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Following a brief tutorial on the application of factor analysis to hearing aid outcome
measures, three studies of hearing aid outcome measures in elderly adults are presented and
analyzed. Two of the studies were completed at Indiana University (IU-1 and IU-2), and one
was a collaborative multisite study by the Veterans Administration and the National Institute
of Deafness and other Communication Disorders (NIDCD/VA). IU-1 measured hearing aid
outcome in 173 elderly wearers of single-channel, linear, in-the-ear hearing aids with output-
limiting compression, whereas IU-2 obtained the same extensive set of outcome measures
from 53 elderly wearers of two-channel, wide-dynamic-range compression, in-the-canal
hearing aids. In the NIDCD/VA study, 333 to 338 participants wore three single-channel
circuits in succession, with each circuit housed within an in-the-ear shell. The three circuits
included in that study and in this analysis were: (1) linear with peak clipping, (2) linear
with output-limiting compression, and (3) single-channel, wide-dynamic-range compression.
Evaluation of the many outcome measures completed in each study using principal compo-
nents factor analysis revealed that from three (both IU studies) to five (NIDCD/VA study)
principal components captured the individual differences in hearing aid outcome. This was
independent of hearing aid type (in-the-ear or in-the-canal) and circuitry. Subsequent
multiple regression analyses of individual differences in performance along each dimension
of hearing aid outcome revealed that these individual differences could be accounted for
reasonably well by various prefit variables for some dimensions of outcome, but not others.
In general, measures of speech recognition performance were well accounted for by prefit
measures, with the best predictors being hearing loss, cognitive performance, and age.
Measures of hearing aid usage were less well accounted for by prefit measures, with the most
accurate predictor of current hearing aid use being prior hearing aid use. The outcome
dimension accounted for most poorly was that associated with hearing aid satisfaction, with
subjective measures of aided sound quality being the best predictor of performance along this
dimension of hearing aid outcome. Additional multicenter, large-scale studies are needed to
develop more complete models of hearing aid outcome and to identify the variables that
influence various aspects of hearing aid outcome. It is only through this additional research
that it will be possible to optimize outcome for hearing aid wearers.
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Introduction

Much clinical and research interest in hearing aid
outcome measures has been evidenced over the
past decade (see Humes [2001] for a review).
Basically, the central issue regarding hearing aid
outcome is how one should document the bene-
fits provided by the hearing aid to the wearer.
This is of interest to clinicians, researchers, hear-
ing aid manufacturers, third-party payers, and
hearing aid wearers alike.

Although the general topic has been of inter-
est to the research community over the past
decade, most studies conducted have made use
of small numbers of participants, typically 30 or
fewer, and have focused on only a small subset
of possible outcome measures. For example, very
few studies have obtained measures of speech
recognition, with and without the hearing aid, to-
gether with self-report measures of hearing aid
performance, benefit, satisfaction, and usage.

As a result, one of the fundamental questions
in this area has been impossible to answer.
Specifically, what should be measured with re-
gard to hearing aid outcome? Are measures of
speech recognition performance together with
self-report measures of hearing aid performance,
benefit, satisfaction, and usage necessary? Perhaps
some or all of these measures tap the same un-
derlying construct and are unnecessarily redun-
dant. Humes (1999) demonstrated how the appli-
cation of principal components factor analysis can
be used to address this issue of redundancy among
outcome measures, although the studies available
at the time of that evaluation were less than ideal
in terms of the number of outcome measures and
the number of participants. A somewhat related
question regarding the number and nature of the
outcome measures to be employed has to do with
whether either varies with the style of hearing aid
(eg, in-the-ear [ITE] versus in-the-canal [ITC]) or
the type of circuitry (eg, single-channel linear cir-
cuit versus two-channel compression circuit). That
is, does the answer to the question regarding what
to measure interact with the style of hearing aid or
the type of circuitry?

Since the previous application of principal
components analyses to hearing aid outcome
measures by Humes (1999), two large-scale stud-
ies of hearing aid outcome have been published
(Larson et al., 2000; Humes et al., 2001). These
studies used larger numbers of subjects than prior
studies of hearing aid outcome and also included

multiple measures of outcome, frequently obtain-
ing multiple measures within a particular domain
as well (ie, multiple measures of speech recogni-
tion or of hearing aid usage). In addition, numer-
ous prefit variables were obtained from all sub-
jects in each of these studies, such that regression
analysis could potentially identify variables un-
derlying individual differences in performance
along a specific dimension of hearing aid out-
come. In a follow-up to the Humes et al. (2001)
study with linear ITE hearing aids, the author di-
rected another study that used an identical study
protocol, but instead used smaller-sized ITC hear-
ing aids and incorporated different circuitry (two-
channel, wide-dynamic-range compression). Al-
though the sample size was only about one third
the size of the published study (N = 53 versus
173), it was considered sufficiently large for fur-
ther evaluation of hearing aid outcome measures.

The present paper evaluates the outcome
measures from each of these three studies to de-
termine the number and nature of the dimensions
of hearing aid outcome. The results of this evalu-
ation will provide the most complete answer to
date with regard to what should be measured
when the successful use of hearing aids in hear-
ing-impaired adults is to be documented. In addi-
tion, a variety of prefit variables will be examined
as possible predictors of individual differences in
performance for each of the outcome dimensions
identified. These analyses will provide a prelimi-
nary indication of those variables that underlie
individual differences in hearing aid outcome,
and in the process, might offer some insights into
how various aspects of outcome can be maxi-
mized. Because two of the three studies have
been described in detail in prior publications, and
the third study used a protocol identical to that of
one of the studies published previously (Humes
et al., 2001), details regarding each study proto-
col are not presented here. Rather, the focus is on
the use of principal-components factor analysis to
analyze the results obtained in each study and the
identification of variables that underlie individ-
ual differences along the outcome dimensions
identified. The analyses for each study are pre-
sented in separate sections, followed by a gener-
al summary and a discussion of the entire series
of analyses. Since a basic understanding of prin-
cipal-components factor analysis is critical to the
presentation of the data analyses in this paper, a
brief review of the nature of this statistical tool is
presented in the next section.
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Principal Components Factor Analysis
and Its Application to Hearing Aid

Outcome Measures

Factor analysis has been the subject of several
textbooks. Of these, Gorsuch (1983) has proba-
bly provided one of the most thorough and com-
prehensible treatments. Clearly, a comprehensive
discussion of factor analysis is beyond the scope
of this paper. Rather, a brief overview is provided
for one type of factor analysis (perhaps the most
common type), principal components analysis.

Factor analysis in general, and principal com-
ponents analysis in particular, is a subset of a
broader model in statistical analysis referred to
as either the multivariate linear model or the gen-
eral linear model. This same linear model under-
lies all regression analyses and all types of analy-
sis of variance. Consider the measurement of de-
pendent variable v in individual i. The multivari-
ate linear model, describing individual i’s perfor-
mance on dependent variable v, would be repre-
sented as:

Xiv = wvAFiA + wvBFiB + wvCFiC + ... + wvGFiG

where Xiv is the response of individual i for de-
pendent variable v, Fi represents individual i’s
score for the A to Gth factors, and wv represents
the weight of dependent variable v on each of the
A to Gth factors (Gorsuch, 1983).

In a sense, this particular representation is a
simplified version that assumes that scores for the
dependent variable are in terms of deviations
from the mean, and the number of factors equals
the number of variables (what Gorsuch [1983]
refers to as the “full component model”).
Typically, the final factor solution is a truncated
version of the full component model (ie, number
of factors < number of variables), with the trun-
cated factors representing the inaccuracy of the
model’s fit (or error). Note that the factors (F) are
tied to characteristics of the individual (i), where-
as the weights (w) represent the weight of the de-
pendent variable (v) on each factor.

According to this equation, the response or
score of individual i for dependent variable v (ie,
Xiv) can be represented as the linear sum of
weighted factors. The crux of factor analysis is
identifying the combination of subject-related fac-
tors (F) and variable-related weights (w) that will
provide a good description of the responses of a
large number of individuals for a set of depen-

dent variables. In doing so, common constructs
or factors that underlie performance for a variety
of measures might be identified.

Principal components analysis is a variation
of factor analysis in which the goal is to find those
F and w values for the multivariate linear model
that maximize the variance accounted for by the
model. A hierarchical or stepwise approach is pur-
sued in which the first factor accounts for the
maximum amount of variance alone, then a sec-
ond, uncorrelated factor is identified that accounts
for the next largest increment in the explained
variance, followed by a third factor that is uncor-
related with either of the first two factors, and so
on. For a set of V dependent variables (v), this
process is repeated until the Vth factor has been
identified that will account for 100% of the vari-
ance in the data. However, usually a truncated
set of principal components is used and the num-
ber of acceptable factors is such that each com-
ponent included in the final solution accounts for
at least 1/V of the total variance. For example,
with a set of 20 dependent variables, only those
principal components accounting for at least 1/20
(5%) of the total variance would be included in
the final solution; however, this is not a hard and
fast rule. The researcher is free to include addi-
tional factors or components, including those ac-
counting for less than 1/V of the total variance,
but some justification for doing so is typically ex-
pected. (This criterion, requiring a factor to ac-
count for at least 1/V proportion of variance in
the solution, corresponds to what is also known
as Kaiser’s criterion, or the inclusion of only those
factors having an eigenvalue > 1.0.)

Principal components analysis typically makes
use of the correlation matrix for the set of depen-
dent variables, v. One can think of principal com-
ponents analysis as hunting for clusters of corre-
lated dependent variables among the matrix and
representing each such cluster as an underlying
common factor or component. Using the multi-
variate linear model equation described previ-
ously, this would be akin to finding those depen-
dent variables among the set that had similarly
high weights (wv) for the same factor (F).

Before proceeding further in a general dis-
cussion of principal components analysis, let’s
look at a few examples of the possible results of
such an analysis for a hypothetical set of seven
hearing aid outcome measures. Consider, for ex-
ample, a set of three aided measures of speech
recognition (SR1, SR2, and SR3), two measures
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of sound quality (Qu1, Qu2), one measure of
hearing aid satisfaction (Satf), and one measure
of hearing aid usage (Use). These dependent vari-
ables would represent seven v values obtained
from each individual hearing aid wearer under
identical test conditions (same hearing aids, lis-
tening conditions, etc.). This set of variables is ac-
tually small for factor analysis, which will be dis-
cussed in more detail later, but will suffice for il-
lustration purposes. 

The top portion of Figure 1 reveals the 7 × 7
correlation matrix for the seven dependent vari-
ables or hearing aid outcome measures in this hy-
pothetical illustration. Only the upper half of the
matrix (that portion above the diagonal) is de-

picted, because the lower half is a mirror image of
the upper half and provides no new information.
Note that the correlation coefficients along the di-
agonal are assumed to be 1.0, as required in prin-
cipal components analysis, and that the rest of the
correlation coefficients in this example are all
low. This indicates that none of the seven out-
come measures is very closely associated with any
of the other outcome measures. Thus, each vari-
able appears to be measuring something that is
unique and distinct from that measured by each
of the other outcome measures. 

A plot of the hypothetical factor weights (wv)
for each resulting factor (F) appears in the lower
portion of Figure 1. Note that there is a one-to-
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Figure 1. Illustration of a hypothetical correlation matrix (top) and resulting principal
component factor solution (bottom) for a case in which there are no clusters of highly
correlated dependent variables. Each of the three speech recognition measures (SR1, SR2,
SR3), the two sound quality measures (Qu1, Qu2), the satisfaction measure (Satf) and the
usage measure (Use) are weighted on a separate factor.



one mapping of each outcome variable to a factor
or principal component. That is, the principal
components analysis of the set of seven hearing
aid outcome measures resulted in seven compo-
nents being identified, which reflects the lack of
overlap or redundancy among the outcome mea-
sures. The factor weighting of the SR1 variable
on Factor A is 0.8 (dotted vertical bar), but the
weight for this variable on the other six factors is
0. Likewise, the factor weighting of the SR2 vari-
able on Factor B is 0.9 (vertical bar with down-
ward diagonal stripes) and 0.0 for the other six
factors, and so on.

The results of the principal components
analysis for the hypothetical situation depicted in

Figure 1 represent one extreme regarding the
possible factor solutions. In this case, nothing was
gained via the factor analysis in that there do not
appear to be any unifying constructs underlying
the data that would reduce the set of seven vari-
ables to a smaller number of independent (un-
correlated) factors.

The other extreme for the possible principal
component solutions is depicted in Figure 2. Note
that the correlations in the matrix at the top of
this figure are all very high (≥ 0.7). In this case,
all seven hearing aid outcome measures are in-
terrelated, such that an individual who scored
high on the SR1 speech recognition measure also
scored high on all of the other six outcome mea-
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Figure 2. Illustration of a hypothetical correlation matrix (top) and resulting principal
component factor solution (bottom) for a case in which all dependent variables are highly
correlated with one another. Each of the three speech recognition measures (SR1, SR2, SR3), 
the two sound quality measures (Qu1, Qu2), the satisfaction measure (Satf) and the usage
measure (Use) are weighted on the same factor.



sures. Likewise, an individual who scored low on
one of the sound quality measures (Qu1) also
scored low on all of the other six outcome mea-
sures. Thus, a lot of overlap or redundancy exists
among the set of seven outcome measures.
Essentially, such a pattern would indicate that
knowledge of an individual’s performance on one
outcome measure reveals that individual’s rela-
tive performance on all other outcome measures.
All seven dependent variables seem to be related
to the same underlying construct or factor. The
lower portion of Figure 2 reveals the factor
weights (grey bars) of each variable for Factor A.
Each outcome measure has a weight between 0.6
and 0.9 for Factor A, and no other factors are
needed for the solution.

