact repeat
lengthℓcrit = max(ℓint,ℓtri).

Flanked repeats
While exact repeats are defined as the segments termi-
nated on each end by a single differing base (Figure 3a),
flanked repeats are defined by the segments terminated on
each end by a statistically uncorrelated region. We call that
ending region to be the random flanking region. A distin-
guishing characteristic of the random flanking region is a
high Hamming distance to segment length ratio between
the ends of two repeat copies. The ratio in the random
flanking region is around 0.75, which matches with that
when the genomic content is independently and uniformly
randomly generated. We observe that long repeats of
many genomes terminate with random flanking region.
Additional statistical analysis is detailed in the Appendix.
If the repeat interior is exactly the same between two

copies of the flanked repeat (Figure 3b), the corresponding
flanked repeat is called a flanked exact repeat. If there are
a few edits (called polymorphism) within the repeat inter-
ior (Figure 3c), the corresponding flanked repeat is called
a flanked approximate repeat.
The length of the repeat interior bounded by the ran-

dom flanking region is then the flanked repeat length. We
let �̃max be the length of the longest flanked repeat, �̃int be
the length of the longest pair of flanked interleaved repeats
and �̃tri be the length of the longest flanked triple repeat.
The critical flanked repeat length is then

�̃crit = max
(
�̃int , �̃tri

)
.

Long flanked exact repeats and their relationship to
assembly with noisy reads
If all long flanked repeats are flanked exact repeats, we

can utilize the information in the random flanking region
to generalize Greedy Algorithm and Multi-bridging
Algorithm to handle noisy reads. The corresponding infor-
mation requirement is very similar to that when we are
dealing with noiseless reads.

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 4 of 14

The key intuition is as follows. A criterion for success-
ful reconstruction is the existence of reads to span the
repeats to their neighborhood. When a read is noiseless,
it only need to be long enough to span the repeat inter-
ior to its neighborhood by one base (Figure 4a) so as to
differentiate between two exact repeat copies. When a
read is noisy, it then need to be long enough to span
the repeat interior plus a short extension into the ran-
dom flanking region (Figure 4b) so as to confidently dif-
ferentiate between two flanked repeat copies. However,
the Hamming distance between two flanked repeat
copies’ neighborhood in the random flanking region is
very high even within a short length. This can be used
to differentiate between two flanked repeat copies confi-
dently even when the reads are noisy. The short exten-
sion into the random flanking region has a length which
is typically of order of tens whereas the long repeat
length is of order of thousands. Therefore, relative to
the repeat length, the change of the critical read length

requirement from handling noiseless reads to noisy
reads is only marginal when all long repeats are flanked
exact repeats.
Long flanked approximate repeats and their relation-

ship to assembly with noisy reads
If a long flanked repeat is a flanked approximate

repeat, the flanked repeat length may be significantly
longer than the length of its longest enclosed exact
repeat. Merely relying on the information provided by
the random flanking region requires the reads to be of
length longer than the flanked repeat length for success-
ful reconstruction. This explains why the information
requirement for Greedy Algorithm and Multibridging
Algorithm has a significant increase when we use noisy
reads instead of noiseless reads (as shown in Figure 1b).
However, if we utilize the information provided by the
coverage, we can still confidently differentiate different
repeat copies by phasing the small edits within the
repeat interior (Figure 4c). Specifically, we design
X-phased Multibridging whose information requirement
is close to the noiseless lower bound even when some
long repeats are flanked approximate repeats, as shown
in Figure 1b.
From information theoretic insight to algorithm

design
Because of the structure of long flanked repeats, there

are two important sources of information that we speci-
fically want to utilize when designing data efficient algo-
rithms to assemble noisy reads. They are
The random flanking region beyond the repeat

interior
The coverage given by multiple reads overlapping at

the same site
Greedy Algorithm(Alg 1) utilizes the random flanking

region when considering overlap. The minimum read
length needed for successful reconstruction is close to
�̃max .
Multibridging Algorithm(Alg 2) also utilizes the random

flanking region but it improves upon Greedy Algorithm by
using a De Bruijn graph to aid the resolution of flanked
repeats. The minimum read length needed for successful
reconstruction is close to �̃crit .
X-phased Multibridging(Alg 3) further utilizes the

coverage given by multiple reads to phase the poly-
morphism within the repeat interior of flanked approxi-
mate repeats. The minimum read length needed for
successful reconstruction is close toℓcrit, which is the
noiseless lower bound even when some long repeats are
flanked approximate repeats.

Model for genome
To capture the key characteristics of repeats and to guide
the design of assembly algorithms, we use the following
parametric probabilistic model for genome. A target

Figure 3 Repeat pattern.

