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Abstract

Cilia are highly conserved microtubule-based structures that perform a variety of sensory and motility functions during
development and adult homeostasis. In humans, defects specifically affecting motile cilia lead to chronic airway infections,
infertility and laterality defects in the genetically heterogeneous disorder Primary Ciliary Dyskinesia (PCD). Using the
comparatively simple Drosophila system, in which mechanosensory neurons possess modified motile cilia, we employed a
recently elucidated cilia transcriptional RFX-FOX code to identify novel PCD candidate genes. Here, we report
characterization of CG31320/HEATR2, which plays a conserved critical role in forming the axonemal dynein arms required
for ciliary motility in both flies and humans. Inner and outer arm dyneins are absent from axonemes of CG31320 mutant flies
and from PCD individuals with a novel splice-acceptor HEATR2 mutation. Functional conservation of closely arranged RFX-
FOX binding sites upstream of HEATR2 orthologues may drive higher cytoplasmic expression of HEATR2 during early motile
ciliogenesis. Immunoprecipitation reveals HEATR2 interacts with DNAI2, but not HSP70 or HSP90, distinguishing it from the
client/chaperone functions described for other cytoplasmic proteins required for dynein arm assembly such as DNAAF1-4.
These data implicate CG31320/HEATR2 in a growing intracellular pre-assembly and transport network that is necessary to
deliver functional dynein machinery to the ciliary compartment for integration into the motile axoneme.
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Introduction

Cilia and flagella are small microtubule-based projections on the

cell surface, where they perform diverse sensory, and in some cases

motility functions. These highly conserved organelles are found

across species from protozoa to mammals, and are believed to

have evolved from flagellar structures found in the last eukaryotic

common ancestor (LECA) [1]. At their core is an axoneme

composed of a peripheral arrangement of 9 microtubule doublets.

Extension and maintenance of cilia involves a conserved

microtubule-based process of motor-driven intraflagellar transport

(IFT) that traffics protein cargo from the ciliary base to the tip, and

back again. Despite the functional and structural diversity that has

arisen among cilia [2], they retain key elements. Axonemes of

motile cilia, which usually have an additional central pair of singlet

microtubules in a ‘‘9+2’’ arrangement, possess inner (IDA) and

outer dynein arms (ODA) attached to the peripheral outer doublet

A microtubule. These orchestrate the ATP-dependent sliding of

the doublets relative to each other, enabling motility. Recent

genomic and proteomic studies have compiled a ‘‘motile ciliome’’,

now consisting of several hundred centrosomal and ciliary

components. However, how these components are assembled into
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different structural and functional cilia types remain largely

unknown.

Disorders specifically arising from dysfunction of motile cilia are

called Primary Ciliary Dyskinesias (PCD, MIM244400). As a

result of defective airway mucociliary clearance, individuals with

PCD typically present in the first year of life with recurrent

infections, rhinosinusitis and otitis media, resulting in a chronic

respiratory condition which can progress to permanent lung

damage (bronchiectasis). Around half of PCD patients also have

laterality defects as a result of embryonic nodal cilia dysfunction

that lead to randomization of the left-right body axis, most

commonly situs inversus totalis (Kartagener syndrome) or more

rarely heterotaxy defects affecting the heart. Fertility defects are

also reported in individuals with PCD. PCD is genetically

heterogeneous, and 27 causative loci have been identified to date,

but these still account for only a fraction of total cases [3–6].

Diagnosis of PCD typically involves identification of ultrastructural

defects of the motile ciliary axoneme, over 70% of which involve

the loss of ODA. Many cases of PCD can be attributed to

mutations in genes encoding ultrastructural components of motile

cilia such as dynein subunits or proteins involved in their docking

and targeting [7–14], central pair microtubules [15], radial spokes

[6,16] and nexin-dynein regulatory complex [17–21]. Less well

functionally characterized are a growing group of cytoplasmic

factors that are putatively involved in trafficking or stability of

dynein arm components (DNAAF1/LRRC50, DNAAF2/KTU,

DNAAF3/PF22, DNAAF4/DYX1C1, HEATR2, LRRC6,

SPAG1, ZMYND10, CCDC103, C21ORF59) [19,22–33]. Sever-

al of these Dynein Axonemal Assembly Factors, such as the case

for DNAAF1-4, work directly within a heat-shock protein (HSP)-

based molecular chaperone complexes to direct the proper folding

of axonemal dynein subunits [29,31].

Given the complexity of the motile cilia assembly and function,

it is possible that there is an underlying conserved transcriptional

programme that could be used to identify further PCD candidate

genes? Expression of the core ciliogenic programme, including

components of the IFT and BBSome machinery, is regulated at

the transcriptional level in part by the regulatory factor X (RFX)

family of transcription factors [2]. RFX proteins are essential for

ciliogenesis in C. elegans and D. melanogaster [34,35]. Of the eight

paralogues that exist in mammals, Rfx2 and Rfx3 have been

implicated in vertebrate motile ciliogenesis [36–39]. These

proteins contain a highly conserved DNA-binding domain, which

directly interacts with a consensus sequence, the X-box motif

[34,37,40–42]. Identification of X-boxes in promoters of genes

transcriptionally activated during ciliogenesis has been previously

used for identification of putative ciliopathy candidates [43,44].

It has been proposed that the diversity of cilia function could

arise from elaboration of a core ciliary transcriptome through

additional transcriptional controls [2,45]. FOXJ1 (HFH4), a

forkhead/winged-helix transcription factor, has been shown to

activate gene expression required for motile cilia formation [46–

50]. FOXJ1 is highly expressed in tissues with motile cilia [51,52]

and only motile cilia are affected in Foxj1 null mice [46,47].

Overexpression of FoxJ1 is sufficient to confer some motile

functions on primary cilia in both D. renio and X. tropicalis
[49,50]. Functional diversification of specific subsets of motile cilia

involves other transcription factors including the homeobox

NOTO for nodal cilia [53,54], as well as MYB and nuclear

MULTICILIN for multiciliated epithelia [55,56].

Unlike their wide distribution and diverse types in vertebrates,

cilia in D. melanogaster are very restricted. The only somatic cells

with cilia in flies are sensory neurons, which have specialized

ciliary dendrites for sensory reception. Only a subset of these, the

proprioceptive and auditory chordotonal (Ch) neurons, possess

cilia that are motile. As a result, genes encoding axonemal dynein

subunits and other motility components are uniquely expressed in

Ch neurons and spermatocytes. In the Drosophila antenna, Ch

neuron ciliary motility is proposed to be part of a mechanical

amplification process involved in transducing sound vibrations

through the interplay of motors and transduction channels

[57,58]. This simplicity of cilia diversity is recapitulated at the

transcriptional level. A single Drosophila Rfx member controls

expression of core ciliogenic targets in all ciliated sensory neurons

[59]. Although the existence of a Drosophila FOXJ1 orthologue

had been questioned, we recently demonstrated that the diverged

Fox gene fd3F is required for Ch neuron function [60] and fulfills

a role equivalent to Foxj1 genes in vertebrates [58]. Fd3F protein

cooperates with Rfx to control expression of Ch-specific genes,

including those encoding many structural components of the

motility machinery such as ODA subunits (dynein heavy chain

Dhc93AB, homolog of DNAH9/11), and IDA subunits (Dhc16F,

homolog of DNAH6, and CG6971, homolog of DNALI1). In

addition, Fd3F was found to regulate several unknown or poorly

characterized genes that shared a similar Ch neuron-specific

transcriptional profile. Some of these have subsequently been

found to encode cytoplasmic proteins that are implicated in the

assembly and/or transport of the dynein arm apparatus (tilB/

LRRC6, dtr/DNAAF1), and their mutation in humans leads to

PCD. In the majority of these target genes, conserved Fox and Rfx

consensus binding motifs could be found in their promoters in

close proximity to the transcriptional start site [58]. We

hypothesized that this transcriptional fingerprint could be used

to predict novel components of the motile cilia machinery as a

route to finding additional human orthologues potentially involved

in PCD.

Here, we present our studies on one such candidate, CG31320/

HEATR2, which plays a conserved role in the assembly and/or

stability of ODA and IDA in humans and in flies. We identify a

novel splice-acceptor HEATR2 mutation in a PCD family

associated with respiratory and laterality defects. CG31320
mutant flies exhibit aberrant proprioception, deafness and

immotile sperm due to ciliary/flagella motility defects, which

correlates with a lack of ODA and IDA in the cilia. Similar to the

RFX- and FdF3- regulated expression of CG31320 in Ch

Author Summary

Cilia are small, specialized projections extending from a
cell’s surface that play key sensory and sometimes motility
functions, such as generating fluid flow for clearing
airways or sperm propulsion necessary for male fertility.
Ciliary motility is defective in the inherited disease, Primary
Ciliary Dyskinesia (PCD). Although the basic cilium blue-
print has been elaborated on during evolution, many of
the core genes involved in building or maintaining
functional cilia have been conserved. We have used the
comparatively simple fruit fly, which has motile cilia on
only a handful of touch-sensitive sensory cells, to identify
genes involved in ciliary motility and which are therefore
candidate genes for causing PCD. We show here that when
one such gene (CG31320/HEATR2) is disrupted in either
flies or in human PCD patients, cilia form but they cannot
move. We show this protein stays in the cytoplasm, where
it is acts like a flexible scaffold stabilizing and facilitating
interactions during the assembly of large multi-compo-
nent ciliary motor complexes needed to power cilia
movement.

