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Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index
(BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a
meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide poly-
morphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among
7488–47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the
KCNQ1 (rs2237892, P 5 9.29 3 10213), ALDH2/MYL2 (rs671, P 5 3.40 3 10211; rs12229654, P 5 4.56 3 1029),
ITIH4 (rs2535633, P 5 1.77 3 10210) and NT5C2 (rs11191580, P 5 3.83 3 1028) genes. The association of BMI
with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51
BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at
the genome-wide significance level (P < 5.0 3 1028) and an additional 14 at P < 1.0 3 1023 with the same direc-
tion of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis
of obesity.

INTRODUCTION

To date, genome-wide association studies (GWAS) have identi-
fied 55 genetic loci associated with obesity or body mass index
(BMI) (1–14). Fifty-one of these loci were reported by studies
conducted in populations of European ancestry. The remaining
four loci were identified by our meta-analyses conducted
among East Asians (9,10). However, these loci together
explain only a small portion of observed variation in BMI
[1.45% in Europeans (8), 1.18% in East Asians (9)], suggesting
that additional BMI-related loci remain to be discovered. Since
the publication of our previous meta-analysis in East Asians
(9,10), nine additional GWAS with 18 352 additional partici-
pants have joined the Asian Genetic Epidemiology Network
(AGEN) BMI-Consortium. We carried out a new round of
meta-analyses that included data from 86 757 Asians recruited
from 21 studies conducted in mainland China, Japan, Singapore,
South Korea, Taiwan, the Philippines and the USA to identify
new BMI loci and re-confirm associations with BMI that have
been previously reported.

RESULTS

Our initial meta-analysis used BMI as the outcome and analyzed
the association of BMI with �2.5 million genotyped or imputed
single nucleotide polymorphisms (SNPs) generated from these
21 studies, comprising 86 757 individuals of East Asian or South-
east Asian ancestry (Stage I). This was followed by a replication
analysis (Stage II) of eight selected SNPs from four study sites,
comprising 7488–47 352 Asian-ancestry individuals based on
the availability of de novo and/or in silico data for each SNP.
Details of the study design are presented in Supplementary Mater-
ial, Figure S1. Participating studies are described in the Supple-
mentary Information and Supplementary Material, Tables S1–S3.

The Stage I meta-analysis found eight SNPs at seven loci near
the KCNQ1 (rs2237892, P ¼ 7.32 × 10210), ALDH2/MYL2
(rs671, P ¼ 5.96 × 10210, rs12229654, P ¼ 1.26 × 1028),
ITIH4 (rs2535633, P ¼ 1.33 × 1028), NT5C2 (rs11191580,
P ¼ 7.59 × 1026), LINC00461 (rs6893807, P ¼ 1.81 × 1027)
and SEMA6D (rs1912631, P ¼ 6.06 × 1028) genes and the
intergenic region at 2p25.3 (rs4854307, P ¼ 9.21 × 1027) that
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were associated with BMI at or near the genome-wide signifi-
cance level (Table 1, Supplementary Material, Table S4).
These eight SNPs were taken forward to the Stage II replication
analyses (Supplementary Material, Table S3), which included de
novo genotyping data from three study sites with a total of 40 422
participants and in silico replication data from the Tai Chi study
(N ¼ 7369) genotyped with Illumina’s iSelect 200 k Cardio-
MetaboChip (Supplementary Material, Table S4). In the Stage
II analysis, five of these eight SNPs had the same direction of as-
sociation as in Stage I and were nominally significant (P , 0.05).
Combined analysis of data from Stages I and II showed that the
association for all five of these SNPs at four genetic loci reached
the genome-wide significance level: KCNQ1 (rs2237892,
P ¼ 9.29 × 10213), ALDH2/MYL2 (rs671, P ¼ 3.40 × 10211,
rs12229654, P ¼ 4.56 × 1029), ITIH4 (rs2535633, P ¼ 1.77 ×
10210) and NT5C2 (rs11191580, P ¼ 3.83 × 1028) (Table 1,
Supplementary Material, Table S4). Data obtained from the
GIANT consortium (8,15) (Supplementary Material, Table S5)
revealed significant associations for two of the SNPs (P ¼
9.18 × 1023 for rs2535633 and P¼ 1.06 × 1028 for rs11191580)
with the same direction of association as the current study. The
SNPs in the ALDH2 (rs671) and MYL2 (rs12229654) genes
had a minor allele frequency (MAF) of 0.24 and 0.20, respective-
ly, in the current study, but are monomorphic in HapMap
European-ancestry data; no GIANT consortium data were avail-
able for these two SNPs. The variation explained by each newly
identified SNP ranged from 0.03% to 0.05% (Table 1, Supple-
mentary Material, Table S4). The variation explained for all
four of these newly identified BMI loci combined was 0.16%
based on Stage II data.