Having reviewed the two extreme factor so-
lutions for our hypothetical example, Figure 3
presents a more typical outcome that lies between
these two extremes. First, an examination of the
correlation matrix in the top portion of the figure
shows that there are three “clusters” of high cor-
relations, indicated by correlation coefficients in a
bold italicized font. The first cluster in the top left
portion of the matrix indicates that all three mea-
sures of aided speech recognition are highly cor-
related with each other, but not with any of the
other outcome variables. Next, the correlation co-
efficient of 0.9 in the middle of the matrix indi-
cates that the two measures of aided sound qual-
ity are correlated with each other, but not with
any other outcome measures. Finally, the corre-
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Figure 3. Illustration of a hypothetical correlation matrix (top) and resulting
principal component factor solution (bottom) for a more typical case in which
there are several (three) clusters of highly correlated dependent variables. Each of
the three speech recognition measures (SR1, SR2, SR3) are weighted heavily on
only one factor (white bars), whereas the two sound quality measures (Qu1, Qu2)
and the satisfaction (Satf) and usage measure (Use) are weighted on other factors
(the grey and striped bars, respectively).



lation coefficient of 0.8 in the lower right portion
of the correlation matrix indicates that the mea-
sures of hearing aid satisfaction and usage are
correlated with one another, but not with any of
the other outcome measures. 

The pattern of factor weights that might be
observed for such a correlation matrix is shown in
the lower portion of Figure 3. Note that the
weights for the three speech recognition measures
are high for Factor A (white vertical bars), but the
other four variables have very low weights for
Factor A. Similarly, the two sound quality vari-
ables have high weights for Factor B (grey vertical
bars), but all other outcome variables have low
weights on this factor. Finally, hearing aid satis-
faction and usage are weighted highly on Factor
C (striped bars), and all other outcome measures
have low weights on this factor. Thus, three gen-
eral constructs or factors (FA, FB, FC) appear to un-
derlie the seven hearing aid outcome measures in
this hypothetical set of data. 

In principle, only three outcome measures
would need to be obtained in the future: one
measure of aided speech recognition; one mea-
sure of aided sound quality; and a measure of ei-
ther hearing aid satisfaction or usage, but not
both. This, of course, assumes that each of the
seven outcome measures is reliable. In addition,
by an examination of the variables that load heav-
ily on a particular factor, it is often possible for
the researcher to label the factor appropriately.
In the situation illustrated in Figure 3, for exam-
ple, Factor A would be interpreted as a general
aided speech-recognition factor that was appar-
ently independent of the differences in materials
or listening conditions involved in SR1, SR2, and
SR3. Factor B, on the other hand, is clearly relat-
ed to aided sound quality (again, independent of
the differences in stimuli or listening conditions
between Qu1 and Qu2), and Factor C is inter-
preted as a measure of hearing aid satisfaction
and usage.

Recall that principal components analysis
seeks to maximize the variance accounted for by
the multivariate linear model. So, part of the eval-
uation of the quality of fit for a given factor solu-
tion is based on the total variance accounted for,
with higher proportions of variance representing
better fits. In addition, given the iterative nature
of the solution, Factor A, the first identified, al-
ways accounts for the largest proportion of vari-
ance, with each successive factor accounting for a
progressively lower proportion of variance. As

noted previously, in general, only those factors
accounting for a proportion of variance that ex-
ceeds 1/V (V = number of dependent variables)
are likely to be robust and emerge in subsequent
analyses. In the hypothetical example illustrated
by Figure 3, Factor A (aided speech recognition)
accounted for the greatest proportion of the total
variance since it was the first component identi-
fied, but all three factors accounted for at least
14.3% of the variance (1/V = 1/7 = 0.143 =
14.3%).

In addition to examining the total variance
accounted for by the factor solution, an impor-
tant metric representing the goodness of fit is
known as the communality. The communality is
calculated for each variable included in the factor
analysis and represents the proportion of each
variable’s variance that can be accounted for by
the factors in the final solution (Gorsuch, 1983).
Communality values can range from 0 to 1, but
more appropriate lower and upper bounds are
represented by the multiple correlation of the
variable with all other dependent variables and
the reliability coefficient of the variable, respec-
tively. In general, low communality of a variable
would be indicated by values ≤ 0.40 and reason-
ably high communality by values ≥ 0.70
(Gorsuch, 1983).

As noted, the examples illustrated in Figures
1 to 3 were only hypothetical and did not repre-
sent a typical set of variables common to most
factor analyses. Moreover, the correlation coeffi-
cients were deliberately set to either be very high
(≥ 0.7) or very low (≤ 0.3), which makes the
“clustering” of correlated variables and the inter-
pretation of the underlying factors straightfor-
ward. This is often not the case, however, and a
statistical procedure such as factor analysis is
needed to extract the common underlying factors,
because they are not so readily apparent visually
as the examples illustrated in these three figures.
In addition, many more than seven dependent
variables are typically being considered. For V de-
pendent variables, the number of correlations to
be examined above the diagonal is given by
[V•(V-1)/2]. Thus, in our hypothetical examples,
only 21 correlations needed to be scanned in each
matrix to find clusters of correlated variables. In
many applications, it is not unusual to have 20 to
25 dependent variables involved, which would
lead to 190 to 300 correlations to be analyzed.
Clearly, visual inspection of the correlation ma-
trices is not appropriate in such cases.
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Gorsuch (1983) indicates that there should
be at least four dependent variables for the con-
struct being assessed or represented in the factor
analysis. Thus, in our hypothetical examples, as-
suming the same 4 domains of aided speech
recognition, aided sound quality, hearing aid sat-
isfaction, and hearing aid usage were to be rep-
resented, then a minimum of 16 dependent vari-
ables would be needed, 4 for each domain. 

It is more difficult to define a precise rule or
guideline for the number of individuals to be in-
cluded in factor analysis studies. However,
Gorsuch (1983) indicates that there should be at
least 5 subjects per variable and seldom fewer
than 100 subjects for such analyses. Continuing
with our previous example, if one had a total of
16 outcome measures, 4 for each of 4 domains,
then a subjects-to-variables ratio of 5 would mean
that 80 subjects would be required in order to
yield a robust factor solution. However, since 80
is less than the recommended minimum of 100,
such a study would actually require 100 partici-
pants, each completing all 16 outcome measures.

Gorsuch’s (1983) simple rules of thumb re-
garding minimum sample size and the subjects-
to-variables ratio for factor analysis are oversim-
plifications (as Gorsuch also acknowledged). As
noted by Guadagnoli and Velicer (1988) and
MacCallum et al. (1999), for example, sample
size, the subjects-to-variables ratio, the variables-
to-factors ratio, and the communalities of the
variables interact in a fairly complex manner.
Basically, these studies demonstrate that if the
communalities are generally greater than 0.6,
then sample size can be small (50 to 60 subjects)
and the number of variables per factor can also
be small (eg, 3 variables per factor), with stable
factor solutions still obtained. 

These studies demonstrated that the commu-
nalities of the variables were of paramount im-
portance to obtaining stable factor solutions. This
was true, moreover, for either universally high
communalities (eg, all values >0.6) or for a wide
range of communalities in which values were
roughly equally distributed from 0.2 to 0.8. It was
only when the communalities were universally
low (eg, all values ≤ 0.4), that the sample size
needed to be increased to ≥ 400 subjects to yield
stable factor solutions. Even in this case, howev-
er, if the subjects-to-factor ratio was increased to
≥ 6 while communalities remained low, a sample
size as low as 100 proved to be acceptable (yield-
ed stable factor solutions). As will be demon-

strated later, communalities were never univer-
sally low (typically, quite high) for any of the fac-
tor analyses reported in this article. As such, rel-
atively small sample sizes and variables-to-factors
ratios are acceptable.

The foregoing discussion of factor analysis
has been concerned with one type of factor analy-
sis known as exploratory factor analysis. In this
approach, there have not been many (or any)
prior such analyses, and insufficient data exist to
formulate well-articulated theories regarding the
constructs or factors that might underlie perfor-
mance. The primary purpose of exploratory factor
analyses is to develop some initial theories or
models regarding such constructs and then to
guide subsequent research to further evaluate and
develop the model and theory. That is, the result
of exploratory factor analysis is seldom expected
to result in a final model.

Confirmatory factor analysis, on the other
hand, is based on prior exploratory analyses and
refinement with additional research and theoret-
ical work. Here, a specific model is constructed
and factor analysis is used to test the model with
new sets of data. Often, the new data result in
modifications to and improvements in the model
and underlying theory. For confirmatory factor
analysis, it is often possible to get by with fewer
dependent variables and fewer subjects. A few
prior factor analyses of hearing aid outcome mea-
sures (eg, Humes, 1999; Humes et al., 2001) have
been conducted, and the development of models
and theories in this area is certainly in its infancy.
Thus, in this paper, we are concerned only with
exploratory factor analysis.

A final key concept central to factor analysis
is something referred to as factor or component
rotation. Consider the graphical presentation of
the two-factor solution in the top panel of Figure
4. Two factors, A and B, were identified as prin-
cipal components by factor analysis and are rep-
resented along the X and Y axes, respectively.
Note that in this conventional representation of
the x and y axes, the two axes are perpendicular
to one another, which reflects their independence
or lack of correlation. Factors A and B are uncor-
related or orthogonal components. 

Assuming that the origin has x,y coordinates
of 0,0 and the extreme values on both axes are
±1, the two axes represent the factor weights
(wv) of each variable on Factor A and Factor B.
Note that the four speech recognition measures
(filled circles) in this hypothetical illustration
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would be represented as moderate weights of
about 0.2 to 0.6 on both Factor A and Factor B.
Likewise, two of the four satisfaction and usage
variables would have extreme weights for both
factors (near -1 on Factor A and +1 on Factor B).
This makes interpretation of the underlying fac-
tors difficult because there is not a clear mapping
of variables to factors to assist in the interpreta-
tion. However, if one rotates the two axes, keep-

ing the origin at 0,0 and the axes perpendicular,
a rotated solution emerges, such as that depicted
in the lower panel of Figure 4. Note that, in the
case of the rotated axes, the speech recognition
variables, and only these variables, have high
weights for Factor A, whereas the satisfaction and
usage measures, and only these measures, have
high weights (either positive or negative) on
Factor B. 

Now, the interpretation of Factors
A and B is much easier for the re-
searcher. Clearly, Factor A is a speech
recognition factor and Factor B is a
hearing aid satisfaction and usage fac-
tor. These two factors, moreover, are
independent of one another such that
knowledge of an individual’s speech
recognition performance is entirely un-
related to the measured hearing aid
satisfaction or usage. Thus, factor rota-
tion is performed solely to enhance the
interpretation of the factors derived. It
does not have an impact on the num-
ber of factors identified or the amount
of variance accounted for by the factors
in the solution. 
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Figure 4. Illustration of the concept of
orthogonal rotation of factors for a hypothetical
two-factor solution. Two sets of factor weights
are shown, one for a set of speech recognition
measures (filled circles) and one for a set of
hearing aid satisfaction and usage measures
(unfilled circles). The unrotated factor solution
is shown in the top portion and the orthogonally
rotated solution in the bottom portion of the
figure. Note that the Factor A and Factor B axes
are perpendicular (orthogonal) in both cases,
but the axes have been rotated about 30 degrees
counterclockwise in the bottom panel. Although
the scatter of the data points in this two-
dimensional plot remains the same in both
illustrations (ie, the variance accounted for by 
the two-factor solution is the same), the inter-
pretation of Factor A as a speech recognition
factor and Factor B as a satisfaction and usage
factor is much clearer for the rotated solution at
the bottom.



Various procedures have been established for
optimal rotation of the factors (Gorsuch, 1983).
Of those available, the varimax (Kaiser, 1958)
procedure is the one most commonly used. This
rotation criterion seeks to maximize the variance
of the squared weights across a factor; hence the
name, varimax.

As noted, principal component analysis as-
sumes that each component in the factor solution
is orthogonal or uncorrelated; that is, that the x

and y axes in Figure 4 are perpendicular. Is this a
valid assumption? For example, perhaps all mea-
sures of hearing aid outcome are correlated. Is
this an unreasonable scenario? Probably not, at
least during the initial development or explo-
ration of models. To accommodate such a sce-
nario, it is possible to allow for some correlation
between factors in principal components solu-
tions. In this case, the axes are no longer perpen-
dicular, and as a result, the rotation of the factors
is referred to as oblique rotation. Again, the read-
er should keep in mind that the rotation of fac-
tors, whether orthogonal or oblique, does not im-
pact the number of factors or the variance ac-
counted for in the solution. Rather, the purpose of
factor rotation is to assist in the interpretation of
the factors, including possible associations among
factors.