HEATR2 Is Required for Cilia Motility
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neurons, we show higher levels of cytoplasmic HEATR2 early in

mammalian motile ciliogenesis within differentiating cells that also

express high RFX3 and FOXJ1. We present human HEATR2

immunoprecipitation data showing interaction with outer arm

dynein intermediate chain DNAI2, but not other DNAAFs or

HSPs. We therefore propose that HEATR2 is unique amongst

known DNAAFs as it acts in the early stages of cytoplasmic dynein

preassembly but not in a classic chaperone/client function. We

suggest HEATR2 functions as a flexible scaffold for stabilizing

interactions between dynein subunits, like DNAI2, during

cytoplasmic pre-assembly.

Results/Discussion

A novel splice acceptor mutation in HEATR2 results in
PCD

We identified an extended UK-Pakistani family with three

affected children presenting with PCD (Figure 1A). The proband

(IV:4) presented at the age of 3 with chronic respiratory infections,

middle ear disease and chronic nasal discharge (Table 1). She had

also experienced neonatal respiratory distress and dextrocardia

was apparent on chest X-ray. Nasal ciliary biopsy confirmed the

PCD diagnosis by video microscopy, and written reports of

transmission electron microscopy revealed absence of both IDA

and ODA (data not shown). Her cousins subsequently presented at

the age of 2 (IV:1) and 4 (IV:10) with chronic chest infections and

nasal discharge (Table 1). The diagnosis of PCD was confirmed in

both these latter cases by nasal ciliary biopsy, again electron

microscopy confirmed absence of both inner and outer dynein

arms.

Whole genome SNP autozygosity mapping in this consanguin-

eous family identified a single concordant homozygous region of

2.6 Mb on chromosome 7:46,239–3,179,991 (GRCh37) (Figure

S1A) shared by all three affecteds and not seen in unaffected sibs.

A custom oligonucleotide array was designed to capture all exons

as well as intron/exon boundaries within the interval, and these

were analyzed by Next Generation Sequencing. This identified a

single potentially pathogenic variant c.2432-1G.C in the splice

acceptor site of the final exon of HEATR2 (NM_017802). Sanger

sequencing confirmed the segregation of the variant with the

phenotype within the family (Figure S1B). The change which

affects the highly conserved AG of the consensus U2-type splice

acceptor (Figure S2A) is absent in 176 ethnically matched control

individuals as well in 6503 European and African American

subjects in the Exome Variant Server (NHLBI GO Exome

Sequencing Project (ESP), Seattle, WA (http://evs.gs.washington.

edu/EVS/) (November, 2013 accessed)). With a total of 13,358

genotyped control chromosomes, we could significantly achieve

greater than 95% power to exclude the likelihood that this is an

uncommon SNP with an allele frequency of 0.1% [61], strongly

indicating that this is the PCD causative mutation. All HEATR2
exons were sequenced in an additional 23 PCD patients but no

further mutations were detected. However, another PCD-causing

HEATR2 allele has been recently reported among a Midwest

American Amish pedigree which contains a missense Leu795Pro

mutation in a highly conserved residue in exon 12 [26]. Together,

these studies indicate that independent mutations in HEATR2
contribute to a small proportion of PCD cases.

We sequenced HEATR2 cDNA from patients to investigate the

consequences of the G-to-C transversion mutation on HEATR2
transcripts. The PCD transversion mutation (ENST00000
297440:c.2432-1G.C) affects the terminal G of the AG at the

end of intron 12/13 located within the exon 13 splice acceptor

consensus sequence. In patients, the first two coding bases of exon

13, also AG, create a cryptic splice site immediately adjacent

which is utilised, resulting in a two base pair deletion of HEATR2
transcript and a consequent coding frameshift within exon 13

(Figure S2B). The mutation does not affect mutant HEATR2
transcript stability as shown by RT-qPCR and RT-PCR from

parental control and patient cDNA (Figure 1C, D), with the

heterozygous parental samples containing approximately equal

levels of each splicing variant (Figure S2B). RT-PCR products

spanning the splice acceptor mutation, exon 11–13 and exon 12-

39UTR showed no significant alterations in size, consistent with

efficient splicing to the cryptic splice acceptor at the start of exon

13 in PCD patients and loss of just 2 bp (confirmed by sequencing)

(Figure 1D, S2B). Moreover, ribonuclease protection assay (RPA)

using riboprobes containing portions of exons 12 and 13 from

unaffected control and patient cDNA confirmed with high

sensitivity and specificity these splicing events are occurring in

mutant HEATR2 transcripts (Figure S2C).

This PCD mutation and consequent frameshift (c.2432-
2433delAG) was predicted to replace the final 44 amino acids of

HEATR2 protein with 77 novel amino acids (pGlu811Glyf-
sTer78: Figure S3A). This mutation would disrupt the last of ten

highly conserved HEAT repeats and alter the C-terminus of the

ARM-type fold superfamily domain (Figure 1B). This simple array

of repeating motifs is found in a-solenoid proteins and is best

characterized by b-importin with 19 HEAT repeats. They are

believed to create a highly flexible macromolecule with large

surface area key for mediating protein-protein binding, both in

terms of cargo selection and interactions with cell transport

machinery [62]. Western blot analysis confirmed the PCD

HEATR2 mutation (pGlu811GlyfsTer78) resulted in a slight shift

in mobility consistent with the predicted 3 kDa size increase. More

striking, however, was a striking reduction in total HEATR2 levels

in the patients (Figure 1E, S3B). Parental samples, heterozygous

for the mutation, showed a <50% reduction in b actin-normalized

HEATR2 levels compared to unrelated controls whilst the

homozygous patient samples were <3% of control levels

(Figure 1F). This suggests the mutation (pGlu811GlyfsTer78)

resulted in pathogenic changes in the amino acid sequence and

C-terminal structure of HEATR2 protein resulting in its

instability. Our study supports the recent report [26] of

HEATR2’s contribution to the genetic heterogeneity underlying

Primary Ciliary Dyskinesia.

CG31320 is expressed in a FOX- and RFX-dependent

manner. Our interest in transcriptional targets of the ciliary

motility programme [58,60] independently led us to the Drosoph-
ila HEATR2 orthologue CG31320. High-resolution temporal

gene expression profiling during Drosophila neural development

suggested that CG31320 is expressed in differentiating Ch neurons

prior to cilium formation [60]. We proceeded to confirm the

embryonic expression pattern of CG31320 by RNA in-situ
hybridization. CG31320 mRNA was restricted to Ch neurons

with expression beginning from about stage 12, after neuronal

specification but preceding cilium formation (Figure 2A), and

continuing throughout neuronal differentiation (stage 14: Fig-

ure 2B–C0). Co-staining with anti-Rfx confirmed co-expression in

late stage developing Ch neurons (Figure 2D).

Given its expression in early differentiating Ch neurons, we next

investigated whether CG31320 is regulated by ciliary transcription

factors. We found that CG31320 expression is Rfx-dependent,

since CG31320 expression is lost in Rfx mutant Ch neurons

(Figure 2E,F). CG31320 expression in Ch neurons was also fd3F-

dependent, as it was absent in fd3F mutants (Figure 2G,H; [58])

and could be induced ectopically by forced Fd3F expression in all

the Rfx-positive non-motile ciliated sensory neurons (Figure 2I).

HEATR2 Is Required for Cilia Motility
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Figure 1. HEATR2 splice mutation results in alteration of the final conserved HEAT repeat and protein instability. (A) Pedigree of
related families of UK-Pakistani descent. IV:4 identifies the proband, also designated by the arrow. Solid symbols (individuals IV:1, IV:4 and IV:10)
indicate those affected with PCD. Double lines indicate consanguineous marriages. The individuals labeled DNA signified those that had their DNA
included in SNP genotyping. (B) Schematic of HEATR2 transcript showing the transversion mutation (ENST00000297440:c.2432-1G.C) affecting the
splice acceptor site of the final exon. The mutation results in inactivation of this splice site and utilization of an adjacent downstream cryptic splice
acceptor site in exon 13, causing a 2-nucleotide AG deletion in the HEATR2 transcript, resulting in a frameshift in translation (Figure S2B). This is
predicted to alter the final 44 amino acids of the protein and add an additional 33 amino acids with creation of a novel termination signal at codon
888 in the 39UTR (See Figure S3A). This mutation disrupts the final highly conserved HEAT repeat and alters the C-terminus of the ARM-type fold
superfamily domain (red). (C) Relative expression levels of HEATR2 transcript by RT-qPCR, when normalized to the reference TBP gene. (D) The PCD
transversion mutation (ENST00000297440:c.2432-1G.C) does not affect HEATR2 transcript stability or gross splicing as shown by RT-PCR on parental

HEATR2 Is Required for Cilia Motility
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These studies demonstrate that CG31320 expression is restricted

in a Rfx- and fd3F-dependent manner to the neural cells that form

specialized motile cilia. Outside the Ch lineage, CG31320
expression was also detected transiently in early stage 12 non-

ciliated mesoderm (Figure 2A) and in the adult testes (http://

flybase.org/reports/FBgn0051320.html); its transcriptional con-

trol in these lineages remains unclear.