The two newly identified SNPs, rs671 in the ALDH2 gene
(12q24.12) and rs12229654 in the MYL2 gene (12q24.11), are
located 827 kb apart and are in LD (r2 ¼ 0.58) in Asians
(Fig. 1). To examine their independent effects, we conducted a
conditional analysis that included these two SNPs in the same re-
gression model using available data. The conditional analysis
showed that only rs671 had a significant independent effect on
BMI (Supplementary Material, Table S6).

To evaluate the possible modifying effect of alcohol con-
sumption on the association between ALDH2 and BMI, we ana-
lyzed the association of BMI with rs671 by gender and alcohol
consumption status (drinkers versus. non-drinkers) using data
from the two studies (SGWAS for Chinese and KCPS-II for

Koreans) for which we had direct access to individual data.
We found that, among both men and women, the association
either was significantly stronger (KCPS-II, P for interaction
test ¼ 0.0178) or was only significant (SGWAS) among non-
drinkers (Supplementary Material, Table S7).

The ALDH2/SH2B3 locus at 12q24 has been reported to
be a target of recent selection in European- and East Asian-
ancestry populations (16), with reduction of haplotype diversity.
Using the same six representative SNPs (rs4646777, rs671,
rs3742000, rs12422941, rs10850014 and rs2301757) reported
by Kato et al. (16), we derived the same four common haplotypes
(H1, H4, H5, H6) in the two Chinese (SGWAS) and Korean
(KCPS-II) data sets mentioned above. The haplotype class spe-
cific to East Asians (H5) had the strongest association with BMI
in our populations (data not shown).

As shown in Table 2, of the 51 BMI-associated loci that were
identified among European-ancestry individuals, the index SNPs
at eight loci (rs2890652, rs13078807, rs7638110, rs13107325,
rs11847697, rs12444979, rs17024258 and rs10508503) were
monomorphic in Asians (Supplementary Material, Table S8).
Of the remaining 43 loci, Stage I data revealed that all but one
(rs5996074 at SREBF2) had the same direction of association as
reported previously (P ¼ 1.0 × 10211 by the binomial test),
eight known loci (near the FTO, BDNF, SEC16B, MC4R,
TMEM18, GIPR/QPCTL, ADCY3/RBJ and GNPDA2 genes)
were associated with BMI at the genome-wide significance
level (P , 5 × 1028), and another 14 known loci (near the
ADCY9, MAP2K5, TFAP2B, TMEM160, OLFM4, FLJ35779,
FAIM2, MTCH2, RPL27A, SFRS10/ETV5, NUDT3, HOXB5,
ZNF608 and FANCL genes) were associated with BMI at a
Bonferroni-corrected significance level (P , 0.05/51 known
loci ¼ 1.0 × 1023). The variation explained by each SNP in
these known BMI loci ranged from 0.02–0.15%. The variation
explained by all 22 of these re-confirmed BMI-associated loci
combined was 1.14%. We compared BMI–SNP associations in
East Asian- and European-ancestry populations using data from
this study and the GIANT consortium (Supplementary Material,
Table S5, S8) and found correlations of effect sizes of r ¼ 0.80
(P ¼ 6.49 × 1026) for all genome-wide significant loci and
r ¼ 0.62 (P ¼ 8.07 × 1027) for all newly and previously identi-
fied loci combined between the two populations.