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 5 of 14

genome is modeled as a random vector s of length G that
has the following three key components (a pictorial repre-
sentation is depicted in Figure 5).
Random background: The background of the genome

is a random vector, composed of uniformly and indepen-
dently picked bases from the alphabet set Σ= {A, C, G, T}.
Long flanked repeats: On top of the random back-

ground, we randomly position the longest flanked repeat
and the longest flanked triple repeat. Moreover, we ran-
domly position a flanked repeat interleaving the longest
flanked repeat, forming the longest pair of flanked inter-
leaved repeat. The corresponding length of the flanked
repeats are �̃max , �̃tri , and �̃int respectively. It is noted

that �̃max > max
(
�̃int, �̃tri

)
.

Polymorphism and long exact repeats: Within the
repeat interior of the flanked repeats, we randomly posi-
tion nmax, nint and ntri edits (polymorphism) respectively.
The sites of polymorphism are chosen such that the
longest exact repeat, the longest pair of exact interleaved
repeats and the longest exact triple repeat are of
lengthℓmax,ℓint andℓtri respectively.

Algorithm design and analysis
Greedy Algorithm
Read R2 is a successor of read R1 if there exists length-W
suffix of R1 and length-W prefix of R2 such that they are
extracted from the same locus on the genome. Further-
more, there is no other reads that can satisfy the same
condition with a larger W. To properly determine succes-
sors of reads in the presence of long repeats and noise,
we need to define an appropriate overlap rule for reads.
In this section, we show the conceptual development
towards defining such a rule, which is called RA-rule.
Noiseless reads and long exact repeats: If the reads are

noiseless, all reads can be paired up with their successors
correctly with high probability when the read length
exceedsℓmax. It was done [4] by greedily pairing reads and
their candidate successors based on their overlap score in
descending order. When a read and a candidate successor
are paired, they will be removed from the pool for pairing.
Here the overlap score between a read and a candidate
successor is the maximum length such that the suffix of
the read and prefix of the candidate successor match
exactly.

Figure 4 Intuition behind the information requirement.

Figure 5 Model for genome.

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 6 of 14

Noisy reads and random background: Since we cannot
expect exact match for noisy reads, we need a different
way to define the overlap score. Let us consider the
following toy situation. Assume that we have exactly one
length-(ℓ + 1) noisy read starting at each locus of a length
G random genome(i.e. only consists of the random back-
ground). Each read then overlaps with its successor
precisely by ℓ bases. Analogous to the noiseless case, one
would expect to pair reads greedily based on overlap
score. Here the overlap score between a read and a candi-
date successor is the maximum length such that the suffix
(x) of the read and prefix (y) of the candidate successor
match approximately. To determine whether they match
approximately, one can use a predefined a threshold factor
a and compute the Hamming distance d(x, y). If d(x, y) ≤
a· ℓ, then they match approximately, otherwise not. Given
this decision rule, we can have false positive (i.e. having
any pairs of reads mistakenly paired up) and false negative
(i.e. having any reads not paired up with the true succes-
sors). If false positive and false negative probability are
small, this naive method is a reliable enough metric. This
can be achieved by using a long enough length ℓ >ℓiid and
an appropriately chosen threshold a.
Recall that ∈is the overall failure probability. By bound-

ing the sum of false positive and false negative probability
by �/3, one can findℓiid (p, �/3, G) and a(p, �/3, G) to be
the (ℓiid, a) solution to the following pair of equations:

G2 · exp
(

−�iid · D
(

α ‖ 3
4

))
=

∈
6

(1)

G · exp
(

−�iid · D
(

α ‖ 2p − 4
3

p2
))

=
∈
6

(2)

where D (a ‖ b) = a log
a
b

+ (1 − a) log
1 − a
1 − b

is the

Kullback-Leibler divergence.
Noisy reads and long flanked repeats: However, when

the genome contains long flanked repeats on top of the
random background, this naive rule of determining overlap
is not enough. Let us look at the example in Figure 6. As
shown in Figure 6, because of long flanked repeats, we
have a small ratio of overall distance against the overlap

length for the segments that are extracted from different
copies of the repeat (e.g Segment 1 and Segment 3 in
Figure 6). Therefore, the overall Hamming distance
between two segments is not a good enough metric for
defining overlap. If we abide by the naive rule, we need
to increase the read length significantly longer than the
flanked repeat length so as to guarantee confidence in
deciding approximate match. Otherwise, it will either
result in a high false positive rate (if we set a large a) or
a high false negative rate (if we set a small a). To prop-
erly handle such scenario, we define a repeat-aware rule
(or RA-rule).
· RA-matching: Two segments (x, y) of length W