To determine whether CG31320 is required for ciliary motility,

we generated CG31320 mutant flies by imprecise excision of an

associated P element in the line CG31320EY06677. The resultant

excision line CG3132027 had a 992-bp deletion of the 59 end of

the gene, including the transcriptional and translational start sites,

and CG31320 mRNA was absent in homozygous CG3132027

embryos (Figure S4). Visual inspection of deletion mutants showed

a complete lack of surviving homozygote adult flies while

homozygote larvae were smaller but with no obvious morpholog-

ical defects. Since Ch neuron dysfunction is not lethal, this suggests

a vital non-cilial role for CG31320 correlating with its expression

in the developing midgut, which may affect nutrition. To bypass

this lethality and focus on the cilial role, we used a Gal4-inducible

RNAi line (P{KK102625}VIE-260B) to generate knock-downs

lacking CG31320 specifically in embryonic and adult developing

sensory neurons (scaGal4 UAS-Dcr2/UAS-CG31320-KK102625
RNAi). RNAi generated knock-down embryos showed a strong

reduction in neural CG31320 mRNA (Figure 3A,D). These

knock-down flies are viable but uncoordinated, performing poorly

in climbing assays (Figure 3H), suggesting that Ch neurons are

defective as these are required for proprioception during

coordinated locomotion. Ch neurons are also required for hearing,

and so we tested for larval auditory function. Control larvae

contract abruptly when exposed to a 1-kHz tone, due to auditory

reception by Ch neurons (Figure 3I). In contrast, CG31320
knock-down larvae failed to respond to the tone.

Despite these functional defects, the specification and gross

differentiation of Ch neurons in CG31320 RNAi flies was

unaffected (Figure 3). Moreover, loss of CG31320 does not grossly

disrupt formation of Ch neuron cilia or their functional

compartmentalization, as shown by immunofluorescence for a

neuronal marker (anti-HRP: green) and the ion channel NompC/

TRPN1, which marks the distal non-motile cilium tip (anti-

NompC; magenta) (Figure 3B,E,G). We examined Ch neuron

ultrastructure in the antenna of CG31320 knock-down adult flies

by transmission electron microscopy (TEM). This revealed that the

normal 9+0 arrangement of microtubule doublets in the proximal

(motile) zone of the Ch neuron cilium was present but the

axoneme lacked both ODA (blue arrowheads) and IDA (red

arrowheads) (Figure 3C,F,G; Table 2). Structures consistent with

remnant dynein arms were only ever detected on a small minority

of doublets. Thus, CG31320 is required specifically for the

presence of the Ch ciliary motility apparatus.

CG31320 is also expressed in the adult testes, which contains

the only other motile cilium-like structure in Drosophila, the sperm

flagellum. Transcriptional control of ciliary motility in testes is

unclear. Although Rfx is expressed in spermatids, Rfx mutant

spermatozoa are motile but males are too uncoordinated to mate.

Similarly, fd3F mutant males are fertile [58]. Moreover, extension

and maintenance of the Drosophila sperm flagella is IFT-

independent, such that IFT-B mutant sperm are motile and

structurally normal. Thus the assembly of a 9+2 sperm axoneme

with ODA and IDA occurs by an alternate cytosolic assembly

mechanism [63,64]. To address whether CG31320 function is also

required for sperm motility, we generated testes-specific CG31320
RNAi mutant males (Bam-VP16-Gal4; UAS-Dcr2/UAS-
CG31320-KK102625 RNAi). Although such males can mate,

they are sterile (n = 20 males tested) (Figure 4J). We examined

sperm development in control and mutant testes. Normally

spermatogonial germ cells at the apical tip of testes (Figure 4A

asterisk) go through 4 synchronous mitotic amplifications with

incomplete cytokinesis to produce a cyst of 16 interconnected

spermatogonia (or primary spermatocytes). Eventually all 16

spermatocytes undergo meiosis I and II, to form a cyst of 64

inter-connected primary spermatids (Figure 4A arrowhead). For-

mation of sperm axonemes yields a bundle of extremely long

spermatids (Figure 4A (arrows) and 4C) that stretch almost the

entire length of the testis. The final step in spermatogenesis is a

highly complex process of membrane remodelling called individ-

ualisation to yield 64 individual sperm that are then transferred to

the seminal vesicle (SV) in a process which appears to be

dependent on sperm motility. CG31320 knock-down testes

appeared to develop normally and mature sperm were clearly

present (Figure 4B, D), but no motile sperm were observed in the

SV (Figure 4F: SV with motile sperm in 0/23 mutant testes

examined compared with 23/23 control testes).

To investigate the cellular defect underlying CG31320 mutant

sperm immotility, we carried out TEM analysis of spermatid cysts.

While wild type cysts contain 64 spermatids produced by division

of a single precursor, CG31320 knock-down cysts contained an

average of 60.7 identifiable spermatids (s.d. = 3.39, n = 6). These

had a normal axonemal ‘‘9+2’’ arrangement, but dynein arms

were generally not visible (colored arrowheads: Figure 4G, H),

consistent with the lack of sperm motility. In addition, a

proportion of axonemes showed separation of some doublets from

the core (arrows, Figure 4H, I), suggesting defects in motility-

associated nexin links. In addition some ‘‘A’’ sub-tubules of the

doublets contained electron-dense cores, which are normally only

seen in the accessory and central pair microtubules (open

arrowheads, Figure 4H, I). This constellation of ultrastructural

defects has been previously reported for tilB (LRRC6) and

CG11253 (ZMYND10) mutant sperm [23,65]. Despite the

fundamental differences between how Ch neuron and sperm

flagella axonemes are built, similar ODA and IDA defects in both

demonstrate CG31320 plays a core role in assembly of the ciliary

motility apparatus.

CG31320/HEATR2 is a highly conserved gene with a ciliary
motility signature

Our studies indicated that CG31320 in Drosophila is associated

with ciliary motility function and identification of human

HEATR2 PCD disease mutations suggested this function is

control (C) and patient (P*) cDNA from LCLs. PCR products spanning the gene including the splice acceptor mutation at Exon 11–13 and Exon 12-
39UTR show no obvious alterations in size. Direct sequencing confirmed a 2 base pair deletion consistent with efficient splicing to the cryptic splice
acceptor at the start of exon 13 in PCD patients (Figure S2B). (E) Western blot analysis on total protein extracts from unrelated control, heterozygous
parental and homozygous patient LCLs demonstrates the PCD mutation (ENST00000297440:c.2432-1G.C) results in an elongated HEATR2 protein
present at reduced levels implying instability. The slight shift in mobility of the protein in the patient is consistent with the predicted 3 kDa size shift
due to the amino acid alterations described. b-actin is used as a loading control. (For longer exposure see Figure S3B). (F) Levels of HEATR2 protein
normalized relative to b-actin reveal that parental samples which are heterozygous for the mutation shows a reduction to <50% of that of unrelated
controls whilst the homozygous patient sample shows a reduction to <3% of control levels.
doi:10.1371/journal.pgen.1004577.g001
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conserved. We examined whether the co-distribution of CG31320
orthologues with representative components of axonemal dynein

across the eukaryotic evolutionary tree supported a specific role in

the assembly or stability of structures required for motile cilia

function (Figure 5, Table S1). We found CG31320/HEATR2
orthologues, as well as components of both ODA and IDA, to be

absent from all non-ciliated lineages such as yeast but importantly

also absent from lineages possessing only non-motile cilia such as

nematodes [66]. CG31320/HEATR2 orthologues and compo-

nents of both IDA and ODA were identified in all lineages that

have motile cilia or flagella at some point in their life cycle, with a

few conspicuous exceptions. A CG31320/HEATR2 orthologue

was found in the marine centric diatom Thalassiosira pseudonana,

which has motile sperm whose 9+0 axonemes bear only ODAs

[66]. Conversely, a CG31320/HEATR2 orthologue was also

identified in the moss species Physcomitrella patens, which has

motile sperm with axonemes bearing only IDAs. This supports

the above finding that CG31320/HEATR2 is functionally

required for the correct assembly of both types of dynein arms.

Surprisingly, we identified a conserved CG31320/HEATR2
orthologue in the non-motile green algae Chlorella variabilis,
which is assumed to be asexual. However, the existence of several

meiosis-specific and flagellar genes in this organism including

subunits of outer arm dyneins, has led to the suggestion that some

flagellar-derived structure involved in sexual reproduction may

have been retained [67]. This evolutionary pattern of co-

conservation of CG31320/HEATR2 with the ciliary motility

machinery, together with the loss of IDA and ODA observed in

CG31320 mutant axonemes, suggests CG31320 is an ancient

component of the ciliary/flagellar motility programme required

for both IDA and ODA.

We further investigated whether FOX/RFX ciliary motility

transcriptional signature used to identify CG31320 was also

conserved amongst orthologues. Analysis of promoter sequences of

CG31320/HEATR2 orthologues in several vertebrate genomes

revealed the presence of highly conserved X-boxes situated within

500 bp upstream of the transcriptional start site (Figure 6A, Table

S2). In all species examined, very close to the start of Heatr2
transcription, we identified most often in the same position (216),

one palindromic RFX (X-box) binding site (RYYNYY N(1–3)

RRNRAC: [42]) extremely well-matched in both the 59 and 39

half sites. Interestingly, a second sometimes more degenerate X

box was also identified in close proximity (15–162 bp away,

relative position more variable between species Table S2), where

the 59 half-site was more degenerate. This second ‘‘relaxed’’ motif

has previously been reported in several RFX targets that are

components of the motile machinery in both flies and mammals

[37,58] and suggests the existence of multiple alternative DNA-

recognition modes among members of the RFX family of proteins

[68]. Although the significance of multiple X-box motifs in

regulating target gene expression is unclear, it has been proposed

that they may ‘‘fine-tune’’ the level and spatial expression of

targets [69,70]. Initial analysis using a stringent FOXJ1 consensus

site (WDTGTTTGTTTA or KTTTGTTGTTKTW: [51])

revealed no upstream sites in close proximity to the transcriptional

start in all vertebrate promoters, however using a less rigorous

consensus core motif used by the majority of forkhead proteins

(RYMAAYA [71]) and used in our Drosophila studies [58], we

were able to identify conserved motifs in this 500 bp upstream

regulatory region. These were similar to motifs for FOXJ1 recently

defined by protein-binding microarray [72]. These studies suggest

that the co-operative transcriptional control of CG31320/
HEATR2 by FOX and RFX factors as part of the ciliary motility

programme may also be widely conserved.
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To examine the physiological relevance of these putative

binding sites in the regulation of Heatr2 expression, we examined

an RFX3 ChIP-seq data set from differentiated mouse primary

ependymal cell cultures which bear motile, multicilia [37]. ChIP-

seq analysis identified a single unique RFX3-peak within 5 kb of

the transcriptional start site of Heatr2 (Figure 6B), a region that

contained both the predicted X-boxes. This is similar to peaks for

the known RFX3-target gene Dync2li1(Figure S5A), with a

canonical conserved X-box in close proximity to the transcrip-

tional start site (Figure S5B) and strongly suggests that the X-boxes

are occupied during motile ciliogenesis. ChIP-qPCR validation

revealed strongly enriched RFX3 occupancy at the Heatr2
promoter comparable to or greater than validated target Dync2li1
target sequence (Figure 6C). Consistent with these data, Heatr2
expression in Rfx32/2 ependymal cells is decreased ,55%

compared to controls, similar to that which is observed for known

targets Dyn2li1 and Bbs5 (Figure 6D). Together, these analyses

indicate that mouse Heatr2, as in Drosophila, is directly regulated

in part in an RFX-dependent manner.