To compare the genetic architecture of regions associated
with BMI between Asians and Europeans, we investigated the

Table 1. Newly identified loci associated with BMI variation in Asian-ancestry populations

Nearby gene Cytoband SNP Allelesa EAFb Stage I P Stage I and II EV (%)e

Stage II P Number of samples b (SE)c Pd

KCNQ1 11p15.4 rs2237892 T/C 0.36 7.32E210 1.73E204 133 312 0.0298 (0.0042) 9.29E213 0.04
ALDH2 12q24.12 rs671 G/A 0.76 5.96E210 6.64E203 97 990 0.0378 (0.0057) 3.40E211 0.05
MYL2 12q24.11 rs12229654 T/G 0.80 1.26E208 1.89E202 110 211 0.0341 (0.0058) 4.56E209 0.04
ITIH4 3p21.1 rs2535633 G/C 0.42 1.33E208 2.56E203 111 673 0.0288 (0.0045) 1.77E210 0.04
NT5C2 10q24.33 rs11191580 C/T 0.27 7.59E206 6.78E204 98 883 0.0295 (0.0054) 3.83E208 0.03

aShown as: effect allele/other allele.
bEffect allele frequency in Asian-ancestry populations, estimated from Stage I and II studies.
cPer allele effects of SNPs on BMI are presented in standard deviations, which were derived from the meta-analysis.
dDerived fromthe meta-analysis. The P-values for combined data were adjusted for both study-specific inflation factors and the estimated inflation factor for the Stage I
meta-analysis statistic.
eExplained variance, estimated from combined Stages I and II data.
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linkage disequilibrium (LD; by r2) of SNPs in the 200 kb
flanking all previously (Supplementary Material, Table S8)
and newly (Table 1) identified BMI loci in both populations.

We calculated the pairwise distance and LD (r2) for each locus
in each population based on HapMap3 SNP data through
the public SNP Annotation and Proxy Search (SNAP) tool.

Figure1. Regionalplots for the four novel loci identified in this study.SNPs are plottedby their positionon the chromosomeagainst their association (2log10P-value)
with BMI using Stage I (GWAS meta-analysis) data. The name and P-value for the top SNP shown on the plots is based on all combined data with full genomic control
adjustment (Table 1). Estimated recombination rates (from HapMap) are plotted in cyan to reflect the local LD structure. The SNPs surrounding the top SNP (rs671 was
used for the ALDH2/MYL2 locus) are color-coded (see inset) to reflect their LD with the top SNP (using pair-wise r2 values from HapMap CHB + JPT data). Genes and
positions of exons, as well as directions of transcription, are shown below the plots (using data from the UCSC Genome Browser, genome.ucsc.edu). Plots were
generated using LocusZoom.
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The average LD decay over distance for the two populations
showed similar patterns, suggesting that the genetic structure
of those regions is similar (Supplementary Material, Fig. S2).

The reported effect sizes for all BMI-related SNPs in studies
of European-ancestry populations are usually .3% of the stand-
ard deviation of BMI (4). Given the size of our study (N ¼ 86 757
for Stage I), we had adequate statistical power (.80% at a

significance level of P , 1.0 × 1023) to detect a SNP with
such an effect size and a MAF of .0.12. Previously reported
loci that were not replicated in our study at P , 1.0 × 1023

had either a very small effect size or a low MAF (Supplementary
Material, Table S8).

Of the four BMI-associated loci we identified in our previous
studies conducted among East Asians (9,10), Stage I data

Fig. 1. Continued
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showed that 3 loci (in the PCSK1, CDKAL1 and KLF9 genes)
remained genome-wide significant (P , 5.0 × 1028), while
the GP2 locus did not reach the genome-wide significance
level (P ¼ 6.13 × 1027) (Table 2, Supplementary Material,
Table S8). The variation explained by all four of these loci com-
bined was 0.22%. Altogether, the overall variation explained by
the 30 re-confirmed or newly identified BMI-associated loci (22
loci originally identified in Europeans, 4 loci originally identi-
fied in East Asians and 4 newly identified loci) was 1.52%,
which is an improvement over the previously reported value of

1.18% in East Asians (9). Assuming that the 21 BMI loci identi-
fied in European-ancestry populations that we did not confirm in
this study could be confirmed with a larger sample size, the vari-
ation explained by all known BMI loci would be 1.65%. We an-
ticipate that the variation explained by genetics will increase
when rare variants are considered.