match under the RA-rule if and only if the distance
between whole segments is < a · W and both of its end-
ing segments(of length ℓiid) also have distance < a · ℓiid.
· RA-overlap: The overlap score between a read and a

candidate successor under the RA-rule is the maximum
length such that the suffix of the read and prefix of the
candidate successor match under the RA-matching.
The RA-rule is particularly useful because it puts an

emphasis on both ends of the overlap region. Since the
ends are separated by a long range, one end will hope-
fully originate from the random flanking region of the
flanked repeat. If we focus on the segments originating
from the random flanking region, the distance per seg-
ment length ratio will be very high when the segments
originate from different copies of the repeat but very
low when they originate from the same copy of the
repeat. This is how we utilize the random flank-ing
region to differentiate between repeat copies and deter-
mine correct successors in the presence of long flanked
repeats and noise.
If we use Greedy Algorithm (Alg 1) to merge reads

greedily with this overlap rule (RA-rule), Prop 1 shows
the information requirement under the previously
described sequencing model and genome model. A plot
is shown in Figure 1b. Sinceℓiid is of order of tens
whereas �̃max is of order of thousands, the read length
requirement for Greedy Algorithm to succeed is domi-
nated by �̃max . The detailed proof of Prop 1 is given in
Appendix.

Figure 6 Intuition about why we define the overlap rule to be RA-overlap rule.

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 7 of 14

Algorithm 1 Greedy Algorithm
Initialize contigs to be reads
for W = L to ℓiid do
ifany two contigs x, y are of overlap W under RA-

rule
then
merge x, y into one contig.

end
end
Proposition 1 With �iid = �iid

(
p,

∈
3

, G
)
, if

L > �̃max + 2�iid,

N > max

(
G In

(
3/ ∈)

L − �̃max − 2�iid
,

G In
(
3N/ ∈)

L − �̃max − 2�iid

)

then, Greedy Algorithm(Alg 1) is � - feasible at (N, L).

Multibridging Algorithm
The read length requirement of Greedy Algorithm has a
bottleneck around �̃max because it requires at least one
copy of each flanked repeat to be spanned by at least one
read for successful reconstruction. Spanning a repeat by a
single read is called bridging in [4]. A natural question is
whether we need to have all repeats bridged for successful
reconstruction.
In the noiseless setting, [4] shows that this condition can

be relaxed. Using noiseless reads, one can have successful
reconstruction given all copies of each exact triple repeat
being bridged, and at least one copy of one of the repeats
in each pair of exact interleaved repeats being bridged.
A key idea to allow such a relaxation in [4] is to use a

De Bruijn graph to capture the structure of the genome.
When the reads are noisy, we can utilize the random

flanking region to specify a De Bruijn graph with high
confidence by RA-rule and arrive at a similar relaxation.
By some graph operations to handle the residual errors,
we can have successful reconstruction with read length

�̃crit + 2 · �iid < L < �̃max . The algorithm is summarized
in Alg 2. Prop 2 shows its information requirement
under the previously described sequencing model and
genome model. A plot is shown in Figure 1b. We note
that Alg 2 can be seen as a noisy reads generalization of
Multibridging Algorithm for noiseless reads in [4].
Description and its performance

Proposition 2 With �iid = �iid

(
p,

∈
3

, G
)
, if L > �̃crit + 2�iid,

N > max

(
G In

(
3/ ∈)

L − �̃crit − 2�iid
,
G In

(
3N/ ∈)

L − 2�iid

)

then, Multibridging Algorithm(Alg 2) is � - feasible at
(N, L).

Detailed proof is given in the Appendix. The following
sketch highlights the motivation behind the key steps of
Multibridging Algorithm.
[Step1] We set a large K value to make sure the K-mers

overlapping the shorter repeat of the longest pair of
flanked interleaved repeats and the longest flanked triple
repeat can be separated as distinct clusters.
[Step2] Clustering is done using the RA-rule because

of the existence of long flanked repeats and noise.
[Step3] A K-mer cluster corresponds to an equivalence

class for K-mers matched under the RA-rule. This step
forms a De Bruijn graph with K-mer clusters as nodes.
[Step4] Because of large K, the graph can be discon-

nected due to insufficient coverage. In order to reduce the
coverage constraint, we connect the clusters greedily.
[Step5, 7] These two steps simplify the graph. [Step6]

Branch clearing repairs any incorrect merges near the
boundary of long flanked repeat.
[Step8] Since an Euler path in the condensed graph cor-

responds to the correct genome sequence, it is traversed
to form the reconstructed genome.
Some implementation details: improvement on time and
space efficiency
For Multibridging Algorithm, the most computational
expensive step is the clustering of K-mers. To improve the
time and space efficiency, this clustering step can be
approximated by performing pairwise comparison of reads.
Algorithm 2 Multibridging Algorithm
1. Choose K to be �̃crit + 2�iid and extract K-mers

from reads.
2. Cluster K-mers based on the RA-rule.
3. Form uncondensed De Bruijn graph GDe - Bruijn =

(V, E) with the following rule:

a) K-mers clusters as node set V .
b) (u, v) = e � E if and only if there exists K-mers u1
� u and v1 � v such that u1,v1are consecutive K-mers
in some reads.