To further explore developmental transcriptional control of

mammalian Heatr2 during formation of motile multiciliated cells

(MMCs), we first used RT-qPCR during mouse embryonic

trachea and lung development. Ciliation in developing mouse

airway epithelia occurs in a distinct spatial and temporal manner,

from E14.0 when the first few FoxJ1-positive epithelial cells

emerge in a proximal-distal sequence [73]. Surface multicilia are

subsequently detected from E16.5 [52,73,74], becoming more

abundant in the airway epithelia with longer cilia as development

progresses. RT-qPCR analysis of E14.5 through to P2 mouse

trachea and lungs revealed Dnah5, Dnali1 and Zmynd10 to have

exponential expression curves during development (similar to

FoxJ1), whilst Rfx3 and Heatr2 followed more linear increases in

gene expression (Figure 7A). Both Rfx3 and Heatr2 were detected

prior to FoxJ1 expression, but a highly significant two fold increase

in Heatr2 expression was observed during Foxj1-dependent

differentiation (Heatr2: 2.7360.501 (SEM), E14.5 vs. P0: One-

way Kruskal-Wallis test P,0.001, Mann-Whitney U-Test P,

0.01). We next refined the spatial expression pattern of HEATR2,

RFX3 and FOXJ1 by immunofluorescence in the developing

bronchial epithelium at E15.5, prior to multiciliation (Figure 7B,

C compared with Figure S6A,B). During this proximal-to-distal

wave of differentiation, only the larger proximal airways had

interspersed cells expressing high levels of FOXJ1 and RFX3, as

well as subunits of inner and outer arm dyneins DNALI1 and

DNAI2. These same cells expressed high levels of HEATR2. At

other stages and sites of MMC differentiation, HEATR2 is

expressed in a ‘‘salt-and pepper’’ pattern, including E18.5

epithelial cells of trachea and bronchus (Figure S6C,D), as well

as in ependymal cells lining the lateral ventricles of P5 brains and

MMCs lining the adult oviduct ampulla (Figure S6E, F). For

comparative analysis of human cilia, we used asynchronous nasal

brush epithelial cells from healthy controls, in which we were able

to distinguish both immature cells (arrow) alongside terminally

differentiated and fully ciliated mature cells (arrowhead). This

revealed that HEATR2 expression was highest in immature cells

in the process of extending multicilia, which were also those

expressing higher nuclear RFX3 and FOXJ1 and predominantly

cytoplasmic DNALI1 (Figure 7D–G). In adjacent fully mature

MMCs, when DNALI1 was predominantly axonemal, compara-

tively lower levels of HEATR2 were observed, as well as lower

RFX3 and FOXJ1 expression (arrowheads Figure 7D,E). Togeth-

er, these results suggest that while Heatr2 expression in mammals

has evolved more complex transcriptional control compared to

flies, the conserved FOX/RFX ciliary motility signature we

identified is still used to drive dynamic high level expression at a

Figure 2. The HEATR2 orthologue CG31320 is highly expressed in motile ciliated mechanosensory Ch neurons in an Rfx- and Fox-
dependent manner. (A–D) In situ hybridization shows that CG31320 mRNA is present in chordotonal (Ch) neurons from about stage 12, when
transient mesoderm expression is also observed (A). Through early neuronal differentiation (stage 14: B, B9 (higher magnification) to late neuronal
differentiation (stage 16: C, C9), CG31320 expression is highly expressed in a restricted pattern to Ch neurons. (C0: higher magnification of C, stage 16).
Overlay of a Ch neuron schematic illustrating strong and restricted CG31320 expression in these clusters of ciliated mechanosensory neurons in late
stage embryos. (Scale bars: B, B9,C: 100 mm; C9,C0: 20 mm) (D) Double labeling of stage 16 wild type embryos for anti-Rfx (red, nuclear stain) and
CG31320 mRNA (diffuse blue) shows co-labelling between Rfx and CG31320 in late Ch neurons. The master ciliogenic transcription factor Rfx is
expressed transiently in all sensory neurons but at this stage it is only present in the motile ciliated Ch neurons. (Scale bar: 100 mm). (E,F) CG31320
expression is dependent on the Rfx transcription factor. CG31320 mRNA expression (blue) is lost in Ch neurons (anti-HRP: neuronal glycoproteins, red)
of rfx49 mutants [35]. (Scale bar: 20 mm). (G–I) Fd3F is necessary and sufficient to drive CG31320 expression in sensory neurons. Compared to control
(G), CG31320 expression is abolished in homozygous fd3F1 mutant embryo (H). (I) Conversely, ectopic fd3F expression (scaGal4, UAS-fd3F) expands
CG31320 expression into other ciliated sensory neurons in stage 16 embryos. (Scale bar: 100 mm).
doi:10.1371/journal.pgen.1004577.g002
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developmental window when axonemal dynein pre-assembly is

occurring in the cytoplasm.

CG31320/HEATR2 is a cytoplasmic factor required for
dynein arm assembly and/or stability

HEATR2 was an interesting candidate for functional charac-

terization as it had not been identified in any of the ciliary

axoneme [75,76] or centrosome [44,77] proteomic studies. This

presumably was due to isolation techniques used in these studies

focused on cilial/flagellar axonemes and precluded the identifica-

tion of cytoplasmic components involved in ciliogenesis. Indeed,

we find that endogenous HEATR2 shows granular localization

throughout the cytoplasm in human nasal epithelia (Figure 8A,C),

but is never detected in the ciliary axonemes even transiently in

immature MMCs when the pool of outer (as represented by

DNAH5 and DNAI2) and inner (as represented by DNALI1) arm

dynein subunits are predominantly cytoplasmic and moving into

the ciliary compartment (Figure 8A–C). This extends recent

findings reported by Horani et al. [26]. Moreover, both tagged

CG31320 (brackets: Figure 8D, S7) and HEATR2 (arrowheads:

Figure S6G) remained cytoplasmic, without any axonemal

localization, in fly Ch neurons and mouse cells respectively.

Together, these data define a temporospatial window of highest

HEATR2/CG31320 expression, and likely function, during early

cytoplasmic dynein pre-assembly.

Given the loss of identifiable IDA and ODA in fly CG31320
and human HEATR2 mutant cilia, we next asked how HEATR2

was affecting the localization of axonemal components of motile

cilia. Similar to previous outer arm defects by DNAI1 immuno-

fluorescence [26], no expression of outer arm dynein DNAH5 was

Figure 3. CG31320 is required for mechanosensory structure and function in Ch neurons. (A–C) Control and (D–F) Sensory-neural specific
CG31320 RNAi knock-down (UAS-Dcr2; scaGal4/UAS-CG31320 RNAi). (A,D) In-situ hybridisation confirms that substantial loss of CG31320 mRNA was
achieved by the knock-down. (Scale bar: 50 mm). (B,E) Immunofluorescence of larval Ch neurons using the pan-neuronal marker (anti-HRP: green,
neuronal glycoproteins marking luminal bands at level of basal body and close to ciliary dilation) and the ion channel NompC/TRPN1, (anti-NompC;
magenta; marks the distal non-motile cilium tip) shows that loss of CG31320 results in no gross cilia dysmorphology or loss of compartmentalization
of ciliated Ch structures. (Scale bar:10 mm). (C,F) TEM of Ch cilia cross-sections from adult antennae (Johnston’s organ), showing nine axonemal
microtubule doublets shown schematically in (G). (C) The electron-dense structures corresponding to inner (red arrowhead) and outer (blue
arrowhead) axonemal dynein arms are clearly seen in wild-type. (F) These are not observed in CG31320 knock-down cilia. (Scale bar: 100 nm). (G)
Schematic illustration of Drosophila Ch neurons showing the localisation of markers in the cilia and the presence of dynein arms in the proximal
motile zone. (H) Ch neuronal function is measured by the negative geotaxis climbing assay for adult flies. The height climbed by control (n = 43)
versus CG31320 RNAi flies (n = 64) reveals the latter to be uncoordinated. (Mann-Whitney U test: P#0.0001). (I) CG31320 RNAi knock-down larvae do
not respond in an auditory assay. Retraction score is the number of larvae (in a sample of 5) exhibiting head shortening during a 0.5 second time
window. Shown is the mean retraction score for several tests (control: n = 15; RNAi: n = 16); error bars are standard error of the mean. Statistical
analysis was performed using the Friedman test followed by Dunn’s multiple comparison post-hoc test. (** represents P#0.01; **** represents P#
0.0001).
doi:10.1371/journal.pgen.1004577.g003
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detected by immunofluorescence in patient HEATR2 mutant cilia