Additional analyses examined effect sizes for differences
across sex, population, individual studies and obesity status.
Analyses stratified by sex (Table 3) showed that associations
with BMI among men were significantly stronger than

Table 2. Associations of SNPs in previously identified loci with BMI in East Asian-ancestry populations

Nearby gene Chr SNP Allelesa EAFb Number of samples b (SE)c Pd Explained variance References

Eight BMI loci identified in populations of European ancestry were significant at P , 5.0 × 1028 in East Asian populations
FTO 16 rs1558902 A/T 0.15 86 668 0.0756 (0.0070) 6.63E227 0.15% 1–5,7,8
BDNF 11 rs11030104 A/G 0.55 86 637 0.0478 (0.0052) 2.36E220 0.11% 4,8
SEC16B 1 rs574367 T/G 0.21 86 493 0.0580 (0.0064) 1.93E219 0.11% 4,8
MC4R 18 rs591166 A/T 0.24 80 605 0.0464 (0.0062) 7.24E214 0.08% 3–5,7,8
TMEM18 2 rs12463617 C/A 0.91 84 166 0.0634 (0.0090) 2.08E212 0.07% 4,5,7,8
GIPR/QPCTL 19 rs11671664 G/A 0.49 70 606 0.0406 (0.0058) 3.47E212 0.08% 8,9
ADCY3/RBJ 2 rs6545814 G/A 0.45 86 669 0.0331 (0.0052) 1.30E210 0.05% 8,9
GNPDA2 4 rs16858082 T/C 0.35 84 150 0.0324 (0.0055) 3.79E209 0.05% 5,8

Fourteen BMI loci identified in populations of European ancestry were significant at P , 1.0 × 1023 in East Asian populations
ADCY9 16 rs2531995 T/C 0.33 75 987 0.0315 (0.0058) 7.29E208 0.04% 14
MAP2K5 15 rs4776970 A/T 0.22 84 217 0.0317 (0.0062) 3.49E207 0.03% 8,9
TFAP2B 6 rs9473924 T/G 0.29 76 551 0.0308 (0.0061) 3.77E207 0.04% 8
TMEM160 19 rs3810291 A/G 0.24 79 328 0.0333 (0.0068) 8.98E207 0.04% 8
OLFM4 13 rs9568867 A/G 0.23 75 149 0.0310 (0.0067) 3.98E206 0.03% 11
FLJ35779 5 rs888789 A/G 0.46 83 977 0.0240 (0.0052) 4.42E206 0.03% 8
FAIM2 12 rs897057 C/T 0.79 75 542 0.0287 (0.0068) 2.24E205 0.03% 8
MTCH2 11 rs11604680 G/A 0.30 86 354 0.0235 (0.0056) 2.95E205 0.02% 5,8
RPL27A 11 rs10160804 A/C 0.47 86 569 0.0212 (0.0051) 3.50E205 0.02% 8
SFRS10/ETV5 3 rs10513801 T/G 0.97 84 121 0.0616 (0.0153) 5.43E205 0.02% 4,8
NUDT3 6 rs4713766 A/C 0.12 61 708 0.0420 (0.0104) 5.49E205 0.04% 8
HOXB5 17 rs9299 T/C 0.56 72 384 0.0227 (0.0057) 7.27E205 0.03% 11
ZNF608 5 rs7701094 C/G 0.48 55 908 0.0292 (0.0080) 3.78E204 0.04% 8
FANCL 2 rs1861411 A/G 0.41 86 623 0.0183 (0.0053) 5.14E204 0.02% 12

Four BMI loci identified in populations of Asian ancestry in the current Stage I meta-analysis
CDKAL1 6 rs9356744 T/C 0.57 86 052 0.0374 (0.0052) 5.40E213 0.07% 9
PCSK1 5 rs261967 C/A 0.41 86 488 0.0376 (0.0052) 7.96E213 0.07% 9
KLF9 9 rs11142387 C/A 0.41 70 553 0.0324 (0.0058) 2.79E208 0.05% 10
GP2 16 rs12597579 C/T 0.78 86 314 0.0316 (0.0063) 6.13E207 0.03% 9

aShown as effect allele/other allele.
bEffect allele frequency, estimated from Stages I and II studies for Asians.
cPer allele effects of SNPs on BMI are presented in standard deviations, which were derived from the meta-analysis.
dDerived from the meta-analysis and adjusted for both study-specific inflation factors (for Stages I and II) and for the estimated inflation factor for the Stage I
meta-analysis statistic.