4. Join the disconnected components of GDe-Bruijn

together by the following rule:
for W = K - 1 to ℓiid do
for each node u which has either no predecessors /

successors in GDe-Bruijn do
a) Find the predecessor/successor v for u from all

possible K-mers clusters such that overlap length(using
any representative K-mers in that cluster) between u
and v is W under RA-rule.

b) Add dummy nodes in the De Bruijn graph to
link u with v and update the graph to GDe-Bruijn end
end
5. Condense the graph GDe - Bruijn to form Gstring with

the following rule:

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 8 of 14

a)Initialize Gstring to be GDe - Bruijn with node labels
of each node being its cluster group index.
b)while ∃ successive nodes u ® v such that out -
degree(u) = 1and in - degree(v) = 1 do

bi) Merge u and v to form a new node w
bii) Update the node label of w to be the concate-

nation of node labels of u and v
end
6. Clear Branches of Gstring:
for each node u in the condensed graph Gstring do
if out - degree(u) > 1 and that all the successive paths

are of the same length(measured by the number of node
labels) and then joining back to node v and the path
length < ℓiid

then
we merge the paths into a single path from u to v.
end
end
7. Condense graph Gstring

8. Find the genome :

a)Find an Euler Cycle/Path in Gstring and output the
concatenation of the node labels to form a string
−→s labels .

b)Using −→s labels and look up the associated K-mers

to form the final recovered genome ŝ .

Based on the alignment of the reads, we can cluster
K-mers from different reads together using a disjoint set
data structure that supports union and find operations.
Since only reads are used in the alignment, only the
K-mer indices along with their associated read indices and
offsets need to be stored in memory– not all the K-mers.
Pairwise comparison of reads roughly runs in �̃

(
N2L2

)
if done in the naive way. To speed up the pairwise com-
parison of noisy reads, one can utilize the fact that the
read length is long. We can extract all consecutive f-mers
(which act as fingerprints) of the reads and do a lexicogra-
phical sort to find candidate neighboring reads and asso-
ciated offsets for comparison. Since the reads are long, if
two reads overlap, there should exist some perfectly
matched f-mers which can be identified after the
lexicographical sort. This allows an optimized version of

Multibridging Algorithm to run in �̃

(
NL · NL

G

)
time

and �̃
(
NLf

)
space.

X-phased Multibridging
As shown in Figure 1b, when long repeats are flanked
approximate repeats, there can be a big gap between the
noiseless lower bound and the information requirement
for Multibridging Algorithm. A natural question is

whether this is due to a fundamental lack of information
from the reads or whether Multibridging Algorithm
does not utilize all the available information. In this
section, we demonstrate that there is an important
source of information provided by coverage which is not
utilized by Multibridging Algorithm. In particular, we
introduce X-phased Multibridging, an assembly
algorithm that utilizes the information provided by cov-
erage to phase the polymorphism in long flanked repeat
interior. The information requirement of X-phased
Multibridging is close to the noiseless lower bound (as
shown in Figure 1b) even when some long repeats are
flanked approximate repeats.

Description of X-phased Multibridging
Multibridging Algorithm utilizes the random flanking
region to differentiate between repeat copies. However,
for a flanked approximate repeat, its enclosed exact
repeat does not terminate with the random flanking
region but only terminates with sparse polymorphism.
When we consider the overlap of two reads originating
from different copies of a flanked approximate repeat,
the distinguishing polymorphism is so sparse that it can-
not be used to confidently differentiate between repeat
copies. Therefore, there is a need to use the extra
redundancy introduced by the coverage from multiple
reads to confidently differentiate between repeat copies
and that is what X-phased Multibridging utilizes.
X-phased Multibridging (Alg 3) follows the algorithmic

design of Multibridging Algorithm. However, it adds an
extra phasing procedure to differentiate between repeat
copies of long flanked repeats that Multi-bridging Algo-
rithm cannot confidently differentiate. We recall that
after running step 7 of Multibridging Algorithm, a node
in the graph Gstring corresponds to a substring of the gen-
ome and has node label consisting of consecutive K-mer
cluster indices. An X-node of Gstring is a node that has
in-degree and out-degree ≥ 2. X-node indeed corresponds
to a flanked repeat. The incoming/outgoing nodes of the
X-node correspond to the incoming/outgoing random
flanking region of the flanked repeat.
To be concrete, we focus the discussion on a pair of

flanked interleaved repeats, assuming triple repeats are
not the bottleneck. However, the ideas presented can be
generalized to repeats of more copies.
For the flanked approximate repeat with length ℓint <