Figure 5 illustrates another hypothetical fac-
tor solution for sets of speech recognition, satis-
faction, and usage variables and is useful in illus-
trating the nature of oblique factor rotation. The
top panel again depicts the unrotated orthogonal
solution for this hypothetical set of data.
Interpretation of the underlying factors from this
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Figure 5. Illustration of the concept of oblique
rotation of factors for a hypothetical two-factor
solution. Two sets of factor weights are shown, one for
a set of speech recognition measures (filled circles)
and one for a set of hearing aid satisfaction and usage
measures (unfilled circles). The unrotated factor solu-
tion is shown in the top portion and the obliquely
rotated solution in the bottom portion of the figure.
Note that the Factor A and Factor B axes are no longer
perpendicular in the bottom illustration. Although the
scatter of the data points in this two-dimensional plot
remains the same in both illustrations (ie, the variance
accounted for by the two-factor solution is the same),
the interpretation of Factor A as a speech recognition
factor and Factor B as a satisfaction and usage factor is
much clearer for the rotated solution at the bottom. It
is also clear that no matter how the perpendicular axes
(dotted lines in bottom illustration) were rotated, a good
alignment of the factor weights with the axes would
not be possible. Thus, the oblique rotation is superior
to the orthogonal rotation in this example (in terms of
factor interpretation, not variance accounted for).



solution is not easy, because many variables have
moderate weights on both Factor A and Factor B.
Maintaining perpendicular (orthogonal) axes and
rotating them about 15° clockwise might facili-
tate interpretation of Factor B, but not Factor A.
Likewise, orthogonal rotation of the axes about
15° counterclockwise might facilitate interpreta-
tion of Factor A, but not Factor B. However, as
shown in the lower portion of Figure 5, if the re-
quirement that the axes remain perpendicular is
relaxed, an optimal rotation can be obtained for
both factors. Such an oblique rotation makes it
clear that Factor B is associated with hearing aid
satisfaction and usage, and Factor A is associated
with speech recognition performance. Thus,
oblique rotation has facilitated the interpretation
of the underlying factors or principal components.

The improvement in factor interpretation, il-
lustrated with oblique rotation in the lower por-
tion of Figure 5, comes with an additional “cost.”
Specifically, the resulting solution is now more
complex than the simpler orthogonal solution.
Recall that factor analysis operates on the corre-
lation matrix for all dependent variables. If a set
of factors emerge and the resulting factors are
themselves correlated, resulting in another corre-
lation matrix representing interfactor correla-
tions, then an additional second-order factor
analysis may need to be performed to determine
a second set of higher-order factors. 

It is not being suggested here that the added
complexity is a negative aspect of the oblique ro-
tation of factors, as this may in fact provide the
most appropriate description of the phenomenon
being studied by the researcher. On the other
hand, parsimony would dictate that an orthogo-
nal solution, with fewer levels of factors, would
be preferred should such a solution provide a
valid description of the data.

How does the researcher decide between an
orthogonal or oblique rotation of the factors, es-
pecially for an exploratory factor analysis in
which there is little prior work to guide hypothe-
ses or to formulate theories regarding associa-
tions among factors? The most common approach
to addressing this problem is to generate a corre-
lation matrix among the principal components
following oblique rotation.

Consider the simple case of two principal
components, Factor A and Factor B, as illustrated
previously in Figures 4 and 5. If the correlation
between these two factors following oblique ro-
tation is 0, then an orthogonal solution would be

appropriate. At the other extreme, if the inter-
component correlation is 1.0, then the factor
analysis would be redone with only one factor.
So, oblique rotation is not needed for either of
these extremes of very “low” or very “high” inter-
component correlations.

What exactly is meant by a “low” or “high”
correlation? There are no hard and fast rules. In
general, an oblique principal component solution
with intercomponent correlations of less than 0.2
to 0.3 could probably be modeled appropriately
with orthogonal components, whereas oblique so-
lutions with intercomponent correlations greater
than 0.7 to 0.8 would probably justify redoing the
analysis with one less component. Gorsuch
(1983) argues that the upper bound for inter-
component correlations cannot be expected to be
greater than the correlations between the sets of
variables weighted highly on each contributing
factor. For example, consider the hypothetical
oblique solution depicted previously in the lower
panel of Figure 5. If the correlations between the
two speech recognition variables weighted the
highest on Factor A, and the two satisfaction or
usage variables weighted the highest on Factor B
ranged from 0.3 to 0.4, then this would represent
the upper bound for the expected correlation be-
tween Factors A and B.

Why should one be concerned about the
upper bound for the intercomponent correlations
when evaluating the results from oblique rota-
tions of the factors? Although many procedures
are used in oblique rotation, the most common is
known as promax (Hendrickson & White, 1964).
A detailed description of this procedure is beyond
the scope of this brief tutorial, but the name is de-
rived from maximizing the solution using the
mathematical Procrustes procedure; hence the
name, promax. 

Important to the present discussion, howev-
er, is that this oblique factor rotation method has
a parameter, k, that is allowed to vary such that k
is a positive integer. For k = 1, the orthogonal so-
lution is obtained. So, for oblique rotation, k is
typically greater than 1 and the most common ini-
tial value for k is 4 (Gorsuch, 1983). Importantly,
the intercomponent correlations will increase pro-
portionately with k. As a result, higher k values
will always reveal higher intercomponent corre-
lations. Thus, the criterion for the optimal k value
and a valid representation of the intercomponent
correlation cannot be based on the size of the cor-
relation alone. Otherwise, the highest possible k
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value would always represent the best solution.
If one takes this to the limit and k is allowed to in-
crease continually, the intercomponent correla-
tions will eventually become high enough to re-
sult in a model with fewer components. Thus, for
the promax oblique factor rotation procedure, an
upper bound for the intercomponent correlations
must be set. As noted, Gorsuch (1983) recom-
mends that this upper bound should correspond
to the correlation between the sets of the most
salient (highest weighted) dependent variables on
each of the factors involved in the intercompo-
nent correlations.

Whether the researcher uses oblique or or-
thogonal rotation of factors in factor analysis, the
ultimate goal is to obtain the simplest possible
structure that underlies the performance of a
group of individuals on a set of dependent vari-
ables. Early in the development of factor analytic
approaches, Thurstone (1947) identified several
criteria for the evaluation of a solution’s simplic-
ity. These criteria are: (1) each variable should
have at least one factor weighting of 0; (2) each
factor should have several variables, unique to
that factor, with factor weights of 0; (3) for every
pair of factors, there should be several variables
whose weights are 0 for one factor, but not for
the other factor of the pair; (4) whenever four or
more factors emerge, for every pair of factors, a
large proportion of the variables should have fac-
tor weights of 0; and (5) for every pair of factors,
only a small number of variables should have
nonzero factor weights on both factors of the pair.
These criteria represent general guidelines to the
simplicity of the factor solution and are still ap-
propriate to consider when alternative factor ro-
tations are evaluated.

The foregoing paragraphs of this section have
provided a brief overview of some of the princi-
ples and features of exploratory factor analysis
in general, and principal components analysis in
particular. It is hoped that one of the things that
should have become apparent to the reader is
that the researcher has a series of decisions to
make regarding any factor analysis. For exam-
ple, decisions must be made with regard to the
number of components, their interpretation, and
their correlation. Often, hard and fast rules are
not available to guide the researcher, but only
general guidelines. That an element of subjec-
tivity exists in making each of these decisions
can perhaps can be tolerated better when it is
recalled that the purpose of exploratory factor

analysis is seldom to obtain “the” solution or
model for the problem being studied. Rather, it
is an attempt to synthesize prior work and new
data in the development of a preliminary model
that will lead to subsequent research. Only with
additional research and modeling will a “final”
solution be obtained.

In the remaining sections of this article, prin-
cipal components analysis is applied to three sets
of data on hearing aid outcome measures. This
tool is used to model the nature of the factors un-
derlying the construct of hearing aid outcome.
Once the number of dimensions and the inter-
component correlations were identified for hear-
ing aid outcome, it was of interest to determine
what variables obtained from the individuals in
each might predict performance for a given di-
mension. This was accomplished by saving the
factor scores (calculated via linear regression)
from the final principal component solution for
each data set and then conducting multiple re-
gression analyses in an attempt to predict the fac-
tor scores (standardized factor scores were used
in which the mean is always 0 and the standard
deviation is 1). 

Principal components analysis was again used
prior to the multiple regression analyses to reduce
the large set of potential predictor variables to a
more manageable set. In this use of principal
components analysis, no attempt was made to un-
derstand the factors underlying the collection of
prefit variables, although the interpretation of the
factor weights was straightforward in most cases.
Instead, principal components analysis was just
used as a statistical tool to reduce the redundan-
cy in the set of predictor variables and, via or-
thogonal rotation, produce a set of uncorrelated
predictors to avoid the problem of collinearity for
the subsequent regression analyses. 

Indiana University Study of Hearing Aid
Outcome for Single-Channel, 

Linear ITE Hearing Aids (IU-1)

Study Overview 

Details regarding the study sample, hearing aid
fitting protocol, and outcome measures can be
found in Humes et al. (2001). The details regard-
ing most of the prefit predictor variables obtained
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from all participants in that study can be found
in Humes (2002). As a result, only a general
overview of this study will be presented here.

Table 1 summarizes the characteristics of the
subject sample in the IU-1 study. As noted, 173
elderly individuals participated in the study, of
whom about 68% were men, and 39.3% were
prior hearing aid users. All participants were fit
with the same full-concha ITE hearing aids, with
the gain and output-limiting characteristics of the
circuitry adjusted individually. The circuitry was
a single-channel, linear amplifier with output-
limiting compression. All hearing aids were fit
binaurally.

Prior to being fit with the study hearing aids,
each listener completed a series of audiological,
auditory processing, cognitive, and psychological
measures over a series of several test sessions.
The psychological measures ranged from com-
munication-related scales of attitudes, expecta-
tions, and handicap to more global measures of
health-related locus of control and general
healthcare attitudes. Again, details regarding
most of these measures and the results obtained
can be found in Humes (2002). However, most
of the communication-related and health-related
surveys obtained from the 173 study participants
have not been described in detail previously and
are described as follows: 

• Two communication-related surveys were ad-
ministered. The first, completed during the pr-
efit portion of the project, was a 12-item hear-
ing aid expectations questionnaire developed
by Bentler et al. (1993). Higher scores on this
expectations scale reflect the subject’s greater
expectations regarding the potential benefit of
the hearing aids. The second was the 25-item
Hearing Handicap Inventory for the Elderly
(HHIE) (Ventry and Weinstein, 1982). Overall
HHIE scores, as well as scores for the social and
emotional subscales, were recorded. 

• The 11-item Health Locus of Control (HLC)
scale (Wallston et al., 1976) measures the ex-
tent to which one internalizes or externalizes
the responsibility for one’s health. 

• The 16-item Health Opinion Survey (HOS)
(Krantz, Baum, and Wideman, 1980) produced
composite scores and scores for 2 subscales
recorded from each participant. This survey as-
sesses preferences for different healthcare treat-
ment approaches with one subscale measuring
preferred sources for health-related information
(self versus healthcare professional) and the
other measuring preferred behavioral involve-
ment in treatment (active self care versus pas-
sive reliance on healthcare professional).
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Table 1. Summary of Demographic Characteristics of each of the Three Hearing Aid Studies Evaluated

Study
Variable IU-1 IU-2 NIDCD/VA

Number of Subjects (N) 173 53 333-338*

Mean (SD) Age (years) 73.1 (6.5) 74.6 (6.9) 67.2 (11.3)

Age Range (years) 60–87 61–89 29–91

Mean (SD) Pure-tone Average (dB HL)** 39.3 (11.9) 36.0 (10.5) 39.0 (11.4)

Mean (SD) HF Pure-tone Average (dB HL) 50.9 (11.4) 48.2 (10.3) 50.0 (10.4)

% of Study Sample, Male 68 66 57

% of Study Sample, Prior HA Users 39.3 26.4 53.2

**N varied with circuit type.
**re: ANSI (1996).
IU, Indiana University; NIDCD/VA, National Institute of Deafness and other Communication 
Disorders/Veterans Administration.



• The nine-hole peg test of finger dexterity
(Mathiowetz et al., 1985) measures the time it
takes for participants to place nine small pegs
on a pegboard. Measures were repeated three
times with each hand, with the first trial dis-
carded as practice and the remaining two aver-
aged. Scores were also obtained with the par-
ticipant blindfolded to eliminate visual feed-
back. This measure was included since hearing
aid wearers must often make adjustments to
their devices without being able to see the de-
vices or the controls on the devices. Four mea-
sures of finger dexterity were made: two for
each hand, one with visual feedback and one
without. 

Twenty hearing aid outcome measures (multiple
measures of hearing aid performance, benefit,
satisfaction, and usage) were obtained from all
173 hearing aid wearers after 1 month of hear-
ing aid use. The specific measures, organized by
the general category of outcome measure, are
summarized in Table 2. Ideally, as noted in the
previous section, it is desirable to have three to
four measures from each domain of interest, but
only two measures of hearing aid satisfaction
were available. Nonetheless, these measures were
included in the ensuing principal components
analysis.