Table 3. Newly identified loci associated with BMI variation in East Asian-ancestry populations, by gender

Nearby gene Chr SNP Allelesa Among men Among women Test for homogeneity
Number b (SE)b Pc Number b (SE)b Pc P

KCNQ1 11 rs2237892 T/C 59 365 0.0411 (0.0059) 4.54E212 72 300 0.0204 (0.0055) 2.18E204 1.07E202
ALDH2 12 rs671 G/A 42 896 0.0560 (0.0080) 1.97E212 53 421 0.0234 (0.0077) 2.32E203 3.11E203
MYL2 12 rs12229654 T/G 48 395 0.0543 (0.0083) 5.45E211 60 141 0.0190 (0.0077) 1.38E202 1.76E203
ITIH4 3 rs2535633 G/C 48 927 0.0289 (0.0065) 8.29E206 61 184 0.0266 (0.0059) 6.13E206 7.96E201
NT5C2 10 rs11191580 C/T 42 636 0.0252 (0.0079) 1.47E203 53 382 0.0332 (0.0070) 2.03E206 4.49E201

aShown as effect allele/other allele.
bPer-allele effects of SNPs on BMI are presented in standard deviations, which were derived from the meta-analysis.
cDerived from the meta-analysis and adjusted for both study-specific inflation factors (for Stages I and II) and the estimated inflation factor for the Stage I meta-analysis
statistic.
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associations among women for rs2237892 in KCNQ1 (effect
size: 0.0411 versus 0.0204, P for homogeneity ¼ 1.07 × 1022),
rs671 in ALDH2 (effect size: 0.0560 versus 0.0234, P for
homogeneity ¼ 3.11 × 1023) and rs12229654 in MYL2 (effect
size: 0.0543 versus 0.0190, P for homogeneity ¼ 1.76 × 1023).
In addition, we also observed a stronger association among men
than among women in two of our previously reported loci at
CDKAL1 (P for homogeneity ¼ 5.74 × 1023) and PCSK1
(P for homogeneity ¼ 5.95 × 1023) (Supplementary Material,
Table S8). Analyses stratified by population (Supplementary
Material, Table S9) showed that associations with BMI for all
four new loci were similar (P for homogeneity ≥ 0.15) across
Chinese, Japanese and Korean populations, although none were
statistically significant among Malay/Filipino populations. No
significant heterogeneity across individual studies was found for
these four new loci (data not shown). Meta-analyses of obesity
as a dichotomous outcome (BMI ≥ 27.5 kg/m2) (17) also
showed similar associations with odds ratios per allele ranging
from 1.03 to 1.09, although the statistical power for this analysis
was lower (Supplementary Material, Table S10).

In an effort to search for potential functional variants, we sys-
temically examined expression quantitative trait loci (eQTL) in
the 1 Mb regions flanking the four newly identified loci. A total
of 178 eQTLs (Supplementary Material, Table S11) were iden-
tified in public databases and the previous literature. We next
investigated whether these eQTL SNPs were located in certain
functional elements using the online tool HaploReg (18).
We found that of the 178 eQTL SNPs, 69.7% were located
in enhancer regions. This percentage is significantly higher
(P ¼ 2.2 × 10216) than the percentage of enhancer regions in
the human genome (19.8%). In particular, the four newly identi-
fied loci are all located in motif binding sites and are associated
with enhancer regions (Supplementary Material, Table S12).

To further explore over-represented biological pathways
among the genes located near the newly and previously identi-
fied BMI loci listed in Table 1 and Supplementary Material,
Table S8, we examined their functional enrichment in biological
pathway analyses using the ingenuity pathway analysis (IPA)
tool in Ingenuity (version 17199142). We found that two rele-
vant BMI pathways, CDK5 signaling (P ¼ 1.94 × 1024) and
corticotropin-releasing hormone signaling (P ¼ 3.74 × 1024),
were significantly enriched.

DISCUSSION

Of the four newly identified BMI-associated loci in this study,
SNP rs2237892 is located in an intron of the KCNQ1 gene,
which encodes a voltage-gated potassium channel. This locus
is involved in long QT syndrome in Europeans and African
Americans (19,20) and is associated with type 2 diabetes
(T2D) in both Asian and European populations (21–23). The
T2D risk-associated C allele of rs2237892 has been related to
lower fasting insulin levels (24) and a reduction in insulin secre-
tion (25). The current study found that this risk allele is also asso-
ciated with lower BMI. Adjusting for BMI in logistic regression
models has been shown to strengthen rather than attenuate the as-
sociation of rs2237892 with T2D (26). Given the strong link
between T2D and obesity, we carried out additional analyses
after excluding participants with T2D and found that the

association of rs2237892 with BMI remained (P ¼ 3.72 ×
1028). While the relationships of T2D with insulin secretion
and insulin resistance are clear, the cause-and-effect relation-
ships between hyperinsulinemia, insulin resistance, obesity
and T2D remain unresolved. One study has suggested that sup-
pression of insulin secretion was associated with loss of body
weight and fat mass (27).