L and �̃int > L (as shown in Figure 7), there is no
node-disjoint paths joining incoming/outgoing random
flanking region with the distinct repeat copies in Gstring.
It is because the reads are corrupted by noise and the
polymorphism is too sparse to differentiate between the
repeat copies. Executing Multibridging Algorithm
directly will result in the formation of an X-node, which
is an artifact due to K-mers from different copies of the

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 9 of 14

flanked approximate repeat erroneously clustered
together.
Successful reconstruction requires an algorithm to pair

up the correct incoming/outgoing nodes of the X-node
(i.e. decide how W, W ′ and Y, Y ′ are linked in Figure 7).
This is handled by the phasing procedure in X-phased
Multibridging, which uses all the reads information. The
phasing procedure is composed of two main steps:

Consensus step: Confidently find out where the sites
of polymorphism are located within the flanked
repeat interior.

Read extension step: Confidently determine how to
extend reads using the random flanking region and
sites of polymorphism as anchors.

Consensus step For the X-node of interest, let D be
the set of reads originating from any sites of the asso-
ciated flanked repeat region and let x1 and x2 denote
the associated repeat copies. Since the random flanking
region is used as anchor, it is treated as the starting
base (i.e. x1(0) = W and x2 (0) = W ′). For the ith subse-
quent site of the flanked repeat (where 1 ≤ i ≤ �̃int), we
determine the consensus according to Eq (3). This can

Figure 7 Illustration of how to phase polymorphism to extend reads across repeats.

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 10 of 14

be implemented by counting the frequency of occur-
rence of each alphabet overlapping at each site of the
repeat. The consensus result determines the sites of
polymorphism and the most likely pairs of bases at the
sites of polymorphism.

max
F⊂{A,C,G,T}2

P ({x1 (i) , x2 (i)} = F|D) (3)

Read extension step After knowing the sites of poly-
morphism, we use those reads that span the sites of
polymorphism or random flanking region to help decide
how to extend reads across the flanked repeat. Let s be
the possible configuration of alphabets at the sites of
polymorphism and random flanking region (e.g.
σ =

(
ACY, GTY ′) means that the two copies of the

flanked repeat with the corresponding random flanking
region respectively are W-A-C-Y, W’-G-T-Y’ where the
common bases are omitted).
Algorithm 3 X-phased Multibridging
1. Perform Step 1 to Step 7 of MultiBridging

Algorithm
2. For every X-node x � Gstring

a)Align all the relevant reads to the flanked repeat x
b)Consensus step: Consensus to find location of
polymorphism by solving Eq (3)
c)Read extension step: If possible, resolve flanked
repeat(i.e. pair up the incoming/outgoing nodes of x)
by either countAlg or by solving Eq (4)

3. Perform Step 8 of MultiBridging Algorithm as in
Alg 2
The following maximum a posteriori estimation is

used to decide the correct configuration.

max
σ

P
(
σ̂ = σ |D, {x1 (i) , x2 (i)}�̃int

i=1

)
where σ̂ is the estimator, D is the raw read set, and

x1, x2 are the estimates from the consensus step. It is
noted that the size of the feasible set for s is 2n int+1.
In practice, for computational effciency, the maximiza-

tion in Eq (4) can be approximated accurately even if it is
replaced by the simple counting illustrated in Figure 7,
which we call count-to-extend algorithm(countAlg).
CountAlg uses the raw reads to establish majority vote on
how one should extend to the next sites of polymorphism
using only the reads that span the sites of polymorphism.