In future research, however, the researcher
should obtain additional measures of hearing aid
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Table 2. Summary of the 20 Hearing Aid Outcome Measures in the IU-1 Study

Outcome Category Variable Description

Hearing Aid Usage HDABI-use Mean frequency of hearing-aid usage, 14 situations

GHABP-use Mean frequency of hearing-aid usage, 4 situations

Daily use Mean hours per day hearing-aid usage from daily diary

Subjective Benefit HAPI-spn Mean score for speech-in-noise HAPI subscale

HAPI-spq Mean score for speech-in-quiet HAPI subscale

HAPI-red-cues Mean score for HAPI subscale, speech with reduced cues

HAPI-nonspeech Mean score for HAPI subscale, non-speech sounds

HDABI-ben Mean helpfulness of hearing aids, 14 listening situations

GHABP-ben Mean helpfulness of hearing aids, 4 listening situations

GHABP-perf Mean aided performance rating of hearing aids, 4 situations

Satisfaction MarkeTrakIV* Mean satisfaction rating on 28 items, 5-point scale

GHABP-sat Mean satisfaction rating, 4 listening situations

Speech Recognition NST-unaided Percentage correct on NST, 65 dB SPL, +8 dB SNR, unaided

NST-aided Percentage correct on NST, 65 dB SPL, +8 dB SNR, aided

CST50-unaided Percentage correct on CST, 50 dB SPL, in quiet, unaided

CST65-unaided Percentage correct on CST, 65 dB SPL, +8 dB SNR, unaided

CST80-unaided Percentage correct on CST, 80 dB SPL, 0 dB SNR, unaided

CST50-aided Percentage correct on CST, 50 dB SPL, in quiet, aided

CST65-aided Percentage correct on CST, 65 dB SPL, +8 dB SNR, aided

CST80-aided Percentage correct on CST, 80 dB SPL, 0 dB SNR, aided

*Kochkin, 1997; HDABI, Hearing Disability and Benefit Inventory (Gatehouse, 1999); GHABP, Glasgow Hearing Aid
Benefit Profile (Gatehouse, 1999); HAPI, Hearing Aid Performance Inventory (Walden et al., 1984); CST, Connected
Speech Test (Cox et al., 1988); NST, Nonsense Syllable Test (Levitt and Resnick, 1978); IU, Indiana University.



satisfaction and, perhaps, hearing aid usage. At
present, limited as it may be with regard to some
potential domains of hearing aid outcome, this
set of hearing aid outcome measures represents
the most extensive set of such measures available
from the same hearing aid wearers. In addition,
the inclusion of both unaided and aided speech
recognition scores as outcome measures, rather
than aided measures together with the difference
between aided and unaided scores as in Humes
(1999) and Humes et al. (2001), followed from
the Humes (2002) finding that a single speech
recognition factor underlies both unaided and
aided measures. This, in turn, afforded a more
parsimonious account of factors underlying
speech recognition performance in these listen-
ers. (As will be seen in the next section, this also
proved to be the case when the outcome mea-
sures that were associated with measured speech
recognition performance were combined with
several subjective or self-report measures of hear-
ing aid outcome.)

Principal Component Factor Analyses

To examine the redundancy among the 20 out-
come measures and to identify a more parsimo-
nious underlying structure, principal component
factor analyses (Gorsuch, 1983) were conduct-
ed. Factors were identified by the use of a 
selection criterion of eigenvalue >1.0, and
missing data were replaced with mean values.
In the worst case (aided speech recognition
scores for the highest speech presentation
level), 4% of the data were missing. Typically,
less than 1% of the data for a given outcome
measure were missing.

Three principal components, accounting for
66.5% of the total variance among the 20 hearing
aid outcome measures, were identified. Table 3
presents the component weights of each of the 20
outcome variables for each of the resulting prin-
cipal components following orthogonal rotation
(the varimax procedure was used) of the three
components. The communality value for each
outcome variable is also provided in this table.
For 8 of the 20 outcome variables, the commu-
nality was high (≥ 0.7), whereas it was at least of
moderate strength for the remaining 12 outcome
variables. That is, no variables were observed to
have low communality (≤ 0.4) for this solution.
Based on the observed pattern of principal com-

ponent weights, the first factor, accounting for
26.5% of the total variance, was identified as
hearing aid subjective benefit and satisfaction.
The second factor, accounting for 25.2% of the
variance, was labeled as a general speech recog-
nition factor, based on the heavy loadings of both
unaided and aided speech recognition scores on
this factor. Finally, the third factor, accounting
for 14.8% of the total variance, was identified as
a hearing aid usage factor.

The orthogonal solution in Table 3, however,
reveals that several outcome measures are loaded
on more than one of the orthogonal components.
For example, two of the top three measures in
this table, all measures of hearing aid usage, are
most heavily weighted on the third component,
but still have some weight on the first component.
This suggests that it may not be appropriate to
model the three outcome dimensions as indepen-
dent dimensions. Rather, the dimensions may be
correlated with one another. 

As noted in the previous section, one way
within principal component analysis to examine
this possibility is to make use of oblique, rather
than orthogonal, rotation of the components.
The promax rotation procedure, with the k pa-
rameter set to a value of 4, was used to examine
oblique rotation. The oblique rotation of the
three components yielded pattern and structure
weights (which are similar to factor weights)
consistent with the labeling of the three out-
come dimensions from the orthogonal rotation
that was previously described and indicated
that the correlation between components was
moderate in two of the three cases. Specifically,
the correlation between the subjective benefit
and satisfaction component and the speech
recognition component was 0.01, whereas it
was -0.42 between subjective benefit and satis-
faction and the hearing aid usage component.
The correlation between the speech recognition
component and the hearing aid usage compo-
nent was -0.32. 

These intercomponent correlations are very
similar to the expected upper bounds for the cor-
relations, which as noted in the previous section,
are based on the correlations observed among the
variables corresponding to the most salient vari-
ables associated with each factor. Thus, the deci-
sion was made that it would be most appropriate
to model the hearing aid outcome measures from
this group of 173 elderly hearing aid wearers as
three components, with two of the three moder-
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ately correlated with one another. This factor so-
lution was used to generate factor scores for each
of the three correlated (oblique) factors for all
173 participants.

Regression Analyses

Next, regression analyses were to be performed
between the prefit variables and each of the
three, correlated hearing aid outcome compo-

nents identified above. Prior to performing such
regression analyses, however, the redundancy
among the large set of prefit predictor variables
was examined and reduced. Principal compo-
nents factor analysis was again used to accom-
plish this and resulted in 61 potential prefit vari-
ables being reduced to 16 orthogonal principal
components accounting for 75.7% of the total
variance. In addition, communality values for 45
of the 61 prefit variables were high, 16 were mod-
erate, and 0 were low. Orthogonal rotation of

Trends In Amplification Volume 7, Number 2, 2003

56

Table 3. Principal Component Weights or Factor Loadings*

PC-Subjective Benefit PC-Speech Recognition PC-Hearing Aid
Variable and Satisfaction (26.5%) Performance (25.2%) Usage (14.8%)

HDABI-use (0.81) 0.35 -0.80

GHABP-use (0.82) -0.30 0.84

Daily use (0.68) 0.82

HAPI-spn (0.76) 0.87

HAPI-spq (0.70) 0.75 -0.34

HAPI-red-cues (0.69) 0.79

HAPI-nonspeech (0.76) 0.79 -0.35

HDABI-ben (0.53) 0.67

GHABP-ben (0.68) -0.69 0.46

GHABP-perf (0.50) 0.60 0.33

MarkeTrakIV (0.67) -0.79

GHABP-sat (0.72) -0.76 0.37

NST-unaided (0.64) 0.77

NST-aided (0.54) 0.72

CST50-unaided (0.68) 0.80

CST65-unaided (0.78) 0.86

CST80-unaided (0.54) 0.72

CST50-aided (0.71) 0.84

CST65-aided (0.59) 0.76

CST80-aided (0.49) 0.70

*Loadings are given for each of the three orthogonal components identified in the analysis of the hearing-aid outcome
measures from the Indiana University-1 (IU-1) study. The communality value for each variable has been provided in
parentheses after the variable name. Weights less than 0.30 have been omitted from the table for clarity. The percentage
of variance accounted for by each of the three principal components is indicated in parentheses following each
component’s label. PC, orthogonal principal component from factor analysis of prefit measures in the IU-1 study. 
See Table 2 for other abbreviations. 



principal components was used for the prefit
measures to eliminate the potential for collinear-
ity among the set of predictor variables in subse-
quent multiple regression analyses. The 16 prin-
cipal components identified among the battery of
prefit measures appear in the first 16 rows of
Table 4. 

A set of 16 orthogonal factor scores repre-
senting these prefit measures was saved for each
of the 173 participants. In addition to these 16
prefit factor scores (as noted in Table 4), 2 or-
thogonal principal components from an analysis
of the aided sound-quality judgments (Humes et
al., 2001; Narendran and Humes, in press) and 7
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Table 4. Predictor Variables for the IU-1 Study

Predictor Variable Description

PC-Audibility Average hearing loss, aided and unaided; hearing aid gain

PC-Verbal IQ Raw scores on the verbal scales of the WAIS-R (Wechsler, 1981)

PC-LDL Loudness discomfort levels (LDL) for pure tones, 1000-3000 Hz

PC-PBmax Maximum monosyllabic word-recognition score under headphones

PC-DPOAE Average DPOAE signal-to-noise ratio in dB, 2000–6300 Hz

PC-Nonverbal IQ Raw scores on the nonverbal scales of the WAIS-R

PC-Dexterity Scores on 9-hole peg test, with and without vision, right and left hands

PC-TempProc/Exp Auditory temporal-processing measures and hearing-aid expectations

PC-As-worn Gain Average as-worn hearing-aid gain, 1000–4000 Hz

PC-ABR Wave-V latencies of the auditory brainstem response , both ears

PC-CPHI-adj CPHI adjustment factor score and HHIE (negatively weighted)

PC-CPHI-import CPHI communication-importance factor score

PC-DPOAE-lf Average DPOAE signal-to-noise ratio in dB, 1000–1500 Hz

PC-CPHI-react CPHI factor score representing reaction to communication problems

PC-HLC Score on Health Locus of Control scale

PC-HOS Score on Health Opinion Survey 

JSQ-1 PC, aided Judgements of Sound Quality scale (soft, full, spacious, total)

JSQ-2 PC, aided Judgements of Sound Quality (bright, clear, near, loud)

Age Chronological age in years (positively correlated with duration retired)

HA-exper Hearing-aid experience categorized on a 0-5 scale, proportional to use

Dur-occup Duration in primary occupation, in years

Other-prob Problems with other prosthetic devices (eyeglasses, dentures)

Liv-arrange Living arrangement (living alone independently, with spouse, children)

Activity-level Number and frequency of outside interests and social activities

SES Socioeconomic status based on self-reported annual income

IU, Indiana University; DPOAE, distortion product otoacoustic emissions; CPHI, Communication Profile for the Hearing
Impaired (Demorest and Erdman, 1987); PC, orthogonal principal component from factor analysis of prefit measures in
the IU-1 study.



variables taken from the information each partic-
ipant provided in the detailed case history (bot-
tom seven rows of Table 4) were included. 

The resulting 25 potential predictor variables
for the 173 subjects served as the input to 3 step-
wise multiple regression analyses, 1 regression
analysis for each of the 3 hearing aid outcome
factor scores. Table 5 summarizes the results of
these multiple regression analyses. Significant lin-
ear regression fits were obtained in all three
cases. However, only one predictor variable en-
tered the regression equation when an attempt
was made to predict factor scores associated with
subjective benefit and satisfaction, and this vari-
able accounted for only 7.1% of the total vari-
ance. The sole predictor variable in this equation
was a factor score representing the perceived
sound quality for amplified speech and music
(JSQ-1). The standardized β coefficient in Table 5
for this predictor variable indicates that as the
perceived sound quality of amplified speech and
music increased, the subject’s ratings of subjec-

tive benefit and satisfaction also tended to in-
crease. As noted, however, this trend was a weak
one and only accounted for a small percentage
(about 7%) of the variance.