The locus represented by rs671 contains the ALDH2 gene,
which is involved in dehydrogenation of acetaldehyde and is
associated with alcohol consumption behavior and alcohol-
flushing responses in Asians (22,28,29). GWAS have reported
that the BMI-increasing allele of this SNP is associated with
diverse traits, including alcohol consumption behavior (22),
increased intracranial aneurysm (30), triglycerides (31),
gamma glutamyl transferase levels (32), elevated blood pressure
(16), lower risk of coronary heart disease (33), decreased
alcohol-flushing responses and esophageal cancer (34). rs671
results in a glutamine to lysine missense change at position
504 in the ALDH2 protein (accession ID NP_000681.2),
known as the ALDH∗2 allele, and is predicted by both
PolyPhen-2 (35) and SIFT (36) to be functionally important. A
recent Mendelian randomization study suggested that ALDH2
may influence the risk of hypertension by affecting alcohol con-
sumption behavior, with ALDH∗1 allele carriers having higher
blood pressure due to higher alcohol consumption (37).
However, our study (Supplementary Material, Table S7) sug-
gested an antagonistic effect of alcohol consumption on the
ALDH2–BMI association. The ALDH∗1 BMI-increasing
effect was mainly observed among non-drinkers.

While rs671 appears to be the most likely candidate in the
12q24 region, it is also in strong LD with the A allele of
rs3782886 (r2 ¼ 0.95), which reached the genome-wide signifi-
cance level in our Stage I data (P ¼ 1.24 × 1028) and is asso-
ciated with decreased levels of alanine aminotransferase (32).
Although its association with BMI was no longer significant
after adjustment for rs671 in our study, another SNP in the
12q24 region, rs12229654 near the MYL2 gene, has been asso-
ciated with HDL cholesterol (38), levels of gamma glutamyl
transpeptidase (38) and alcohol consumption (39) in
Asian-ancestry populations. SNP rs12229654 is in LD (r2 ¼
0.67) with 3 SNPs (rs11065756, rs3782888 and rs12231049)
that are predicted to be among the strongest eQTLs in the
region in HapMap lymphoblastoid cell lines for the MYL2
gene (40) (P , 0.05, Supplementary Material, Table S11).
MYL2 encodes the myosin light chain and is involved in heart
morphogenesis, and downregulation of this gene has been
posited to play a role in coronary artery disease (41). In a
Korean population, new loci in MYL2 were recently shown to
be associated with plasma glucose levels (42) and HDL levels
(38). A SNP in the 12q24 region that is in LD (r2 ¼ 0.58) with
rs671, rs2074356, has been previously associated with
waist-to-hip ratio (43).

The third new locus, rs2535633, is in an intron of the ITIH4
gene, which has been reported to be involved in the stabilization
of the extracellular matrix and shows wide expression in the
blood and liver (44). Obesity in rats has been positively corre-
lated with rat blood levels of the ITIH4 protein, which has led
to the suggestion that this protein may act as a biomarker for
obesity (45). Fujita et al. (46) reported an association of the
ITIH4 gene with total cholesterol levels in individuals of
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Japanese ancestry. SNP rs2535633 is in LD with two non-
synonymous SNPs in the ITIH4 gene, rs13072536 and
rs4687657 (r2 ¼ 0.83 and 0.71, respectively), that reached the
genome-wide significance level in Stage I (P ¼ 2.05 × 1028