Performance
After introducing the phasing procedure in X-phased
Multibridging, we proceed to find its information
requirement for successful reconstruction.
The information requirement for X-phased Multibrid-

ging is the amount of information required to reduce the

error of the phasing procedure to a negligible level. The
phasing procedure - step 2 in Alg. 3 - is a combination of
consensus and read extension steps, which contribute to
the error as follows.
Let ε be the error event of the repeat phasing procedure

for a repeat, �1 be the error probability for the consensus
step, �2 be the error probability for the read= extension
step given k reads spanning each consecutive site of poly-
morphism within the flanked repeat, δcov be the probability
for having k reads spanning each consecutive sites of poly-
morphism (i.e. k bridging reads) within the flanked repeat.
We have,

P (ε) ≤ ∈1 + ∈2 + δcov (5)

Therefore, to guarantee confidence in the phasing pro-
cedure, it suffices to upper bound �1,�2 and δcov. We
tabulate the error probabilities of �1, �2 in Table 1 for
phasing a flanked repeat (whose length is 5000 whereas
the genome length is 5M). The flanked repeat has two
sites of polymorphism which partition it into three
equally spaced segments.
From Table 1, when p = 0.01, the information require-

ment translates to the condition of having three brid-
ging reads spanning the shorter exact repeat of the
longest pair of exact interleaved repeats. Therefore, the
information requirement for X-phased Multibridging
shown in Figure 1b also corresponds to this condition.
It is noted that X-phased Multibridging has the same
vertical asymptote as the noiseless lower bound. The
vertical shift is due to the increase of requirement on
the number of bridging reads from k = 1 (noiseless
case) to k = 3 (noisy case).

Table 1 Calibration of error probability made by the
phasing procedure of X-phased Multibridging

p Coverage (NL/G) �1

0.01 20 0.00

0.01 40 0.00

0.01 60 0.00

0.1 20 0.16

0.1 40 0.00

0.1 60 0.00

(a) Calibration for �1.

p Number of bridging reads k Upper bound for �2

0.01 1 0.060

0.01 3 0.0036

0.01 5 0.00024

0.1 11 0.089

0.1 21 0.022

0.1 31 0.0059

(b) Calibration for �2

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 11 of 14

Simulation of the prototype assembler
Based on the algorithmic design presented, we implement
a prototype assembler for automatic genome finishing
using reads corrupted by substitution noise. First, the
assembler was tested on synthetic genomes, which were
generated according to the genome model described pre-
viously. This demonstrates a proof-of-concept that one
can achieve genome finishing with read length close to
ℓcrit, as shown in Figure 8. The number on the line repre-
sents the number of simulation rounds (out of 100) in
which the reconstructed genome is a single contig with
≥ 99% of its content matching the ground truth.
Second, the assembler was tested using synthetic reads,

sampled from genome ground truth downloaded from
NCBI. The assembly results are shown in Table 2. The
observation from the simulation result is that we can
assemble genomes to finishing quality with information
requirement near the noiseless lower bound. More infor-
mation about the detail design of the prototype assembler

is presented in the Appendix and source code/data set can
be found in [19].

Extension to handle indel noise
A further extension of the prototype assembler
addresses the case of reads corrupted by indel noise.
Similar to the case of substitution noise, tests were per-
formed on synthetic reads sampled from real genomes
and synthetic genomes. Simulation results are summar-
ized in Table 3 where pi, pd are insertion probability
and deletion probability and rate is the number of suc-
cessful reconstruction(i.e. simulation rounds that show
mismatch < 5%) divided by total number of simulation
rounds. The simulation result for indel noise corrupted
reads shows that X-phased Multibridging can be gener-
alized to assemble indel noise corrupted reads. The
information requirement for automated finishing is
about a factor of two from the noiseless lower bound
for both N and L.

Figure 8 Simulation results on the assembly of synthetic genomes using reads corrupted by substitution noise. The parameters are as
follows. G = 10k; �̃max = �max = 500 , �̃int = 200 , ℓint = 100 with two sites of polymorphism within the flanked repeat. p= 1.5%,
∈= 5%.

Table 2 Simulation results on the assembly of several real genomes using reads corrupted by substitution noise ((a)
Prochlorococcus marinus (b) Helicobacter pylori (c) Methanococcus maripaludis (d) Mycoplasma agalactiae)withℓcrit = max

(ℓint,ℓtri), �̃crit = max
(
�̃int, �̃tri

)
and Nnoiseless is the lower bound on number of reads in the noiseless case for 1 - � = 95%