(arrowheads: Figure 9A) [78]. Endogenous HEATR2 complexes

were isolated by immunoprecipitation from terminally differenti-

ated control human bronchial epithelial lysates and immuno-

blotted with antibodies against components of dynein arms

(DNAH5, DNALI1, DNAI2), dynein assembly factors (KTU,

DNAAF3, ZMYND10) as well as chaperones (HSP70, HSP90). In

terminally differentiated cells, we were able to establish that

HEATR2 interacts with DNAI2 (Figure 9B), a critical component

added in the initial step of ODA assembly [79], but not other

axonemal dynein components, dynein assembly factors or

chaperones (Figure S8). These findings are confirmed by previous

studies showing that the Chlamydomonas DNAI2 orthologue

DIC2/IC78 is near absent in htr2 RNAi mutant axonemal

extracts [26], suggesting this interaction is conserved and of

functional significance to the ODA loss phenotype in HEATR2-

mutant cilia. Consistent with the absence of IDA from HEATR2
PCD patient and mutant fly axonemes observed by TEM,

endogenous DNALI1 was not detected in HEATR2 PCD mutant

cilia by immunofluorescence (arrowheads: Figure 9C) [80] and in

Drosophila a tagged orthologue CG6971::mVenus failed to enter

axonemes in CG31320 knock-down Ch neurons (Figure 9D). The

mechanism for HEATR2 in controlling IDA assembly remains

unclear as we were unable to confirm interactions with DNALI1

or other DNAAFs in terminally differentiated MMCs.

Our human and fly data support a model (Figure 9E) in which

HEATR2/CG31320 is a cytoplasmic factor, whose dynamic

expression is elevated in an RFX- and FOX-dependent manner

prior to assembly of motile cilia at the apical surface of MMCs and

Ch neurons. Once mature motile cilia are assembled, HEATR2/

CG31320 expression appears reduced. This corresponds to a shift

from a predominantly cytoplasmic pool of precursor dynein

protein subunits to assembled stable dynein complexes successfully

docked on the microtubules of the axonemes. These observations

suggest HEATR2 interactions are also likely very transient, as

HEATR2 remains exclusively cytoplasmic throughout cilia

assembly while components of dynein arms become enriched in

the axonemal compartment. The interaction with DNAI2 we have

identified in this study in human bronchial epithelial cultures by

co-IP as well as the absence of outer dynein arms in HEATR2/
CG31320 mutant axonemes and DNAH5 localization in patient

cell lines, strongly suggest that HEATR2 is functioning in the

earliest steps of outer arm dynein pre-assembly and stability. This

is further supported by the reports of loss of IC2 in axonemes of

htr2 mutants [26]. Whether HEATR2 also functions in apical

transport of dynein arm complexes to basal bodies is unclear, as no

apical inclusions of dynein arm components were observed in the

loss-of-function HEATR2 PCD cells (here and [26]). Moreover,

no direct link to IFT is suggested by the fact that Drosophila

CG31320 is required for dynein arms in both IFT-dependent (Ch

neurons) and IFT-independent (sperm flagella) axonemal assem-

bly.

Although we were unable to determine how HEATR2 may be

regulating inner arm dynein pre-assembly, we could show strong

loss of IDA by TEM and DNALI1 IF in HEATR2 patients and

mutant flies. In contrast, algal htr2 silenced strains showed

incomplete loss of IDA by TEM and varying stability of different

inner arm dynein subunits by axonemal immunoblots [26]. This

suggests the role for HEATR2 may vary in the preassembly of the

seven major species of inner arm dyneins in algae, each associated

with an intermediate chain/light chain complex [81]. While the

diversity of inner arm dyneins in modified motile cilia of other

organisms is as yet poorly characterised [31], we show that the

inner arm DNALI1, whose orthologue p28 is a component of

several IDA species in algae, is destabilized in our PCD patients

and in Drosophila. In contrast, Horani et al. report that inner arm

dynein heavy chain DNAH7 (a component of centrin-containing

inner arm dynein species b/I39) is correctly localized in their

HEATR2 PCD cilia. Consistent with this, htr2 silenced Chlamy-
domonas strains had increased levels of centrin (component of the

light chain complex of subspecies b/I39, e/I2b and g/I3) [26].

Interestingly, while PCD patients with mutations in DNAAF2/
KTU also show loss of light chain p28/DNALI1 immunostaining,

expression levels of p28 were unchanged in the corresponding

pf13 algal mutants [30]. Changes in p28 in htr2 silenced algal

strains were not discussed [26]. Defining the currently under-

appreciated molecular complexity of inner arm dyneins in

functionally diverse motile cilia may help reconcile differences

between PCD studies and clarify the distinct and overlapping roles

for individual disease genes within the dynein cytoplasmic

assembly network. Interestingly, in CG31320 RNAi Ch axo-

nemes, IDAs appear very cleanly absent in the majority of sections

(visible IDAs 3.20% vs control 91.5%: Table 2), more so than our

recent report for ZMYND10 mutant flies (visible IDAs 21.0% vs

control 86.7%) [23]. This suggests that despite overlapping gross

phenotypes, important molecular subtleties with respect to IDA

assembly may exist between these mutants, even within the highly

modified cilium of Drosophila Ch neurons, which utilize a

simplified ciliary motility machinery.

Our work supports a conserved role for HEATR2/CG31320 in

the hierarchy of cytoplasmic factors involved in a multistep process

of axonemal dynein pre-assembly In consequence, it has been

agreed with the HUGO Gene Nomenclature Committee (HGNC)

that HEATR2 should be referred to as DNAAF5. This group

includes DNAAF1/LRRC50, DNAAF2/KTU, DNAAF3/PF22,

DNAAF4/DYX1C1, LRRC6, SPAG1 and ZMYND10 [22–

31,33]. While Chlamydomonas have only one outer arm dynein

species comprised of a single complex of three dynein heavy chains

Table 2. Frequency of visible dynein arms in Drosophila sensory-neural specific CG31320 RNAi mutant Ch neuronal axonemes by
TEM.

scaGal4/+ (control) scaGal4/UAS-CG31320KK102625
P (Fisher’s)

n = 63 n = 126

Outer dynein arm 97% 6.30% ****P#0.0001

Inner dynein arm 91.50% 3.20% ****P#0.0001

Key:
n: number of axonemal microtubule doublets scored. Visible dynein arm: the percentage (number) of axonemal microtubule doublets for which staining consistent with
a dynein arm is visible. In both instances, Fisher’s Exact Test shows significant reduction in the knock-down cilia (P#0.0001).
doi:10.1371/journal.pgen.1004577.t002
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(DHCs) with several intermediate and light chains [81], human

studies suggest two types of double-headed HC ODA complexes

vary in their composition along motile axonemes [78]. Unlike

DNAAF2/KTU, HEATR2 is required for formation of both types

of ODA subtypes whereas in DNAAF2 mutant respiratory cilia

only distal DNAH5+ DNAH9+ ODA species are affected (here and

[26,30]). Unlike ZMYND10 and LRRC6, HEATR2 is exclusively

cytoplasmic [22,23,27,33,82]. Via its interaction with DNAI2, we

propose HEATR2 acts in the early stages of cytoplasmic dynein

preassembly, before complexes are transferred to a loading zone

around the basal body where IFT comes into play. Loss of DNAI2

in htr2 silenced algal axonemes [26] and ODA intermediate chain

DNAI1 [26] and heavy chain DNAH5 (here) immunofluorescence

in PCD patient cells with two different HEATR2 mutations,

strongly suggest HEATR2 may play a conserved role in stabilizing

formation of the IC1/IC2 complex in the cytoplasm from the pool

of precursors. Stability of Chlamydomonas DNAI1 (IC1) and

DNAI2 (IC2) are mutually dependent, and necessary for

subsequent cytoplasmic pre-assembly of outer arm heavy chains

[79]. A similar role in mammalian testes has been proposed for

DNAAF2/KTU [30] and the closely related PIH1D3 [83] via

interaction with DNAI2. However, we have been unable to show

an interaction between HEATR2 and HSP70 or HSP90 by co-IP

in human mature MMCs (Figure S8A), suggesting HEATR2 is not

Figure 4. CG31320 is required for sperm flagellar motility and male fertility. (A,C,E) Control and (B,D,F) CG31320 testes-specific inducible
RNAi knock-down (UAS-Dcr2; UAS-CG31320 RNAi; Bam-VP16-Gal4) adult flies. (A,B) Upon knock-down, gross morphology of the testis and seminal
vesicle (SV) is normal and sperm bundles can be observed in control and knock-down testes (arrows). (C,D) Higher magnification views show normal
organization of developing sperm bundles in the proximal testis in CG31320 knock-down. (E,F) In control (E), the seminal vesicle is full of mature
sperm and many motile spermatozoa are visible swimming away, (F) Mature sperm are not visible within CG31320 knock-down seminal vesicles and
no motile sperm are observed upon its dissection. (G–I) TEM images of adult testes post-elongation flagellar transverse sections show (G) a control
spermatid, with dynein arms visible on some of the microtubule doublets (colored arrowheads) whilst (H) CG31320 RNAi mutants lack dynein arms.
Despite a normal ‘‘9+2’’ configuration, some mutant ‘‘A’’ doublet sub-tubules have electron-dense cores (white arrowheads) or disruptions
suggesting defects in nexin links between AB doublets (arrows). (I) Transverse section of CG31320 RNAi knock-down mutant spermatid cyst highlights
frequency of axonemal disruption (arrows). Scale bars: 100 nm (G,H), 2 mm (I). (J) Summary of male fertility phenotypes between control and CG31320
testes-specific RNAi knock-down. Number of males producing progeny represents progeny from crosses to wild-type females. The knock-down flies
were completely infertile, even though mating was observed. In addition to empty seminal vesicles, knock-down testes exhibit accumulation of
sperm and some disruption of sperm bundles. These phenotypes appear to represent secondary consequences of the failure of sperm to move to the
seminal vesicle, which requires sperm motility.
doi:10.1371/journal.pgen.1004577.g004
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functioning in a classical client/chaperone manner. Given no

cytoplasmic accumulations of axonemal dyneins are observed in

HEATR2 PCD MMCs, we instead propose the tandem arrays of

HEAT repeats in HEATR2 are acting as flexible joints or scaffold

stabilizing and facilitating interactions between subunits during

assembly of dynein complexes.