for rs13072536 and P ¼ 2.63 × 1028 for rs4687657). Whereas
rs13072536 is predicted by PolyPhen-2 (35) to be ‘probably
damaging’, rs4687657 is predicted to be ‘damaging’ by SIFT
(36). SNP rs2535633 is also an eQTL in HapMap lymphoblas-
toid cell lines for the ITIH4 (P ¼ 5.5 × 1027), FLJ12442 (P ¼
1.7 × 1026) and TMEM110 (P ¼ 2.2 × 10219) (47,48) genes
and is in strong LD with other SNPs also predicted to act as
eQTLs in lymphoblastoid cell lines and monocytes for ITIH4,
ITIH3, NT5DC2, WRD51A and FLJ12442 (40,47–49). This, in
combination with biomarker studies in rats suggest that ITIH4
levels (45), which may be higher in those with the risk allele,
may help identify individuals at risk for obesity. In addition,
rs11918800 (r2 ¼ 1.0 with rs2535633) is located in a predicted
transcription factor binding site, and rs6445538 (r2 ¼ 0.73
with rs2535633) is in a predicted hsa-miR-1301 miRNA
binding site (50). The precise mechanisms by which one or
more of these SNPs act on gene function and BMI remain to
be determined.

Finally, the index SNP for the fourth new locus, rs11191580,
resides in an intron of the NT5C2 gene and has been associated
with a number of psychiatric disorders, including autism and
schizophrenia (51–53). Another SNP, rs11191548, which is in
complete LD with rs11191580 (r2 ¼ 1), has been associated
with measures of blood pressure in both European- and
Asian-ancestry populations in four previous GWAS (16,54–
56). Genetic variations in this gene were recently found to be
associated with reduced subcutaneous and visceral fat mass in
Japanese women (57). Further, rs11191580 is in strong LD
with a number of SNPs that are predicted eQTLs for the USMG5
gene according to two different datasets [P ¼ 4.5 × 1027 by
Veyrieras et al. (40), P ¼ 9.7 × 10255 by Zeller et al. (47)]. The
USMG5 gene has been identified as coding a diabetes-associated
protein in insulin-sensitive tissue (58).A recent study (59) reported
a locus (rs12413409) that was associated with coronary artery
disease. This SNP is in strong LD with rs11191580 (r2¼ 1 in Eur-
opeans, r2 ¼ 0.895 in Asians) and was associated with BMI (P ¼
6.67 × 1027) in our Stage I data.

We observed similarities in the genetic architecture of BMI
loci between Asian- and European-ancestry populations,
despite notable differences in allele frequencies for some BMI
loci, such as loci that were monomorphic. However, BMI distri-
bution in Asians is very different from that in Europeans, sup-
porting the notion that non-genetic factors, such as diet and
physical activity, play a more important role in obesity than
genetic factors. In fact, only a small percentage of BMI variation
can be explained by genetic loci (1.52% in Asians). Clearly,
further research is needed to investigate the interaction
between genetic and lifestyle factors on the worldwide obesity
epidemic.

The eQTL analysis suggested evidence of a potential func-
tional role for the newly identified loci. Pathway analysis
found two BMI-related pathways. One is cyclin-dependent
kinase (CDK5) signaling, which can result in phosphorylation
of the nuclear receptor PPARg, which is encoded by the
PPARG gene, a ‘master’ gene for fat cell biology and differenti-
ation (60,61). Another top pathway was corticotropin-releasing

hormone signaling (P ¼ 3.74 × 1024), which has been asso-
ciated with depression and type 2 diabetes (62). A more thorough
investigation and experimental verification are warranted to de-
finitively establish the causal connections.

It is worth noting that four of the newly identified
BMI-associated loci, KCNQ1, ALDH2, ITIH4 and NT5C2,
showed substantial pleiotropic effects, as mentioned above, on
multiple obesity-related chronic-disease traits, such as T2D,
blood pressure, coronary heart disease and schizophrenia. Of
note, the BMI-decreasing alleles are associated with increased
risk of T2D (KCNQ1), elevated blood pressure (NT5C2) and
schizophrenia (ITIH4 and NT5C2). However, the BMI-
decreasing allele of rs671 in ALDH2 is associated with decreased
blood pressure and increased risk of coronary heart disease.
Further studies are warranted to elaborate on the causal relation-
ship between these genes, chronic-disease traits and obesity.