confidence recovery

Index Species G p
NL
G

L l̃max l̃crit ℓcrit % match Ncontig
N

Nnoiseless

L

�crit

1 a 1440371 1.5% 37.36 X 930 1817 803 770 100.00 1 1.57 1.21

2 a 1440371 1.5% 33.14 X 970 1817 803 770 99.95 1 1.67 1.26

3 a 1440371 1.5% 29.60 X 1000 1817 803 770 99.99 1 1.66 1.30

4 b 1589953 1.5% 40.82 X 2440 4183 2155 2122 100.00 1 1.30 1.15

5 b 1589953 1.5% 21.31 X 2752 4183 2155 2122 99.99 1 1.19 1.30

6 b 1589953 1.5% 20.66 X 2900 4183 2155 2122 99.99 1 1.35 1.37

7 c 1772693 1.5% 30.03 X 3950 5018 3234 3218 99.96 1 1.36 1.23

8 c 1772693 1.5% 21.96 X 4279 5018 3234 3218 99.97 1 1.33 1.33

9 c 1772693 1.5% 17.03 X 4700 5018 3234 3218 100.00 1 1.31 1.46

10 d 1006701 1.5% 35.23 X 6867 15836 10518 5494 99.05 1 1.72 1.25

11 d 1006701 1.5% 19.88 X 7500 15836 10518 5494 97.86 1 1.30 1.37

12 d 1006701 1.5% 17.69 X 9000 15836 10518 5494 98.10 1 1.68 1.64

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 12 of 14

We remark that one non-trivial generalization is the way
that we form the noisy De Bruijn graph for K-mer clusters.
In particular, we first compute the pairwise overlap align-
ment among reads, then we use the overlap alignment to
group K-mers into clusters. Subsequently, we link succes-
sive cluster of K-mers together as we do in Alg 2. An illus-
tration is shown in Figure 9a. However, due to the noise
being indel in nature, the edges in the noisy De Bruijn
graph may point in the wrong direction as shown in Fig-
ure 9b. In order to handle this, we traverse the graph and
remove such abnormality when they are detected.

Conclusion
In this work, we show that even when there is noise
in the reads, one can successfully reconstruct with

information requirements close to the noiseless funda-
mental limit. A new assembly algorithm, X-phased
Multi-bridging, is designed based on a probabilistic
model of the genome. It is shown through analysis to
perform well on the model, and through simulations to
perform well on real genomes.
The main conclusion of this work is that, with an

appropriately designed assembly algorithm, the infor-
mation requirement for genome assembly is insensitive
to moderate read noise. We believe that the informa-
tion theoretic insight is useful to guide the design of
future assemblers. We hope that these insights allow
future assemblers to better leverage the high through-
put sequencing read data to provide higher quality
assembly.

Table 3 Simulation results on the assembly of creal/synthetic genomes using reads corrupted by indel noise(Synthetic:
randomly generated to fit �̃max , �̃crit , ℓcrit; (a) : Prochlorococcus marinus ; (b): Helicobacter pylori)

Type G pi pd �̃crit L
NL
G

�̃max ℓcrit �̃crit
N

Nnoiseless
Rate

Synthetic 50000 1.5% 1.5% 23.0 X 200 500 200 100 2.25 2 28/30

Synthetic 50000 1.5% 1.5% 24.1 X 180 500 200 100 2.33 1.8 27/30

a 1440371 1.5% 1.5% 28.53 X 1000 1817 803 770 1.60 1.30 1/1

b 1589953 1.5% 1.5% 20.66 X 2900 4183 2155 2122 1.35 1.37 1/1

a

Figure 9 Treatment of reads corrupted by indel noise

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 13 of 14

Additional file 1
Details of the proofs, in-depth description of the design
of the prototype assembler and details of simulation
results are presented.

Competing interests
The authors K.K.L and A.K are or were employees of Pacific Biosciences, a
company commercializing DNA sequencing technologies at the time that
this work was completed.

Authors’ contributions
K.K.L, A.K and D.T performed research and wrote the manuscript. K.K.L
implemented the algorithms and performed the experiments.

Acknowledgements
The assembly experiments were partly done on the computing
infrastructure of Pacific Biosciences.

Declarations
The authors K.K.L and D.T. are partially supported by the Center for Science
of Information (CSoI), an NSF Science and Technology Center, under grant
agreement CCF-0939370.
This article has been published as part of BMC Bioinformatics Volume 15
Supplement 9, 2014: Proceedings of the Fourth Annual RECOMB Satellite
Workshop on Massively Parallel Sequencing (RECOMB-Seq 2014). The full
contents of the supplement are available online at http://www.
biomedcentral.com/bmcbioinformatics/supplements/15/S9.

Authors’ details
1Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, California, United States. 2Pacific Biosciences, Menlo Park, California,
United States Full list of author information is available at the end of the
article.

Published: 10 September 2014

References
1. Peter JTurnbaugh, Ruth ELey, Micah Hamady, Fraser-Liggett MClaire,

Rob Knight, Jeffrey IGordon: The human microbiome project. Nature 2007,
449(7164):804-810.

2. DNA SEQUENCING: A plan to capture human diversity in 1000 genomes.
Science 2007, 21:1842.

3. Claude E Shannon: A mathematical theory of communication. The Bell
System Technical Journal 1948, 27:379-423, 623-656, July, October.