The regression analysis was most effective for
the prediction of individual differences in the fac-
tor associated with general speech recognition
performance, both aided and unaided. As indi-
cated in Table 5, the best-fitting regression equa-
tion for this outcome factor accounted for 64.8%
of the total variance with six predictor variables.
Examination of the variables, and the percentage
of variance accounted for by each, indicates that
nearly two thirds of the systematic variance was
accounted for by one variable: hearing loss or au-
dibility. As hearing loss increased, speech recog-
nition performance decreased (whether measured
in unaided or aided conditions). A review of the
standardized β coefficients for the best-fitting re-
gression equation in the lower portion of Table 5
indicates that speech recognition performance of
the 173 elderly hearing aid wearers tended to in-
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Table 5. Summary of the Regression Analyses Performed from the IU-1 Study*

Outcome PC % Total Variance Predictor Variable β Coefficient F (df) P

PC-Subj Benefit/Satisfaction 7.1 JSQ-1 0.267 13.1 (1,171) <.001

∑ = 7.1

PC-Speech Recognition Perf. 44.9 PC-Audibility -0.514 18.6 (6, 166) <.001

6.5 PC-Verbal IQ 0.274

5.6 Age -0.298

3.4 HA-exper -0.183

2.3 PC-CPHI-adj 0.161

2.1 PC-LDL -0.151

∑ = 64.8

PC-Hearing Aid Usage 14.7 HA-exper 0.383 16.7 (3, 169) <.001

5.0 Dur-occup 0.195

3.2 PC-Verbal IQ -0.182

∑ = 22.9

*Analysis was for each of the three hearing aid outcome factor scores (oblique rotation). The β coefficients for each
variable are in standardized form such that they range from -1 to 1. The F, degrees of freedom (df), and P values for 
each regression equation are also provided. PC, orthogonal principal component from factor analysis of prefit measures 
in the IU-1 study. Descriptions of predictor variables are provided in Table 4. IU, Indiana University.



crease as verbal IQ and adjustment to hearing loss
(CPHI-adjust) increased, but decreased as age,
prior hearing aid experience, and loudness dis-
comfort levels (LDLs) increased.

It should be noted that the regression analysis
for the outcome factor associated with speech
recognition performance did not include the PB-
max prefit measure as a predictor variable. It did
not seem appropriate to include a prefit measure
of speech recognition performance as a predictor
of other measures of speech recognition perfor-
mance. However, to examine the potential im-
provement in predictive accuracy by including
PB-max as a predictor variable, a second regres-
sion analysis was completed for the factor score
associated with speech recognition performance
that included the PB-max measure as a predictor
variable. As expected, the resulting regression
analysis accounted for more of the total variance
(72.1%) than that accounted for without the PB-
max variable (64.8%), with the difference in vari-
ance accounted for associated almost entirely with
the 8.9% of the total variance accounted for by the
PB-max variable itself. That is, many of the other
variables in the resulting regression equation were
identical to those shown previously in Table 5, in-
cluding the proportion of variance accounted for
by each variable. For example, hearing loss and
verbal IQ accounted for 44.9% and 6.5% of the
total variance in both equations, whereas the per-
centage of variance accounted for by prior hearing
aid experience decreased from 3.4% to 1.8%. In
general, though, the variance accounted for by the
regression equation with the full set of 25 predictor
variables, including PB-max, was about 8% higher
than that accounted for without it.

When the factor score associated with hear-
ing aid usage was the dependent variable, the
predictive accuracy of the regression equation
was much better than for hearing aid satisfaction,
but not as good as that for speech recognition
performance, as shown in the bottom of Table 5.
In this case, 22.9% of the total variance in hear-
ing aid usage could be accounted for by three
variables. As noted in Table 5, prior hearing aid
experience was the best predictor of current hear-
ing aid usage, with this variable alone account-
ing for about two thirds (14.7% of 22.9%) of the
total systematic variance accounted for. Examin-
ation of the β coefficients for the best-fitting re-
gression equation in Table 5 indicates that hear-
ing aid usage increased as prior hearing aid ex-
perience and the number of years of employment
increased, but decreased as verbal IQ increased.

Study Summary

The results from the IU-1 study suggest that three
oblique (correlated) principal components cap-
tured the relevant aspects of hearing aid out-
come: (1) subjective benefit and satisfaction; (2)
aided and unaided speech recognition perfor-
mance; and (3) hearing aid usage. The use of
multiple regression analysis to identify the vari-
ables underlying individual differences in perfor-
mance along each of these outcome dimensions
was most successful for aided and unaided speech
recognition performance and least successful for
subjective benefit and satisfaction.

Indiana University-2 Study 
of Hearing Aid Outcome

Study Overview 

The primary purpose of this smaller scale study
(IU-2) of two-channel WDRC, ITC hearing aids
was to determine whether the underlying dimen-
sions of hearing aid outcome varied with the style
of hearing aid and the type of electronic circuitry.
The selection criteria for participation in this fol-
low-up study were identical to those of the previ-
ously described study (IU-1) (Humes et al.,
2001). Table 1 summarizes the basic demograph-
ics of this group of elderly hearing aid wearers.

The basic study protocol of the IU-2 study
was identical to that of the IU-1 study, with the
primary exception being the hearing aid-fitting
protocol. Since the IU-2 study made use of non-
linear circuitry, the linear prescriptive procedure
followed in the IU-1 study (NAL-RP; Byrne,
Parkinson, and Newall, 1990) could not be used
to set the targets for gain and output. Instead, the
FIG6 prescriptive approach (Killion and Fikret-
Pasa, 1993) was employed and the hearing aid
was adjusted to match the level-dependent fre-
quency-gain characteristics prescribed by this ap-
proach. The other primary difference between the
IU-1 and IU-2 studies was that the circuitry was
packaged in a full-concha ITE shell in the IU-1
study and in an ITC shell in the IU-2 study.

Identical hearing aid outcome measures were
obtained in both the IU-1 and IU-2 studies, and
these were summarized previously in Table 2. In
addition to these 20 outcome measures, the pre-

Humes Modeling and Predicting Hearing-Aid Outcome

59



fit measures described for the IU-1 study were
also obtained in the IU-2 study, but given the
much smaller sample size of the IU-2 study, mul-
tiple regression analyses were not attempted.
Rather, the focus was on the nature of the factor
structure underlying the 20 hearing aid outcome
measures obtained following use of a hearing aid
that was different in type and circuitry from that
of the IU-1 study. In addition, given the smaller
sample size, a full exploratory factor analysis was
not performed. Rather, the number of factors was

fixed at three, and the solution was examined for
both orthogonal and oblique rotation of the three
factors.

Principal Component Factor Analyses

The rotated orthogonal principal components so-
lution for the 20 outcome measures from the 53
elderly hearing aid wearers in the IU-2 study is
presented in Table 6. The communality value of
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Table 6. Principal Component Weights or Factor Loadings (IU-2 Study)* 

PC-Speech Recognition PC-Hearing Aid PC-Subjective Benefit
Variable Performance (27.5%) Usage (21.0%) and Satisfaction (19.2%)

HDABI-use (0.79) -0.87

GHABP-use (0.79) 0.86

Daily use (0.73) 0.85

HAPI-spn (0.72) 0.83

HAPI-spq (0.79) -0.56 0.67

HAPI-red-cues (0.76) 0.86

HAPI-nonspeech (0.75) -0.56 0.64

HDABI-ben (0.40) 0.56

GHABP-ben (0.68) 0.71 -0.40

GHABP-perf (0.31) 0.48

MarkeTrakIV (0.65) 0.44 -0.67

GHABP-sat (0.63) 0.63 -0.47

NST-unaided (0.74) 0.85

NST-aided (0.66) 0.80

CST50-unaided (0.72) 0.85

CST65-unaided (0.86) 0.91

CST80-unaided (0.44) 0.66

CST50-aided (0.81) 0.88

CST65-aided (0.77) 0.88

CST80-aided (0.54) 0.62 0.30

*These are for each of the three orthogonal components identified in the analysis of the hearing aid outcome measures
from the IU-2 study. The communality value for each variable has been provided in parentheses after the variable name.
Weights less than 0.30 have been omitted from the table for clarity. The percentage of variance accounted for by each of
the three principal components is indicated in parentheses following each component’s label. PC, orthogonal principal
component from factor analysis; IU, Indiana University.



each outcome variable for the final solution is
also provided in this table. The values were high
for 12 of the 20 variables, moderate for 6 of the
20 dependent variables, and low for 2 of the 20
variables (GHABP-perf and HDABI-ben). The
high communalities indicate that the factor so-
lution is likely to be stable, even with a relative-
ly small sample size (MacCallum et al., 1999).
The three principal components that emerged
from this analysis accounted for 67.7% of the
total variance, similar to that accounted for in
the IU-1 study with different subjects and hear-
ing aids.

For the factor solution shown in Table 6, the
first component was identified as aided and un-
aided speech recognition performance and ac-
counted for 27.5% of the total variance. The sec-
ond factor was interpreted as hearing aid usage
and accounted for 21.0% of the total variance.
Finally, the third factor was interpreted as hear-
ing aid benefit and satisfaction and accounted for
19.2% of the total variance. Aside from the inter-
pretation of the first factor, however, the assign-
ment of labels to factors was more challenging for
the factor loadings from the IU-2 study than for
the previous IU-1 study. This was because much
more overlap was apparent for the weighting of
the second and third principal components. That
is, many of the hearing aid outcome variables
were weighted moderately high on both the sec-
ond and third factors of this solution. This sug-
gests, as with the IU-1 study, that the factors may
be correlated and that an oblique rotation of the
factors would be more appropriate.

To explore this further, oblique rotation of the
three factors was accomplished by the use of the
same method (promax procedure with k = 4) de-
scribed previously in the analysis of the IU-1
study. The resulting component correlation ma-
trix indicated that the speech recognition factor
was not correlated strongly with either of the
other two factors (r = -0.12 and 0.02), but that
the subjective benefit and satisfaction factor was
moderately correlated (r = -0.48) with the hear-
ing aid usage factor.

Study Summary

The IU-1 and IU-2 study protocols were virtually
identical, with the exception of the prescriptive
procedures used to generate target gain and out-
put values for the differing hearing aid circuitry

and the associated procedures used to verify the
match to the target values prescribed. The prima-
ry difference between studies was the style of
hearing aid (full-concha ITE versus ITC) and the
electronic circuitry (single-channel, linear circuit
with output-limiting compression versus two-
channel wide-dynamic-range-compression cir-
cuit). Despite these differences, very similar
three-factor solutions were identified in both
studies, with each accounting for about two thirds
of the total variance in outcome measures.
Moreover, the nature of the three underlying di-
mensions was similar in both IU studies, and
moderate correlation between at least two of the
three underlying components (subjective benefit
and satisfaction, and hearing aid usage) was ob-
served in both as well. Finally, despite the sample
size being smaller than desired, the communality
values and the percentage of total variance ac-
counted for suggest that the resulting factor solu-
tion was a reasonable fit to this new set of data.

NIDCD/VA Study of Hearing Aid Outcome

Study Overview 

Larson et al. (2000) presented the results from
360 hearing aid wearers participating in a large-
scale crossover clinical trial in which each partic-
ipant wore each of three hearing aid circuits pack-
aged in an identical ITE shell. The three single-
channel circuits worn by each listener in that
study included: (1) a linear circuit with peak clip-
ping; (2) a linear circuit with output-limiting
compression; and (3) a circuit with wide-dynam-
ic-range compression. Although 360 individuals
were enrolled in this study, from 333 to 338 in-
dividuals actually completed all of the outcome
measures for a given circuit.

Table 1 summarizes some of the demograph-
ic characteristics of the subjects comprising this
study sample. Although the NIDCD/VA study did
not specifically target elderly adults, 80% of the
subjects in that study were at least 58 years of
age. It is also clear from Table 1 that the subjects
in all three studies analyzed here were very simi-
lar in terms of age, average hearing loss, and gen-
der composition, although the three studies dif-
fered considerably in terms of the percentage of
prior hearing aid users. In addition, the style of
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hearing aid, the circuitry for at least one of the
circuits, and the prescriptive approach for the se-
lection of frequency-gain characteristics for the
NIDCD/VA study were identical to those of the
IU-1 study. Further, in all three studies, hearing
aids were fit to both ears.

The number and nature of the hearing aid
outcome measures in the NIDCD/VA study, how-
ever, were only somewhat similar to those used in
the two IU studies. The closest similarities were in
the measures of unaided and aided speech recog-
nition performance in which the Connected
Speech Test (CST) (Cox et al., 1988) was the spe-
cific test used. In addition, all three studies ana-
lyzed here used at least three sets of speech levels
and signal-to-noise ratios (SNRs). The NIDCD/VA
study actually used nine combinations of speech
level and SNR for the CST, plus an additional test
in quiet, and the three conditions most like those
from the two IU studies were selected for inclu-
sion in these analyses. 

All three studies included in this article also
used measures of subjective benefit and satisfac-
tion, and hearing aid usage. However, the
NIDCD/VA study used a smaller number of mea-
sures than the two IU studies, and little or no
overlap in instruments occurred across studies.
For example, whereas the two IU studies used the
HDABI (Gatehouse, 1999), GHABP (Gatehouse,
1999) and HAPI (Walden et al., 1984) as mea-
sures of subjective hearing aid benefit, the
NIDCD/VA study used the PHAB (Cox and
Gilmore, 1990). 

In similar fashion, the NIDCD/VA study used
measures of hearing aid usage and satisfaction
that were less detailed and fewer in number than
those used in the IU-1 and IU-2 studies. None-
theless, some measures of subjective hearing aid
satisfaction and usage were available from the
NIDCD/VA study, which were combined with the
six measures of aided and unaided speech recog-
nition similar to those used in IU-1 and IU-2. This
resulted in 16 outcome measures obtained from
the approximately 320 participants, with com-
plete data following the use of each of the 3 hear-
ing aid circuits (N varied from 318 to 324 across
the three circuits). 