In conclusion, our study confirmed 22 previously reported
BMI-associated loci in studies of European-ancestry popula-
tions and identified four novel loci near the KCNQ1, ALDH2/
MYL2, ITIH4 and NT5C2 genes that are associated with BMI
at the genome-wide significance level. The SNPs in the KCNQ1
and ALDH2/MYL2 genes showed stronger effects among men
compared with women. SNPs rs671 and rs12229654 in ALDH2/
MYL2 are monomorphic in European-ancestry populations. Our
study demonstrates the value of conducting genetic studies in dif-
ferent ethnic populations and expands our knowledge of the
genetic basis for obesity.

MATERIALS AND METHODS

Study design

This study had two stages. Stage I was a meta-analysis of study-
specific results on the association between SNPs and BMI from
the 21 GWAS that participated in the consortium and included a
total of 86 757 individuals of Asian ancestry. Promising SNPs
selected from the Stage I meta-analysis were further examined
by de novo or in silico replication analyses (Stage II). Supple-
mentary Material, Tables S1–3, Figure S1 and the Supplemen-
tary Information summarize the basic information for all
participating studies.

Stage I samples and genotyping

The sample sizes of the 21 GWAS in Stage I varied from 821 to
33 530, with a total of 86 757 individuals. Nine studies used
Affymetrix arrays, and 12 studies used the Illumina platform
(detailed information is provided in the Supplementary Informa-
tion). To allow for combination of the data derived from different
genotyping platforms and to improve coverage of the genome,
genotype imputation was performed by each participating
study using either MACH or IMPUTE with HapMap CHD +
JPT data (release #22, build 36) as the imputation reference
panel (Supplementary Material, Table S2).

Stage I statistical analysis

A uniform statistical analysis protocol was followed by each par-
ticipating study. BMI was calculated by dividing weight in kilo-
grams by the square of height in meters. To improve the
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normality of the BMI distribution and alleviate the impact of out-
liers, rank-based inverse normal transformation (INT) was
applied to BMI data separately for each gender by each study.
INT involves ranking all BMI values, transforming these ranks
into quantiles and, finally, converting the resulting quantiles
into normal deviates. Associations between SNPs and the
inverse normal-transformed BMI were analyzed with a linear re-
gression model; associations between SNPs and obesity were
analyzed as a dichotomous outcome, in which obesity was
defined as BMI ≥ 27.5 (17), by using a logistic regression
model, assuming an underlying additive genetic model and
adjusting for age (continuous), age-squared and gender (if ap-
plicable). Stratified analyses by gender and disease status (with
or without cancer and T2D) were also performed by each study.

Next, we carried out meta-analyses using a weighted average
method with inverse-variance weights. The meta-analyses were
carried out on all data combined and also stratified by gender and
disease status using the freely available METAL software. The
presence of heterogeneity across studies and between genders
was tested with Cochran’s Q statistics (63).

To correct each study for residual population stratification or
cryptic relatedness, the meta-analyses were performed with
genomic control correction (64) by adjusting for the study-
specific inflation factor (l), which ranged from 1.000 to 1.123
in Stage I (Supplementary Material, Table S2). After study-
specific genomic control adjustment, the estimated inflation
factor for the Stage I meta-analysis statistic was 1.128, which
was further adjusted for when calculating the Stage I results.

Stage II replication analysis

Eight SNPs that were not near any previously reported BMI-
associated loci and that had P , 7.59 × 1026 in the Stage I
data were taken forward into the Stage II replication analysis.
The Stage II studies included a total of 47 791 individuals and
consisted of de novo genotyping data from three study sites
and in silico replication data from the Tai Chi study, which
had been previously genotyped with Illumina’s iSelect 200k
Cardio-MetaboChip (Supplementary Material, Table S3). Due
to the differing availability of replication data, for each SNP
the sample size for the Stage II analysis varied from 7488 for
rs4854307 to 47 352 for rs2237892.

Each study individually conducted a similar analysis of the as-
sociation between BMI and the selected SNPs, using the same
protocol used in Stage I. The Stage II data were combined using
the same meta-analysis methods as in Stage I. Finally, we used
meta-analysis to combine all data from both Stages I and II.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.

URLS

METAL program, http://www.sph.umich.edu/csg/abecasis/Meta
l/; Cardio-MetaboChip, http://www.sph.umich.edu/csg/kang/
MetaboChip/; HaploReg, http://www.broadinstitute.org/mamma
ls/haploreg/haploreg.php/; Ingenuity, http://www.ingenuity.com/
. SNAP, http://www.broadinstitute.org/mpg/snap/ldsearchpw.php
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