The dynamic cytoplasmic expression of HEATR2 during the

period of motile ciliogenesis suggests that its interactions may be

quite transient. In the terminally differentiated human airway

cultures used in our co-IP experiments, only a small fraction of

cells would be in early ciliogenesis with DNAI2 cytoplasmic rather

than axonemal. This would explain why only a portion of DNAI2

is co-immunoprecipitated with HEATR2 (Figure 9B). Transient

interactions may be a trend for dynein assembly factors, such as

PIH1D3, which localizes to the cytoplasm of spermatogenic cells

but is absent from differentiated spermatids or mature sperm

[83].

Intriguingly, unlike other cytoplasmic assembly PCD proteins

which cause PCD when deficient, such as ZMYND10 and

LRRC6 [13,22,23,29,33], this study suggests the control of

HEATR2/CG31320 expression has evolved more complexity,

possibly due to independent recruitment during evolution of its

Figure 5. CG31320/HEATR2 is conserved in eukaryotes with motile cilia/flagella and its associated axonemal dynein apparatus.
CG31320/HEATR2 orthologues are found in species with cilia/flagella that have motile function and retain elements of the axonemal dyneins required
for this motility. Species which have no cilia (ie. amoebozoans, flowering plants, yeast) or those which lack motile cilia (i.e. nematodes) have lost
HEATR2 orthologues as well as the axonemal dynein genes. Interestingly, unusual species with variant motility programmes still retain HEATR2
orthologues. These include T. pseudonana whose male gametes have motile axonemes without inner arm dyneins, and P. patens, whose male
gametes have motile flagella without outer arm dyneins. Similarly, P. falciparum which assembles its flagella intracytosolically through an IFT-
independent programme, retains a HEATR2 orthologue. This suggests CG31320/HEATR2 is an essential element of an ancient programme required for
ciliary/flagellar motility. This figure is a summary of a more extensive search detailed in Table S1 for CG31320/HEATR2 orthologues as well as axonemal
dynein components of the outer (ODA) and inner (IDA) dynein arms, as summarized in columns. Filled circles: orthologues as determined by the top
score in reciprocal BLASTP or TBLASTN searches. Open circle: no homologue present. Half-filled circle: evidence supporting existence of at least one
orthologue per category as analyzed in Table S1 by reciprocal BLASTP or TBLASTN searches. Information for the intraflagellar transport (IFT) pathway
built upon Wickstead and Gull (2007) with our own searches for IFT components by reciprocal BLASTP or TBLASTN searches.
doi:10.1371/journal.pgen.1004577.g005
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HEAT repeat-dependent scaffolding functions in other non-cilia

cytoplasmic assembly processes. Indeed, CG31320 was the only

gene identified in our motility candidate screen in Drosophila
[58,60] whose expression is not confined to Ch neurons and testes,

displaying transient, yet apparently vital, mesodermal expression

during embryonic development. The role of HEATR2/CG31320

outside motile ciliated cells is currently unknown. Despite its

expression in non-ciliated tissues, the clinical phenotypes caused

by both human HEATR2 point mutations reported to date (here

and Horani et. al 2012) only manifest in cells expressing the

highest levels of HEATR2, those with motile cilia, suggesting they

may be most sensitive to profoundly reduced levels of HEATR2

protein.

Materials and Methods

Genotyping, linkage, next generation sequencing and
human mutation analysis

All patients or their parents gave informed consent and ethical

approval was obtained from Leeds (East) Research Ethics

Committee (07/H1306/113). DNA from three affected individuals

and eleven unaffected individuals from the family was used to

generate the genotype data using the Affymetrix 240K SNP

arrays. Genotype data was analysed using AutoSNPa [84] and

IBDfinder software [85]. A custom Agilent SureSelect pulldown

reagent was used to enrich for all coding exons of the 51 UCSC-

annotated genes in the locus from the genomic DNA of subject

Figure 6. CG31320/HEATR2 orthologues share conserved upstream regulatory FOX motifs and X-boxes of a master cilia motility
transcriptional programme. (A) Using the human upstream epigenetic markings and conservation to mouse and rat to define conserved
predicted regulatory elements, we focused analysis on the 500 bp upstream of the HEATR2 ATG and syntenic regions in other species to identify X-
box sequences, along with the nearest conserved FOX motifs. These sequences are coloured where they conform to recognized core consensus
sequences for generic FOX proteins (RYMAAYA [71]) and RFX (RYYRYYN(1–3)RRNRAC [42]). Nucleotides are shown in grey if they vary from the
consensus. Note for the second identified X-box site the 39 site is extremely well-matched whilst the 59 half-site is often more degenerate [37,58]. The
distance from the Fox motif and X-box to the transcription start site is indicated, or else the distance to the ATG is indicated if a sizeable 59UTR is
present (i.e. D. melanogaster, C. lupus). An expanded table of the analysis is provided in Table S2. (B) ChIP-Seq data reveals a single, specific RFX3 peak
200 bp upstream from the transcriptional start site in OF1 mouse primary differentiated ependymal cell culture. Insert illustrates the two X-boxes
bioinformatically predicted within the peak sequence. (C) Directed ChIP-qPCR data validates RFX3 occupancy is enriched at Heatr2 promoter in OF1
cells, normalized to known target gene Dyn2li1 and relative to a control sequence, downstream region in the Dync2li1 gene. (D) Heatr2 expression is
<55% reduced in Rfx32/2 ependymal cells similar to reductions in expression observed for two known direct Rfx3 targets, Dync2li1 and Bbs5. qPCR
data represent the average of three different assays performed in triplicate 6 SEM. All data are considered significant using Student’s t-test. (Heatr2
P = 0.003652632; Dync2li P = 0.013123897; Bbs5 P = 0.022511438).
doi:10.1371/journal.pgen.1004577.g006
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IV:4 and sequenced the DNA using an Illumina Genome Analyzer

IIx clonal sequencer. We aligned the sequence reads to the human

genome (hg19) using Novoalign (Novocraft Technologies). After

alignment postprocessing and variant calling using standard

methods [86] only one homozygous potentially pathogenic variant

remained, ENST00000297440:c.2432-1G.C. Presence of the

mutation was confirmed by Sanger sequencing of PCR amplified

products using BigDye terminator chemistry (Applied Biosystems).

Primer sequences used to amplify all HEATR2 exons for

sequencing are given in Table S4. DNA sequence data was

analysed using the GeneScreen software [87]. The 23 additional

PCD patients sequenced for HEATR2 mutations had no known

mutations at the time, and included two patients with cilia aplasia,

two with absent inner dynein arms, three with absent outer dynein

arms, 13 with absent inner and outer dynein arms and three with

undefined defects by EM.

LCL culture for protein and RNA extraction
To generate lymphoblastoid cell lines (LCLs), B cells from a

PCD affected patient and their heterozygous parent were EBV

transformed (ECACC). Two non-related, non-affected control

SWEIG and FATO LCL lines were also used. LCLs were cultured

in RPMI 1640 (Invitrogen), containing 10% FCS, 1 mM

Oxaloacetate, 0.45 mM Pyruvate, 0.03% Glutamine, 0.2 U

Insulin, 1% penicillin/streptomycin, and 8 mmol/L MOPS

(pH 7.2) at 37uC, 5% CO2. Total protein extracts were made

Figure 7. HEATR2 is highly expressed in tissues with motile cilia. (A) Developmental changes in gene expression were assayed by RT-qPCR
on RNA extracted from wild-type mouse lungs and trachea from E14.5-P2 (N = 3 independent biological samples for each time-point). qPCR data
represents the average of three different assays for three samples performed in triplicate 6 SEM. Kruskal-Wallis non-parametric analysis of variance
was performed and was significant for all genes (Zmynd10 P = 1.558e208; Dnahc5 P = 1.141e205; Dnali1 P = 9.814e206; Foxj1 P = 1.956e209; Heatr2
P = 1.604e206; Rfx3 P = 6.68e206). (B,C) Immunostaining on sections of E15.5 mouse lungs, where strong RFX3 and FOXJ1 signals are co-expressed in a
‘‘salt and pepper’’ pattern only in large proximal airways, not smaller, more distal airways (see Figure S6A,B). Although they are not yet multiciliated,
these cells also express components of axonemal dyneins and high levels of HEATR2 in their cytoplasm. (Scale bar: B,C = 50 mm, B9,C9 = 10 mm). (D–G)
Immunostaining of human nasal brush epithelial cells for: (D) RFX3 (HPA: red), acetylated tubulin (green) and DNALI1 (SC: purple); (E) HEATR2 (Novus:
red), FOXJ1 (green) and DNALI1 (SC: purple); and (F,G) HEATR2 (Proteintech: red), FOXJ1 (green) and RFX3 (SC: purple). White arrowheads highlight
fully mature motile, multiciliated cells (MMCs) that express lower nuclear RFX3 and FOXJ1 with reduced HEATR2 and with axonemal dynein
components entirely in cilia. Arrows highlight immature MMCs for comparison. HEATR2 is entirely cytoplasmic at all stages examined (Scale bar: D–
G = 10 mm).
doi:10.1371/journal.pgen.1004577.g007
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using 16 Cell Lysis Buffer (Cell Signaling Technologies) and

Complete protease inhibitor tablets (Roche) and 1 mM PMSF

(ThermoScientific). 20–25 mg of total protein was loaded per well

of 1.0 mm 10 well pre-cast NuPage 3–8% Tris-Acetate gel

(Invitrogen), according to the manufacturer’s specification.