The outcome measures derived from the
NIDCD/VA study are summarized by category in
Table 7. As shown in the table, there were two
self-report measures of hearing aid usage, five of
subjective benefit, three of hearing aid satisfac-
tion, and six measures of aided and unaided

speech recognition performance. Regarding the
measures of subjective benefit, only five of the
seven scales of the PHAB were included. The
aversiveness and distortion subscales of the PHAB
were not included, as they were considered to be
more akin to aided measures of perceived sound
quality rather than of the helpfulness of the hear-
ing aid. These two subscales, however, were used
in the regression analyses, just as similar mea-
sures of sound quality had been used in the re-
gression analyses for the IU-1 study. The 16 re-
sulting outcome measures were then subjected to
principal components factor analysis, as described
in detail in the next section.

Principal Component Factor Analyses

The results of the principal components analy-
ses for all three circuit types were virtually iden-
tical, with each solution identifying five identical
factors and accounting for 76.3% to 77.3% of
the total variance. The only differences among
the three solutions were in the ordering of the
final three components, but since each of the
final three components accounted for 12% to
13% of the total variance, the ordering was not
considered important. As a result, only the factor
loadings for the variables in the orthogonal rota-
tion of the components for the linear circuit with
output-limiting compression are presented in de-
tail here. This will afford a more direct compari-
son to the IU-1 study in which subjects wore sim-
ilar hearing aids. 

These factor loadings, or weights, appear as
column headings in Table 8, with the percentage
of total variance accounted for by each indicated
in parentheses. The communality values of each
outcome variable for the final solution are also
provided in parentheses after each variable’s
name in the table. Of the 16 variables, 12 had
high communality values and 4 had moderate
communality values. Note in Table 8 that no vari-
ables were weighted greater than 0.3 on more
than one factor. This implies that the orthogonal
solution is most likely valid, and this was con-
firmed by exploring oblique rotation of the fac-
tors (promax procedure with k = 4). Most of the
intercomponent correlations for the five-compo-
nent oblique solutions for each of the three cir-
cuits were less than 0.25. However, the correla-
tion between the two speech recognition compo-
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nents ranged from 0.36 to 0.38. Overall, the in-
tercomponent correlations were considered not
to be appreciably different from zero, and the or-
thogonal solution was adopted. Again, the same
orthogonal, five-factor solutions were obtained
for all three circuits, with the only differences
being the order of the final three components.
Sets of 5 orthogonal factor scores were saved for
each of the 320 participants in the NIDCD/VA
study, and these factor scores were used in the
subsequent regression analyses described below.

Regression Analyses

The range of prefit predictor variables available
from the NIDCD/VA study was not as extensive

as that of the two IU studies, because prediction
of outcome was not a goal of the former study.
Nonetheless, the number of variables appeared
large enough, and the nature of the variables di-
verse enough, to explore the prediction of indi-
vidual differences for each of the five outcome
factors. As with the IU-1 study, many of the po-
tential prefit predictor variables were likely to be
redundant. To eliminate this redundancy and
minimize collinearity among the final set of pre-
dictor variables, the prefit measures available
were subjected to principal components analysis
and saved as orthogonal factor scores. Prefit mea-
sures included in this principal components
analysis were: (1) 5 CPHI factor scores; (2) 10
air-conduction pure-tone thresholds from both
ears for frequencies ranging from 250 through
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Table 7. Summary of the 16 Hearing Aid Outcome Measures in the NIDCD/VA Study

Outcome Category Variable Description

Hearing aid Usage Daily use Mean hours per day hearing aid usage from Form 8, Q #1

Weighted Use Daily use, weighted by number of aids worn and whether
aids were worn everyday, Form 8, Q #2 & #3

Subjective Benefit PHAB-ec Mean, ease of communication PHAB subscale

PHAB-cft Mean, communication with familiar talkers PHAB subscale

PHAB-cbn Mean, communication in background noise PHAB subscale

PHAB-rv Mean, communication in reverberation PHAB subscale

PHAB-rc Mean, communication with reduced cues PHAB subscale

Satisfaction HA-prob Score from Form 8, Q #4; 14 items; no problems=100; 
problems with both hearing aids on all 14 items=0

Weighted HA-prob HA-prob, weighted by whether problems resulted in 
decreased use of hearing aids (Form 8, Q #5)

Satisfaction-Rating Scale of 1-10 (10=best); hearing aid rated (Form 8, Q #6)

Speech Recognition CST62n-unaided Percent correct on CST, 62 dB SPL, +8 dB SNR*, unaided

CST74n-unaided Percent correct on CST, 74 dB SPL, +2 dB SNR, unaided

CST74q-unaided Percent correct on CST, 74 dB SPL, quiet, unaided

CST62n-aided Percent correct on CST, 62 dB SPL, +8 dB SNR, aided

CST74n-aided Percent correct on CST, 74 dB SPL, +2 dB SNR, aided

CST74q-aided Percent correct on CST, 74 dB SPL, quiet, aided

CST, Connected Speech Test; PHAB, Profile of Hearing Aid Benefit; SNR, signal-to-noise ratio (dB). NIDCD/VA, 
National Institute of Deafness and other Communication Disorders/Veterans Administration. *SNR values varied in the
NIDCD/VA study from subject to subject. The median SNR value for the 62 dB SPL presentation condition was +5 dB.
Other SNR values were 3 dB higher and lower than this middle value (ie, additional SNR values of +8 and +2 dB). 



8000 Hz; (3) ipsilateral and contralateral acoustic
reflex thresholds for both ears for stimulus fre-
quencies of 500 and 1000 Hz; and (4) LDLs from
both ears for frequencies of 500, 1000, 2000,
3000, and 4000 Hz. This represented a total of
43 prefit variables, which were reduced to 9 or-
thogonal principal component factor scores for
each of the participants. The nine principal com-
ponents identified for these prefit variables are
shown in the top nine rows of Table 9. The or-
thogonal solution accounted for 79.9% of the
total variance among the 43 prefit variables, and
the communalities were high for 38 of the 43
variables and never less than 0.52. 

In addition to these nine prefit predictors,
measures of aided sound quality and various mea-
sures from the case history were included in the
set of predictor variables. With regard to the
sound quality measures, Larson et al. (2000)
asked the participants to rate the quality, noisi-
ness, and loudness of amplified speech at various
sound levels (from 52 to 74 dB SPL) in quiet and
noisy backgrounds. Based on the author’s evalua-
tion of these data with principal components
analysis, it appeared that five sound quality mea-
sures were needed to represent these data: one
overall measure of how much they liked the qual-
ity of the aided sound; two measures of the nois-
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Table 8. Principal Component Weights or Factor Loadings (NIDCD/VA study)* 

PC-Subjective PC-Speech PC-Speech
Benefit in Noise in Quiet PC-Satisfaction PC-Usage 

Variable (23.6%) (14.3%) (13.4%) (12.6%) (12.6%)

Daily use (0.94) 0.95

Weighted Use (0.94) 0.95

PHAB-ec (0.77) 0.85

PHAB-cft (0.65) 0.73

PHAB-cbn (0.85) 0.90

PHAB-rv (0.83) 0.90

PHAB-rc (0.78) 0.86

HA-prob (0.82) 0.90

Weighted HA-prob (0.79) 0.89

Satisfaction-Rating (0.46) 0.61

CST62n-unaided (0.62) 0.73

CST74n-unaided (0.78) 0.87

CST74q-unaided (0.78) 0.85

CST62n-aided (0.71) 0.78

CST74n-aided (0.84) 0.87

CST74q-aided (0.67) 0.81

*These are shown for each of the five orthogonal components identified in the analysis of the hearing-aid outcome
measures. The communality value for each variable has been provided in parentheses after the variable name. 
Weights less than 0.30 have been omitted from the table for clarity. The percentage of variance accounted for by 
each of the five principal components is indicated in parentheses following each component’s label. PC, orthogonal
principal component from factor analysis; NIDCD/VA, National Institute of Deafness and other Communication
Disorders/Veterans Administration.



iness of amplified sound, one obtained in back-
ground noise and one in quiet conditions; and
two measures of the loudness of amplified sound,
one for the higher presentation levels and one for
the lowest presentation level. These five measures
of the quality of amplified sound were combined
with the two sound quality-related subscales of
the PHAB (aversiveness and distortion) for a total
of seven measures of sound quality. These aided

sound quality measures are summarized in the
bottom seven rows of Table 9.

In addition to measures of aided sound qual-
ity, six additional measures were taken from the
case history or other data forms available from
the study and appear in Table 9. Three of the
variables (level of education, marital status, and
total number of other persons living in the sub-
ject’s household) were included to provide at
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Table 9. Predictor Variables for the NIDCD/VA Study

Predictor Variable Description

PC-Hearing Loss-lf Pure-tone thresholds from 250 through 1000 Hz, both ears

PC-LDL Loudness discomfort levels from 500 through 4000 Hz, both ears

PC-ART Acoustic reflex thresholds, ipsilateral & contralateral, 500 & 1000 Hz, both ears

PC-Hearing Loss-hf Pure-tone thresholds from 3000 through 6000 Hz, both ears

PC-Hearing Loss-mf Pure-tone thresholds at 1500 and 2000 Hz, both ears

PC-LDL-slope LDL at 500 Hz negatively weighted and LDL at 4000 Hz positively weighted

PC-CPHI-react CPHI factor score representing reaction to communication problems

PC-CPHI-perf & imp CPHI factor scores representing communication performance and importance

PC-CPHI-adj & inter CPHI factor scores representing adjustment to hearing loss and interaction

Age Chronological age in years

Age-Onset-R Age of onset of hearing loss in right ear

Age-Onset-L Age of onset of hearing loss in left ear

HA-exper Previous hearing-aid use in years

Level-Educ Highest formal educational level achieved

Marital-Status 1=married, 0=not married (single, divorced, widow/widower, separated)

Others-household Number of additional adults and children living with subject

QR-like Mean aided quality rating, 6 conditions; how much liked the listening experience

QR-noisy-n Mean aided quality rating, 3 noise conditions; rated noisiness of listening

QR-noisy-q Mean aided quality rating, 3 quiet conditions; rated noisiness of listening

QR-loud-high Mean aided quality rating, 4 higher SPL conditions; rated loudness

QR-loud-low Mean aided quality rating, 2 lower SPL conditions; rated loudness

PHAB-distort Mean score for the distortion subscale of the PHAB

PHAB-aversive Mean score for the aversiveness subscale of the PHAB

NIDCD/VA, National Institute of Deafness and other Communication Disorders/Veterans Administration; PC = orthogonal
principal component from factor analysis of prefit measures in the NIDCD/VA study.



least indirect estimates of cognitive abilities and
opportunities for social interactions while the
hearing aids were worn. In the IU-1 study, for ex-
ample, both verbal IQ and level of education were
available as measures, and these two variables
were positively correlated (r = 0.34, P < .001),
suggesting that level of education might provide
at least an indirect measure of cognitive function
for the participants in the NIDCD/VA study.

Twenty-three potential predictor variables
were used in the multiple regression analysis for
each of the five outcome factors. The final set of
23 predictor variables is summarized in Table 9.

Although regression analyses were conducted
for all three circuit types included in the
NIDCD/VA study, only the regression analysis for
the linear circuit with output-limiting compression
will be presented here. The results were nearly
identical for all analyses, with differences among
circuits confined primarily to the nature of the
lower-order variables entered into each equation.
That is, the number of variables required, the na-
ture of those variables, and the total variance ac-
counted for were all very similar across circuits.
The results for the linear circuit with output-limit-
ing compression were chosen for presentation here
because this circuit is identical to that used in the
IU-1 study, the other study in this article for which
multiple regression analyses were completed.

Table 10 presents the results of the multiple
regression analyses for each of the five hearing-
aid outcome factors in the NIDCD/VA study. The
predicted factor scores are presented in this table
in the order of their identification. For factor
scores associated with measures of subjective
benefit (PHAB), seven predictor variables account
for 21.2% of the total variance in factor scores.
Of these seven predictor variables, about three
fourths of the variance was accounted for by two
variables, the communication performance and
importance factor from the CPHI, and how much
the subject liked the quality of amplified sound.
The remaining systematic variance was accounted
for by measures of hearing loss or audibility, age,
and level of education. In general, the standard-
ized β coefficients for the best-fitting regression
equation indicated that self-reported hearing aid
benefit was directly correlated with the perceived
communication performance and importance,
how much the subject liked the sound quality of
amplified speech, the amount of hearing loss, and
the level of education. Subjective benefit was
found to be inversely related to age.

The regression analysis for the outcome factor
score associated with speech recognition perfor-
mance in noise, on the other hand, was consider-
ably less successful (Table 10). One variable, mid-
frequency (1500 and 2000 Hz) hearing loss, ac-
counted for 6.7% of the total variance. As mid-
frequency hearing loss increased, speech recogni-
tion in noise tended to increase as well. 