4. Guy Bresler, Ma’ayan Bresler, David Tse: Optimal assembly for high
throughput shotgun sequencing. BMC Bioinformatics 2013.

5. Mihai Pop: Genome assembly reborn:recent computational challenges.
Briefings in bioinformatics 2009, 10(4):354-366.

6. Duccio Medini, Davide Serruto, Julian Parkhill, David ARelman,
Claudio Donati, Richard Moxon, Stanley Falkow, Rino Rappuoli:
Microbiology in the post-genomic era. Nature Reviews Microbiology 2008,
6(6):419-430.

7. Elaine Mardis, John McPherson, Robert Martienssen, Richard KWilson,
McCombie W Richard: What is finished, and why does it matter. Genome
research 2002, 12(5):669-671.

8. David Gordon, Chris Abajian, Phil Green: Consed: a graphical tool for
sequence finishing. Genome research 1998, 8(3):195-202.

9. Chen-Shan Chin, David HAlexander, Patrick Marks, Aaron AKlammer,
James Drake, Cheryl Heiner, Alicia Clum, Alex Copeland, John Huddleston,
Evan EEichler, et al: Nonhybrid, finished microbial genome assemblies
from long-read smrt sequencing data. Nature methods 2013.

10. Sergey Koren, Michael CSchatz, Brian PWalenz, Jeffrey Martin,
Jason THoward, Ganeshkumar Ganapathy, Zhong Wang, David ARasko,
McCombie W Richard, Erich DJarvis, et al: Hybrid error correction de novo
assembly of single-molecule sequencing reads. Nature biotechnology
2012, 30(7):693-700.

11. Lander Eric S, Michael SWaterman: Genomic mapping by fingerprinting
random clones: a mathematical analysis. Genomics 1988, 2(3):231-239.

12. Esko Ukkonen: Approximate string-matching with q-grams and maximal
matches. Theoretical computer science 1992, 92(1):191-211.

13. Asif Khalak, Ka KitLam, Greg Concepcion, David Tse: Conditions on
finishable read sets for automated de novo genome sequencing.
Sequencing Finishing and Analysis in the Future 2013, May.

14. Abolfazl Motahari, Kannan Ramchandran, David Tse, Nan Ma: Optimal dna
shotgun sequencing. Noisy reads are as good as noiseless reads.Proceedings
of the 2013 IEEE International Symposium on Information Theory Istanbul,
Turkey; 2013, July 7-12,2013.

15. Giuseppe Narzisi, Bud Mishra: Comparing de novo genome assembly:The
long and short of it. PLoS ONE 2011, 6(4):e19175, 04.

16. Daniel RZerbino, Ewan Birney: Velvet algorithms for de novo short read
assembly using de bruijn graphs. Genome research 2008, 18(5):821-829.

17. Sante Gnerre, Iain MacCallum, Dariusz Przybylski, Filipe JRibeiro,
Joshua NBurton, Bruce JWalker, Ted Sharpe, Giles Hall, Terrance PShea,
Sean Sykes, et al: High-quality draft assemblies of mammalian genomes
from massively parallel sequence data. Proceedings of the National
Academy of Sciences 2011, 108(4):1513-1518.

18. Jared TSimpson, Richard Durbin: Efficient de novo assembly of large
genomes using compressed data structures. Genome Research 2012,
22(3):549-556.

19. Ka-Kit Lam, Asif Khalak, David Tse:[www.eecs.berkeley.edu/˜kakitone].

doi:10.1186/1471-2105-15-S9-S4
Cite this article as: Lam et al.: Near-optimal assembly for shotgun
sequencing with noisy reads. BMC Bioinformatics 2014 15(Suppl 9):S4.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Lam et al. BMC Bioinformatics 2014, 15(Suppl 9):S4
http://www.biomedcentral.com/1471-2105/15/S9/S4

Page 14 of 14

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S9
www.eecs.berkeley.edu/�kakitone

	Abstract
	Background
	Results
	Related work

	Methods
	Shotgun sequencing model and problem formulation
	Sequencing model
	Formulation

	Repeats structure and their relationship to the information requirement for successful reconstruction
	Long exact repeats and their relationship to assembly with noiseless reads
	Flanked repeats

	Model for genome
	Algorithm design and analysis
	Greedy Algorithm
	Multibridging Algorithm
	Description and its performance
	Some implementation details: improvement on time and space efficiency

	X-phased Multibridging
	Description of X-phased Multibridging
	Performance

	Simulation of the prototype assembler
	Extension to handle indel noise
	Conclusion
	Additional file 1
	Competing interests
	Authors’ contributions
	Acknowledgements
	Declarations
	Authors’ details
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