Primary and secondary antibodies details are provided in Table

S3. Signal was detected using ECL-Prime detection kit (GE

Healthcare) and either exposed to photographic film (Kodak

Biomax XAR Film) or used for digital quantification on the

ImageQuant LAS 4000 (GE Healthcare) according to the

manufacturer’s instructions.

Total RNA was isolated according to manufacturer’s protocol

using RNAeasy minicolumns (Qiagen), followed by DNase

treatment with Turbo DNA-free kit (Ambion). cDNA was made

using First Strand Synthesis of cDNA for RT-PCR (AMV) kit

(Roche). Standard RT-PCR was performed using primers

spanning coding HEATR2 transcripts ENST00000297440 and

predicted ENST00000313147 which uses an alternate 39 UTR as

well as final 13th exon (Table S4). Products were sent for dye

terminator sequencing reactions (Applied Biosystems) on a 3130/

3730 genetic analyser (Applied Biosystems). The DNA sequencing

data was analysed using Sequencher 4.10.1 (Gene Codes Corp.).

For quantitative analysis of splicing variants, sequencing files were

analysed using the desktop program QSVanalyzer [88]. RT-

qPCR was carried out on the Roche LightCycler-480 using the

Roche Universal Probe Library (UPL) system. Crossing point

times were identified, analysed and displayed relative to the

control gene (TBP) using the Roche LC480 software. Primer and

probe combinations are displayed in Table S5.

Fly stocks
Flies were maintained on standard media at 25uC. The stocks

scaGal4, UAS-Dcr2 and P{EPgy2}CG31320EY06677 were ob-

tained from the Bloomington Stock Center (Indiana University,

Bloomington, IN, USA). RNAi line y w1118; P{KK102625}VIE-
260B and control RNAi line y w1118; P{attP, y[+], w[39]}
(landing site VIE-260B) were obtained from the Vienna RNAi

Resource Centre. BamGal4-VP16 was obtained from H. White-

Cooper. A CG31320 deletion allele was generated by mobilizing

P{EPgy2}CG31320EY06677 by crossing CG31320EY06677 to a line

Figure 8. Cytoplasmic HEATR2 is expressed during early ciliogenesis. (A–C) Immunostaining of control human nasal brush epithelia reveals
endogenous HEATR2 (red: Novus (A), Proteintech (C)) is highly enriched in the cytoplasm of developing MMC when components of outer dynein
arms (B: DNAH5, red; C: DNAI2: green) as well as inner dynein arms (A–C: DNALI1, purple) are predominantly cytoplasmic. Arrowheads highlight fully
mature MMCs where these components are exclusively axonemal and with relatively lower levels of HEATR2. Arrows highlight immature MMCs for
comparison. Nuclei are stained with DAPI (blue). (Scale bar: A–C, 10 mm) (D) Double immunofluorescence of 22C10 (magenta: Futsch, cytoplasmic/
membrane marker, but not cilium, of all sensory neurons) and CG31320::mVenus (green) indicates there is cytoplasmic but no ciliary localization of
CG31320 in stage 16 Ch neurons (Ci: cilia, marked with square bracket). As this construct uses the upstream regulatory region of CG31320 containing
the X and Fox motifs to drive reporter expression, it further supports regulation occurs via these sites. (See Figure S7).
doi:10.1371/journal.pgen.1004577.g008
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containing a transposase. Screening identified a mutant line with a

deletion encompassing the transcriptional start site of CG31320:

CG3132027 (992 bp deletion). Other stocks used were rfx49 [35],

and fd3F1 [58].

Negative geotaxis assay
A total of 20 mated female flies were placed in a measuring

cylinder. After a 1 minute recovery period, the cylinder was

banged firmly once on the bench, and the percentage of flies

passing a 10 centimeter threshold within 1 minute of banging was

recorded. This was repeated five times each for four groups of flies

from each line.

Auditory assay
For each assay, five third instar larvae were placed on an agar

plate on top of a speaker. Each assay lasted 60–90 seconds, during

which a 1000 Hz tone of 1 second duration was played at

30 second intervals. Larval movement was recorded by video

camera and videos analysed in Macintosh iMovie software. For

each tone, larval behaviour was observed in two 0.5 seconds time

Figure 9. Cytoplasmic HEATR2 is required for the pre-assembly of axonemal dynein machinery necessary for motility. (A)
Immunofluorescence for axonemal dynein heavy chain 5 (DNAH5: green) on respiratory cells from patients with HEATR2 mutations compared to non-
related control cells, shows loss of type 1 and type 2 DNAH5-positive staining although axonemes are still present (acetylated tubulin:red). Nuclei are
stained with DAPI. (Scale bar: 10 mm). (B) Extracts prepared from control human terminally differentiated respiratory airway cultures (40 days ALI,
Epithelyx) were subjected to immunoprecipitation (IP) with antibodies to HEATR2 (Proteintech) or control rabbit immunoglobulin G (GFP). Resulting
immunocomplexes (IP: right) as well as dilutions of original extract (INPUT: left) were subjected to immunoblot analysis with antibodies to HEATR2
(Proteintech) or DNAI2 (Abnova). (See also Figure S8). (C) No staining of axonemal dynein light intermediate chain 1 (DNALI1: green) is observed in
patients with HEATR2 mutations. No signal above background is detected in patient cells, in contrast to strong axonemal localization in non-related
control cells. Nuclei are stained with DAPI. (Scale bar: 10 mm). (D) The DNALI1 orthologue in fly, CG6971::mVenus (green), fails to localize to ciliary
axonemes (Ci: cilia, marked with square bracket) of Ch neurons (magenta: 22C10/Futsch) in CG31320 knock-down larvae. (E) Schematic of dynamic
role of HEATR2 in developing airway epithelial MMCs. Progenitor cells exit the cell cycle to commit to the MMC lineage with primary cilia. These cells
express low levels of RFX3 (light red nuclei). Other upstream factors governing multiciliogenesis (MCN, MYB) induce centriole amplification as well as
expression of FOXJ1 (bright green nuclei), required for centriole docking. High FOXJ1 and RFX3 drive a cilia motility transcriptional cascade leading to
high expression of HEATR2 as well as expression of axonemal dynein components. HEATR2 is involved in the pre-assembly and/or delivery of future
dynein arms to the apical cilia base. In fully mature MMCs, once inner and outer arm dynein complexes are delivered and incorporated into motile
ciliary axonemes, relative levels of HEATR2 as well as RFX3 and FOXJ1 are reduced. This conserved regulatory motility module is required to drive high
levels of HEATR2 when axonemal dyneins are being assembled and trafficked.
doi:10.1371/journal.pgen.1004577.g009
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windows: the first starting 1 seconds before the tone, and the

second starting from the onset of the tone. Number of larvae

retracting (showing clear length shortening) was recorded as a

score for each time window.

Transmission electron microscopy
Whole adult fly heads were removed and rinsed in 0.5% Triton

X-100. The proboscis was removed to facilitate infiltration of the

fix, and the heads were then fixed in 2.5% glutaraldehyde/2%

paraformaldehyde/0.1 M phosphate buffer (pH 7.4) overnight at

4uC. Heads were then washed in 0.1 M phosphate buffer (pH 7.4),

postfixed with osmium tetroxide, dehydrated in an ethanol series,

and embedded in Polybed812. Ultrathin (75 nm) sections of the

antennae were then stained with aqueous uranyl-acetate and lead

citrate and examined with a Hitachi 7000 electron microscope

(Electron Microscopy Research Services, Newcastle University

Medical School).

mVenus fusion gene construction
CG31320::mVenus and CG6971::mVenus fusion genes were

designed to include the upstream region containing X boxes and

forkhead binding sites to allow expression from its own promoter.

CG31320 and CG6971 were PCR amplified from genomic DNA

and incorporated into pDONR221 via a BP. An LR reaction then

transferred this insert into a pBID-UASC-GV vector to generate

the destination vector pBID-UASC-CG31320::mVenus [89].

Chromatin immunoprecipitation
ChIP-sequencing experiments were performed as described [90]

using chromatin from either 107 ependymal cultured cells from

OF1 wild type mice (Oncins France souche 1, Charles River

Laboratory, France) [37] or mouse pancreatic cell line MIN6 [90],

full datasets to be published at a later date (A.L, B.D. and W.R).

Briefly ChIP was performed as described [91] using anti-RFX3 or

anti-RFX1 [92]. RNAs were isolated from Rfx3+/+ or Rfx32/2

mouse ependymal cells cultures prepared as previously described

[37].

Heatr2 expression studies
Due to the lack of cross-reactivity of commercially available

human anti-HEATR2 antibodies, we generated custom affinity

purified rabbit polyclonal antibodies against peptides from mouse

Heatr2 (ENSMUSP00000026975: Dundee Cell Products). Affin-

ity-purified antibodies against peptide 1 RETEAVVHKHRSA-

TYC (residues 824–835 in the final exon) gave specific bands for

both human HEATR2 and mouse Heatr2 by immunoblotting.