The maximum amount of total variance ac-
counted for (40.6%) with any of the five outcome
factors from the NIDCD/VA study was observed
for speech recognition in quiet. Eight predictor
variables were identified, with one variable, low-
frequency (250–1000 Hz) hearing thresholds, ac-
counting for nearly half of the systematic vari-
ance. Two of the remaining seven predictor vari-
ables were also associated with hearing loss.
Together, these three hearing loss measures rep-
resented 25.3% of the total variance, or about
62% of the systematic variance. In all three cases,
as the degree of hearing loss increased, speech
recognition performance in quiet decreased. Other
variables making significant contributions to the
regression equation included level of education,
perceived noisiness for amplified speech in quiet
listening conditions, age, LDL, and the reaction
scale of the CPHI. Level of education, perceived
noisiness for amplified speech in quiet, and scores
for the reaction scale of the CPHI were directly re-
lated to the speech-in-quiet factor scores, whereas
age and LDL were inversely related.

For hearing aid usage, five variables account-
ed for 15.1% of the total variance in outcome fac-
tor scores. The most significant contributor to this
regression equation, accounting for 9.4% of the
total variance alone, was the number of years of
previous hearing aid usage. As prior usage in-
creased, factor scores for the usage outcome di-
mension also increased. Additional measures
making significant contributions to the regression
equation included three that had to do with sub-
jective or qualitative aspects of auditory percep-
tion: the perceived loudness of low-level sounds,
LDL, and the distortion subscale of the PHAB.
Those that rated the loudness of low-level sounds
as less loud had higher LDLs, thought the hear-
ing aid reduced distortion to a greater degree,
and tended to have higher hearing aid usage fac-
tor scores. Marital status also played a role: mar-
ried individuals tended to use their hearing aids
more than single persons.

Finally, individual differences in factor scores
associated with hearing aid satisfaction were least
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Table 10. Summary of the Regression Analyses (NIDCD/VA Study)*

Outcome PC % Total Variance Predictor Variable β Coefficient F (df) P

PC-Subjective Benefit 8.5 PC-CPHI-perf&imp 0.237 13.3 (7, 312) <.001

7.0 QR-like 0.165

1.8 PC-Hearing Loss-lf 0.197

1.1 PC-Hearing Loss-mf 0.170

1.0 PC-Hearing Loss-hf 0.173

0.9 Age -0.235

0.9 Level-Educ 0.103

∑ = 21.2

PC-Speech in Noise 6.7 PC-Hearing Loss-mf 0.264 23.6 (1, 316) <.001

∑ = 6.7

PC-Speech in Quiet 18.9 PC-Hearing Loss-lf -0.401 28.1 (8, 309) <.001

5.4 Level-Educ 0.202

4.4 QR-noisy-q 0.206

3.7 PC-Hearing Loss-hf -0.160

2.7 PC-Hearing Loss-mf -0.182

2.8 Age -0.144

2.0 PC-LDL -0.148

0.7 PC-CPHI-react 0.101

∑ = 40.6

PC-Hearing-Aid Usage 9.4 HA-exper 0.242 12.3 (5, 312) <.001

2.0 QR-loud-low -0.131

1.5 Marital-Status 0.120

1.2 PC-LDL 0.122

1.0 PHAB-distort 0.114

∑ = 15.1

PC-Satisfaction 2.8 PHAB-aversive 0.155 7.7 (3, 314) <.001

2.0 QR-noisy-n 0.132

1.2 PC-Hearing Loss-lf -0.124

∑ = 6.0

*Analyses were performed for each of the five orthogonal hearing aid outcome factor scores for the linear circuit with
output-limiting compression. The β coefficients for each variable are in standardized form such that they range from 
-1 to 1. The F, degrees of freedom (df), and P values for each regression equation are also provided. Descriptions of
predictor variables are provided in Table 9 and outcome dimensions in Table 8. NIDCD/VA, National Institute of 
Deafness and other Communication Disorders/Veterans Administration.



well accounted for in this study. Three variables
accounted for 6.0% of the total variance in hear-
ing aid satisfaction. Two were related to the per-
ceived sound quality of aided speech, and one in-
volved hearing loss. Generally, satisfaction in-
creased if amplified speech was perceived to be
less aversive and less noisy, but satisfaction de-
creased as the amount of low-frequency hearing
loss increased.

Study Summary

This study identified five orthogonal hearing aid
outcome components or dimensions: (1) subjec-
tive benefit, (2) speech recognition performance
in noise, (3) speech recognition performance in
quiet, (4) hearing aid usage, and (5) hearing aid
satisfaction. The same orthogonal dimensions
were observed in the analysis of outcome mea-
sures from all three circuit types, although the or-
dering of the final three components varied with
circuit type. Regarding the identification of vari-
ables that underlie individual differences in each
of the hearing aid outcome factor scores, the
highest percentage of variance accounted for was
observed for the outcome factor associated with
speech recognition in quiet (40.6% of the total
variance). The lowest percentage of variance ac-
counted for was observed for both speech recog-
nition in noise (6.7%) and hearing aid satisfac-
tion (6.0%).

The results of the regression analyses lie be-
tween these two extremes for the outcome mea-
sures associated with subjective benefit (22.8%)
and hearing aid usage (15.1%). The percentage
of variance accounted for and the specific vari-
ables included in the regression equation for each
dimension of hearing aid outcome were very sim-
ilar for all three circuit types.

Summary and General Discussion

Number and Nature of Hearing Aid 
Outcome Dimensions

Similarities and differences existed between the
two IU studies and the NIDCD/VA study in the
number and nature of the dimensions of hearing

aid outcome. Hearing aid usage was identified as
a separate dimension of hearing aid outcome in
all three studies. However, whereas subjective
benefit and hearing aid satisfaction were repre-
sented jointly as one factor in the IU-1 and IU-2
studies, each was a separate factor in the
NIDCD/VA study. Likewise, although the two IU
studies found all speech recognition performance
(aided and unaided, in quiet and in noise) to be
represented by a single speech recognition per-
formance component, two components, one for
speech in quiet (aided and unaided) and one for
speech in noise (aided and unaided) emerged
from the NIDCD/VA study. 

With regard to measures of speech recogni-
tion performance, moreover, the IU-1 and
NIDCD/VA studies were very similar in terms of
pertinent variables that could influence perfor-
mance, including hearing aid circuitry (linear
with output-limiting compression), prescriptive
approach used to generate target frequency-gain
characteristics (NAL-RP), test materials (CST),
and listening conditions (a similar range of mod-
erate sound pressure levels and combinations of
background conditions). Thus, it is unclear why
the two studies differ with regard to the need for
one or two principal components to represent
speech recognition performance, both aided and
unaided. 

A key difference existed between the IU stud-
ies and the NIDCD/VA study in terms of how the
SNR values were established for the speech recog-
nition measures. As noted previously, the IU stud-
ies simply fixed the speech levels and SNR values
to cover a range of “typical” listening conditions,
from soft speech in quiet to loud speech in noise,
along the lines suggested previously by Walden
(1997). Apparently, in an attempt to ensure that
the noise was audible for the speech-in-noise con-
ditions in the NIDCD/VA study, a different
method was used to establish the specific SNR
values employed with each subject. The speech
levels of 52, 62, and 74 dB SPL were again se-
lected to span a range from soft to loud speech, as
in the IU study. Although the levels selected to
represent loud speech differed considerably
across the two studies (80 versus 74 dB SPL),
there was good general agreement across studies
in the presentation levels used. 

To determine the so-called “nominal 0-dB
SNR” value for the NIDCD/VA study, the CST ma-
terials were presented unaided at 62 dB SPL, and
the background babble was adjusted to produce a
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speech recognition score of 50%. Once this SNR
value was established for a given listener, two ad-
ditional SNR values were employed, one that was
3 dB greater and one that was 3 dB lower than
the nominal 0 dB condition, and these same three
SNR values were employed at the other presenta-
tion levels. For the participants in the NIDCD/VA
study, Larson et al. (2000) reported that the mean
acoustical SNR value corresponding to the nomi-
nal 0-dB SNR was +7 dB. (The median SNR
value, rather than mean, was +5 dB, and this was
the value used in the foregoing analyses when try-
ing to select roughly equivalent listening condi-
tions across the IU and NIDCD/VA studies.) Thus,
based on the mean acoustical SNR value of +7 dB,
although the nominal SNR values were -3, 0, and
+3 dB, the mean acoustical SNR values at each
presentation level were +4, +7, and +10 dB. 

To examine whether these procedural differ-
ences may have resulted in substantially different
audibility across studies, two “equivalent” listen-
ing conditions from the NIDCD/VA and IU-1
study are compared in Figure 6. The filled and
unfilled circles represent the rms speech and bab-
ble levels for the CST, respectively, for the 62 dB
SPL, +7 dB SNR condition from the NIDCD/VA
study in the top panel and the 65 dB SPL, +8 dB
SNR condition from the IU-1 study in the bottom
panel. The mean best-ear audiogram for each
group of subjects is also shown as the heavy solid
line in each panel. Clearly, the two conditions are
nearly identical across studies. In both cases, the
unamplified speech and noise stimuli are audible
primarily below 1500 Hz and inaudible above
1500 Hz. Further, application of the same amount
of amplification (NAL-RP) in both studies would
result in similar aided audibility for both studies. 

In summary, it remains unclear why two com-
ponents were needed to account for the speech
recognition data from the NIDCD/VA study, but
only one was needed for the IU-1 data. It does
not appear, however, that the use of a fixed SNR
value in the IU-1 study and an individually deter-
mined SNR in the NIDCD/VA study resulted in
substantially different speech audibility across
studies on average.

It should be noted, however, that we have
also observed previously that two components
were needed to account for speech recognition
performance in elderly hearing-impaired listen-
ers, a general speech recognition factor and one
more closely related to performance at high
sound levels in noise (Humes et al., 1994).
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Figure 6. Illustration of the similarity of the acoustical test
conditions for one measure of speech recognition obtained in
both the Indiana University-1 (IU-1) and the National Institute
of Deafness and other Communication Disorders/Veterans
Administration (NIDCD/VA) studies. In this case, unaided
listening is illustrated for the Corrected Speech Test (CST) in
a background of babble. For the NIDCD/VA study, the
conditions were determined behaviorally using a criterion of
50% correct. The top panel illustrates the resulting audibility
of the speech (filled circles) relative to the babble (unfilled
circles) and mean better-ear hearing thresholds (heavy solid
line). The babble is illustrated at the mean value of +7 dB
reported by Larson et al. (2000). The lower panel illustrates
the audibility of the speech signal for the comparison
condition from the IU-1 study which fixed the speech and
babble levels for all subjects. Clearly, the underlying acoustics
of the listening conditions are very similar across studies, at
least for the average listening conditions.



Although further work may be needed to deter-
mine whether one or two principal components
are needed to represent aspects of speech recog-
nition performance associated with hearing aid
outcome, either option would be more parsimo-
nious than the three or more components sug-
gested previously by Humes (1999, 2001) and
Humes et al. (2001).

Perhaps across-study differences in the factor
solutions might be attributable to the instability
of one of the factor solutions. If so, replications
of the same studies would yield somewhat differ-
ent results in the analyses. The similarity of re-
sults across the IU-1 and IU-2 studies argues
against an unstable factor solution, at least for the
set of outcome measures common to those two
studies. 

Another way to examine the stability of a par-
ticular factor solution is to partition the original
study sample into smaller groups and then redo
the factor analysis (Gorsuch, 1983). This ap-
proach to evaluating the stability of the factor so-
lution was pursued for both the NIDCD/VA study
(linear circuit with output-limiting compression
only) and the IU-1 study. For the analysis of the
solution from the IU-1 study, 100 of the original
173 subjects were selected randomly on 10 sep-
arate occasions and the principal components
analyses were repeated. In 9 of the 10 times, the
factor solution was virtually identical to that de-
scribed previously for this study with 3 principal
components, and modest correlation occurred
between 2 of the 3 components. On one of the
10 iterations, 4 components emerged with the
speech recognition scores split into 2 factors; a
solution not unlike that observed in the NIDCD/
VA analyses. For the additional analyses of the
data from the NIDCD/VA study, approximately
50% of the subjects were selected randomly in
10 iterations, and the subsequent 5-factor or-
thogonal solutions were essentially identical
across all 10 iterations. 

In addition, an examination of the oblique ro-
tation for each iteration from the NIDCD/VA
study failed to confirm the lone intercomponent
correlation of 0.35 observed in the analysis re-
ported previously in this article. All intercompo-
nent correlations for the factor solutions from the
NIDCD/VA data were less than 0.25, and about
95% were less than 0.20. In general, instability
of the factor structures derived from each study
does not appear to be a factor contributing to the
differences in factor solutions across studies.

With regard to the issue of whether one or
two components are needed to represent hearing
aid satisfaction and benefit, the differences across
studies could lie in the number and type of mea-
sures obtained within each domain. The two IU
studies included multiple measures of subjective
benefit (HAPI, HDABI, and GHABP) and hearing
aid satisfaction (MarkeTrak IV and GHABP),
whereas the NIDCD/VA study used one measure
of subjective benefit (PHAB, although multiple
scales from the PHAB) and one of satisfaction.
The measure of satisfaction, moreover, was much
less direct than those used in the two IU studies.
Specifically, a scale of satisfaction was construct-
ed around 14 queries about problems with vari-
ous aspects of the hearing aids and a follow-up
query as to whether these problems were serious
enough to result in the subject discontinuing
hearing aid use (and, if so, for how long). This
indirect measure of hearing aid satisfaction had
been proposed previously by Walden (1982) and
was used as a measure of satisfaction in this
analysis. There was also one direct measure
among the surveys used in the NIDCD/VA study
that asked the subject to rate overall satisfaction
with the hearing on a scale of 1 to 10. 

Data presented recently by Kochkin (2003)
for 8,654 hearing aid purchasers suggest that
measures of hearing aid satisfaction (MarkeTrak
survey) and self-report measures of hearing aid
benefit (abbreviated version of the PHAB) are, in
fact, strongly and positively correlated. Although
Kochkin (2003) does not report specific correla-
tions for these two measures, it is apparent from
a plot of both measures that the correlation is so
strong that it is highly likely both measures would
be loaded on the same factor had a factor analy-
sis been performed. Thus, these data appear to be
more in line with the factor solutions that
emerged from the two IU studies. 

Finally, the nature of the subjective benefit
measures in the two IU studies differed from that
in the NIDCD/VA study. Specifically, for all but
one of the benefit measures from the GHABP, the
subjects in the IU studies were asked to rate the
“helpfulness” of their hearing aids in a variety of
communication situations following 1 month of
hearing-aid usage. For the PHAB instrument used
in the NIDCD/VA study, on the other hand, sub-
jects initially indicated the frequency with which
they had difficulty in a particular listening situa-
tion for unaided listening; then, following a peri-
od of 3 months of hearing aid use, the same sur-
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vey was completed, but referenced to each item
based on aided listening over the prior 3-month
period. By subtracting the two sets of scores,
aided and unaided, a relative measure of im-
provement or benefit is obtained. Dillon, James,
and Ginis (1997) have reviewed the assump-
tions underlying both approaches to estimating
hearing aid benefit. It is not argued here that
one approach is better than another, just that
they may not be equivalent. This could also con-
tribute to the differences between studies in the
number of outcome factors needed to represent
the dimensions of hearing aid satisfaction and
subjective benefit.

It is not likely, however, that the observed dif-
ferences in factor structure underlying the two IU
studies and the NIDCD/VA study are attributable
to the different postfit intervals at which the out-
come measures were obtained. That is, for the two
IU studies, the outcome measures analyzed were
those obtained at the 1-month postfit interval,
whereas the NIDCD/VA study used a 3-month
postfit interval. In a series of studies and reports,
however, it has been demonstrated that the out-
come measures obtained in the IU-1 study, as well
as the factor structure underlying those measures,
were stable for at least 2 years following the hear-
ing aid fit (Humes, 2001; Humes et al., 2002a,
2002b). Of course, as is always the case in com-
paring studies across different groups of subjects,
the differences in underlying outcome measures
simply could be due to differences between the
groups of individuals comprising each study.

Although there are some differences in the
number and nature of dimensions of hearing aid
outcome identified in each study, including
whether the dimensions are uncorrelated or cor-
related, within the two IU studies or within the
NIDCD/VA study, the resulting outcome structure
was not affected by the type of hearing aid or the
circuit under evaluation. That is, the factor struc-
ture underlying the construct of “hearing aid out-
come” is fairly robust with regard to hearing aid
circuitry and hearing aid type, at least for the
range of devices evaluated here. Additional re-
search is required, however, to determine
whether there are three or five relevant dimen-
sions to hearing aid outcome and the specific na-
ture of each of these dimensions.

Once this is more clearly established, clini-
cians and researchers alike will have a better idea
as to the number and type of measurements re-
quired following the hearing aid fitting to deter-

mine the success of the intervention. If one as-
sumes that tests exist or can be developed that
are unbiased indicators of the underlying factors,
then it appears that no more than five such mea-
sures would be required, one of each of the fol-
lowing: (1) hearing aid usage; (2) subjective
hearing aid benefit; (3) hearing aid satisfaction;
(4) aided speech recognition in quiet; and (5)
aided speech recognition in noise. However, since
performance on a given scale or test is likely to
be determined through a combination of individ-
ual differences in subject traits underlying per-
formance and the manner in which performance
is measured (Flamme, 2001), further research
will be needed to determine how performance for
each of the three to five dimensions of outcome
should be measured and whether one test per
outcome dimension would suffice.

Variables Associated with Individual 
Differences in Outcome Dimensions

The results of the series of multiple regression
analyses conducted for the IU-1 and NIDCD/VA
studies in an effort to identify variables associat-
ed with individual differences in hearing aid out-
come factors showed that once again, there were
more similarities in the results of these analyses
than differences. For example, in both the IU-1
and NIDCD/VA studies, the most accurate pre-
dictions were for outcome dimensions involving
speech recognition performance (a global speech
recognition factor in the IU-1 study and one spe-
cific to aided and unaided speech recognition
performance in quiet in the NIDCD/VA study),
and the least accurate predictions were observed
for outcome dimensions involving hearing aid
satisfaction. Across studies, variables associated
with hearing loss, cognitive function, and age
made the biggest contributions to the outcome
dimension associated with speech recognition
performance.

In addition, the number of years of prior
hearing aid experience was the best predictor in
both studies of individual differences in current
hearing aid usage. Finally, although in both stud-
ies the variance accounted for in the outcome fac-
tor associated with hearing aid satisfaction was
low, both studies identified aided measures of
perceived sound quality as being among the best
predictors for this outcome dimension.

Humes Modeling and Predicting Hearing-Aid Outcome

71



It could be argued that perceived sound qual-
ity should itself be an outcome measure (Humes,
1999, 2001; Humes et al., 2001), rather than a
predictor variable. Clearly, since the measures
were of aided sound quality, rather than unaid-
ed, they were not typical “prefit” predictor vari-
ables. The author’s conception of the aided sound
quality measures from both the NIDCD/VA and
IU-1 studies is that they represent an intermediate
variable, obtainable only after the hearing aids
have been fit, yet predictive of a broader outcome
dimension that develops following hearing aid
use: hearing aid satisfaction. 

Aided sound quality, however, only accounts
for small portions of the total variance and thus,
doesn’t account very well for individual differ-
ences in hearing aid satisfaction by itself. Perhaps
this is because the aided sound quality measures
provide only an indirect measure of other vari-
ables that underlie individual differences in hear-
ing aid satisfaction, such as personality (Cox,
Alexander, and Gray, 1999). This is highly specu-
lative at this point and requires further study and
subsequent validation. Ultimately, should sound
quality emerge as yet another separate and possi-
bly independent aspect of hearing aid outcome,
the number of dimensions and corresponding
outcome measures will need to be increased ac-
cordingly. At present, however, the field needs
multiple measures of sound quality that have
demonstrated reliability and validity for elderly
hearing aid wearers (eg, Narendran and Humes,
in press) for use in subsequent research on hear-
ing aid outcome measures.

One of the differences between the regression
analyses conducted for the speech recognition
outcome factor in the IU-1 and NIDCD/VA studies
was the percentage of variance that could be ac-
counted for in each study. For instance, approxi-
mately 65% of the variance in speech recognition
performance in the IU-1 study was accounted for,
whereas only about 41% was accounted for in the
NIDCD/VA study (for speech recognition perfor-
mance in quiet only). This was true, moreover,
despite the striking similarity in the predictor
variables identified by the regression analyses in
each study. 

The biggest difference in the two resulting re-
gression equations was not in the variables in-
cluded in each, nor in the magnitude or sign of
the β coefficients, but in the amount of variance
attributable to individual differences in hearing
loss between the two studies. Whereas 44.9% of

the total variance was associated with a single
predictor variable representing hearing loss in the
IU-1 study, 25.3% of the total variance could be
attributed to three hearing loss variables in the
NIDCD/VA study. Given the similarity of the sub-
ject samples with regard to age, gender, and hear-
ing loss (Table 1), as well as the similarity of the
acoustical test conditions used in measuring
speech recognition (Figure 6), the reasons for this
difference between studies are unclear. It is per-
haps not too surprising, however, that a study
conducted at a single site by a smaller number of
clinicians and with fewer subjects might result in
more systematic variance and less error variance
among the regression analyses than would be the
case for a larger scale multisite investigation.

As noted previously in the brief tutorial on
the application of factor analysis to hearing aid
outcome measures, the purpose of initial ex-
ploratory analyses is never expected to result in a
final answer regarding the phenomenon or con-
struct under investigation. Rather, it is a statisti-
cal tool that enables the visualization of associa-
tions among large sets of variables which, when
interpreted in light of existing theories or knowl-
edge regarding the construct, can lead to more
refined theories or models. Clearly, additional re-
search that obtains multiple outcome measures
from large numbers of individuals is needed to
further refine our understanding of hearing aid
outcome. Given the number of variables and par-
ticipants required, it is most likely that further
progress in this area will not be possible without
continued support of multicenter collaborative
projects such as the NIDCD/VA clinical trial.

More sophisticated statistical tools, such as
structural equation models (eg, Bollen, 1989),
provide an opportunity to further develop our
understanding of hearing aid outcome and the
variables that affect various aspects of outcome.
Actually, both exploratory and confirmatory fac-
tor analysis can be viewed as special cases or
subsets of broader structural equation models.
A detailed discussion of structural equation
models is beyond the scope of this article, but in
the present context, one could envision it as si-
multaneously performing both the factor analysis
to identify the factors underlying performance
and the multiple regression analysis to predict
the factor scores derived. It is also relatively easy
to implement multiple layers of factors and
causal connections among them in structural
equation modeling.
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The application of structural equation model-
ing (AMOS v4.0.1, Arbuckle and Wothke, 1999)
to the data from the analyses of the IU-1 study
resulted in the model depicted in Figure 7. In this
diagram, the boxes on the left represent a subset

of the prefit predictor variables identified in the
multiple regression analyses summarized previ-
ously in Table 5, whereas the boxes on the right
represent the factor scores for the oblique rota-
tion of the three principal components derived
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Figure 7. Illustration of the structural equation model (AMOS v4.0.1; Arbuckle &
Wothke, 1999) fit to the data from the Indiana University-1 (IU-1) study. Boxes on the
left represent various prefit variables and those on the right represent the three factor
scores underlying hearing aid outcome. The arrows and the coefficients adjacent to
them represent the direction and strength of various associations among the prefit and
outcome measures. The ellipses labeled e1, e2, and e3 represent error terms needed
when defining the model. Abbreviations: HA, hearing aid; JSQ, judgments of sound
quality; LDL, loudness discomfort level; CPHI, Communication Profile for the Hearing
Impaired (Demorest and Erdman, 1987).



from the IU-1 analyses. The arrows represent the
associations among the various variables. The re-
searcher predefines both the sets of variables and
the links among them, and the structural equation
model solves for the weights reflecting the direc-
tion and strength of the resulting associations.
Standardized weights are shown in Figure 7 such
that values range from -1 to +1. The ellipses in
the model labeled e1, e2, and e3 represent error
terms in this particular model, one error term for
each outcome factor. Finally, the numbers above
the top right corner of each box, representing the
three dimensions of hearing aid outcome, show
the proportion of variance accounted for by the
predictor variables linked to that outcome factor.

There are numerous options to evaluate the
fit of structural equation models, but one of the
most universal is a fit index that compares the de-
rived model to a default model that assumes no as-
sociations among any of the variables (the inde-
pendence model). The comparative fit index (CFI)
takes sample size into consideration and varies
from 0.0 to 1.0, with higher values representing
better fits (Bentler, 1990). CFI values above 0.90
reflect adequate fits to the data, whereas values
above 0.95 reflect an excellent fit (Hu and Bentler,
1999). The CFI value for the structural equation
model depicted in Figure 7 was 0.92, suggesting
that it provides a reasonable fit. 

The structural equation model in Figure 7
captures the salient features of the combination of
principal components and multiple regression
analyses for the data from the IU-1 study pre-
sented previously. The model was built from the
knowledge gained from those earlier analyses and
impacted decisions whether to link the outcome
variables (assumed to be correlated on the basis
of the results of prior oblique factor rotation) or
the prefit variables (assumed to be independent
since most were factor scores from prior orthogo-
nal factor analysis of these variables). Structural
equation modeling also can be applied to the raw
data to derive the prefit factors and their associa-
tions in initial exploratory analyses. It is a poten-
tially powerful statistical tool that can assist in
the modeling of human behavior, including hear-
ing aid outcome measures, but it typically re-
quires even larger sample sizes given the larger
degrees of freedom associated with the modeling.

The structural equation model depicted in
Figure 7 was included solely for the purpose of il-
lustration. Future development and evaluation of
such models will require collaboration among

several centers in the collection and analysis of
large sets of data. It is only through such efforts,
however, that our field will gain a good under-
standing of the various dimensions or aspects of
hearing aid outcome and the ways in which out-
come might be optimized for individual patients.
Hopefully, this article has provided the reader
with directions for future research in this area
that will lead to significant advancements of our
knowledge regarding hearing aid outcome.
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