This antibody is henceforth referred to as DCP49.1. Validation of

human HEATR2 staining was also confirmed with several

commercially available antibodies raised to different antigens:

Proteintech, human FL-HEATR2 GST fusion (immunogen id#
ag20080); Santa Cruz, 15–25aa peptide within 675–725aa region

of human HEATR2; and Novus, 133aa peptide corresponding to

377–509 aa internal region of human HEATR2.

Animals were maintained in SPF environment and studies

carried out under the guidance issued by the Medical Research

Council in ‘‘Responsibility in the Use of Animals in Medical

Research’’ (July 1993) and licensed by the Home Office under the

Animals (Scientific Procedures) Act 1986. For immunofluores-

cence, tissues were dissected in cold phosphate buffered saline

(PBS) and fixed in 4% PFA/PBS for 0.5–4 hours at 4uC with

agitation. Samples were rinsed in PBS, processed through sucrose

gradient for cryoprotection and embedded in OCT (Sakura).

Cryostat sections of 10–15 mm were air-dried on SuperFrost plus

slides (Fischer Scientific). Sections were blocked in 10% donkey

serum/0.1% Triton-X in PBS and primary antibodies were

diluted in 1% donkey serum/PBS (Table S3). Slides were washed

and incubated in Alexafluor conjugated secondary antibodies

(Table S3), washed and mounted in ProLong Gold (Life

technologies).

For RT-qPCR studies, lungs and trachea were dissected

from C57BL/6J embryos and neonates in cold DEPC-treated

PBS into RNALater (Qiagen). Total RNA was isolated

according to manufacturer’s protocol using RNAeasy mini-

columns with Qiashredder homogenizers (Qiagen), followed by

DNase treatment with Turbo DNA-free kit (Ambion). RNA

yield and A260/A280 ratio were measured using the Nano-

Drop ND-1000 Spectrophotometer (NanoDrop Technologies).

cDNA was made using First Strand Synthesis of cDNA for RT-

PCR (AMV) kit (Roche). Real-time PCR was performed on

cDNA diluted 1/5 using mix in a LightCycler LC480 (Roche).

Primer and probe sequences are provided in Table S5. Only a

single PCR product was amplified for each reaction. To

calculate relative amounts of transcripts in a sample, standard

quantification curves were generated using either serial

plasmid dilutions for Tbp and Heatr2, or wild-type cDNA.

For each developmental time-point, three separate biological

samples were isolated and processed independently. Data

presented represents the mean average of these samples in

three separate experimental runs with technical repeats in

triplicate. Expression of each gene was normalized to reference

gene Tbp, as it was unchanged during this developmental

window and within a dynamic range of our ciliary targets. We

have presented each gene relative to E14.5 (set as 1). To

compare the expression level of a given gene between

developmental timepoints a one-way Kruskal-Wallis analysis

was used, if this generated a significant P value (,0.05) it was

followed by post-hoc pairwise comparisons using Mann-

Whitney U tests with Bonferroni correction for multiple

testing.

HEATR2 co-immunoprecipitation
Endogenous HEATR2 immunoprecipitations were performed

using terminally differentiated normal human bronchial epithelial

cells (40 days post- ALI, MucilAir, Epithelix Sarl). Whole cell

lysates were prepared in lysis buffer containing 50 mM Tris-HCl

pH 7.5, 100 mM NaCl, 10% Glycerol, 0.5 mM EDTA, 0.5%

IGEPAL, 0.15% Triton-X 100 and Halt Protease Inhibitor

Single use cocktail EDTA free (Thermo). Lysates were pre-

absorbed against Dynabeads G (Invitrogen) for 30 min at 4uC to

minimize non-specific binding. Pre-absorbed lysates were incu-

bated overnight at 4uC with antibodies against HEATR2

(Proteintech) and an isotype-matched IgG rabbit polyclonal

antibody (GFP: sc-8334, SantaCruz) as control. To concentrate

immunocomplexes, antibody-lysate solutions were incubated with

Dynabeads G followed by a series of washes with reducing

amount of detergents. Finally, immunocomplexes were eluted off

the beads and resolved by SDS-PAGE. Resolved immunopre-

cipitates were subjected to immunoblotting with antibodies to

HEATR2 (Proteintech) and DNAI2 (M01, clone IC8; Abnova).

Also used for immunoblotting were HSP70 (K-20; SantaCruz),

(MAB32861: R&D), DNAAF2/KTU (ab99056; Abcam),

DNAAF3 (ab126301; Abcam), ZMYND10/BLU (TA308345;

Origene), DNAH5 (HPA037470; Sigma) and DNALI1 (N-13;

SantaCruz). All primary antibody dilutions were 1/5000 and

secondary antibody dilutions were 1/20000 using SuperSignal

West Femto kit (Thermo) for detection.
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Supporting Information

Figure S1 HEATR2 is mutated in human primary ciliary

dyskinesia. (A) Representation of autozygosity SNP mapping on

chromosome 7 generated using AutoSNPa. The scale on the left

vertical is in megabases. The 3 affected individuals are on the left

hand side panel, and the 11 unaffected individuals numbered are

shown on the right. The black bands represent homozygous

regions, and yellow bands represent heterozygous regions. The

centromere is indicated by the horizontal dotted line. A 2.6 Mb

region for which only the affected individuals were all concordant

homozygous was identified between rs6583338 (7:46,239) and

rs7779245 (7:3,179,991) (GRCh37). (B) Deep NGS resequencing

of the 2.6 Mb interval identified a single pathogenic change as a

splice acceptor mutation in the final exon of HEATR2
(7:766,338–829,190). The mutation (c.2432-1G.C) was homozy-

gous in the affected individuals, and was heterozygous in the

parents. It was not found in 176 ethnically matched control

individuals, indicating it is was a PCD causative mutation.

Sequence data was analysed using GeneScreen [87].

(TIF)

Figure S2 HEATR2 splice mutation generates a novel and

efficient +2 exonic splice acceptor to alter mRNA sequence from

the final exon. (A) The HEATR2 (ENST00000297440:c.2432-
1G.C) mutation alters the final highly conserved consensus U2-

type splice acceptor but utilizes the initial two bases of exon 13 (A–

G) as an alternate and efficient splice acceptor. Mutated residue is

shown in red with adjacent exonic A shown in blue. (B) RT-PCR

products spanning the UK-Pakistani HEATR2 mutation were

Sanger sequenced and analysed using QSVanalyzer to quantify

proportions of peaks from control and mutant transcripts [88].

The heterozygous sample was found to contain 55% of the control

variant and 45% of the mutant variant. The traces also confirm

the mutant transcript is efficiently spliced to the novel exonic splice

acceptor, with no alternate transcripts or missplicing events visible.

(C) Ribonuclease protection assay (RPA) confirms with high

sensitivity and specificity splicing events in control and mutant

HEATR2 transcripts. Riboprobes containing a portion of exon 12

and 13 from a control (C) and patient (M) cDNA were generated.

Sources of polyA+ RNA included a yeast control, heterozygous

parent, PCD patient (affected), or an unrelated normal control.

Undigested probes had a length of approximately 350 bases. Anti-

sense riboprobes that annealed with identity to the transcript were

digested to produce either a 245 bp control or 243 bp mutant

product. Probes that annealed to sequence with a lack of identity

at the exon12/13 junction were further digested to produce an

exon 13 protected fragment of 163 bases in the normal or 161

bases in the mutant situation. Lack of genomic DNA contamina-

tion was confirmed using sense riboprobes. Quantification of the

relative levels was 15% of the total in the patient and 24% in the

control, indicating a moderate level of non-reference sequence

splicing was present in both patient and control in this cell type.

(TIF)

Figure S3 HEATR2 splice mutation results in truncation of the

final conserved HEAT repeat and protein instability. (A)

Schematic of the effect of the PCD transversion mutation

(ENST00000297440:c.2432-1G.C) on translation of the pro-

tein. Based on sequencing of control, parental and patient

HEATR2 cDNA, we found the mutation results in inactivation

of this splice site and utilization of the adjacent cryptic splice

acceptor site in exon 13 (red box in control transcript), causing a 2-

nucleotide deletion of the HEATR2 transcript (c.2432-2433de-
lAG, bases marked in red), resulting in a 2+ frameshift in

translation (blue/white boxes: mutant codons). The final nucleo-

tide of exon 12 is highlighted with an arrow, up to which point the

patient sequence is the same. The mutation alters the final 44

amino acids of the protein and adds an additional 33 amino acids

until it encounters a novel termination signal at codon 888 in the

39UTR (See Figure 1B). (B) Western blot analysis on total protein

extracts from unrelated control, parental and patient LCLs

demonstrates the PCD mutation (ENST00000297440:c.2432-
1G.C) results in a larger sized HEATR2 protein expressed at

lower levels probably due to instability. Top panel left, longer

exposure of blot in Figure 1E probed with anti-HEATR2 (Novus).

Middle panel, same blot stripped and reprobed with anti-

HEATR2 (Proteintech). Right, same samples run on a different

immunoblot re-probed with anti-HEATR2 (Santa Cruz) detects

the same protein bands (arrows).

(TIF)

Figure S4 CG3132027 deletion results in loss of CG31320
expression. (A) Schematic showing CG3132027 deletion mutant

encompassing the whole 602 bp 59UTR as well as the ATG of

CG31320 into the first 390 bp coding sequence of the exon. (B)

Comparative wild type embryo expression of CG31320. (C) This

deletion in CG3132027 mutants results in a loss of CG31320
expression in Ch neurons.

(TIF)

Figure S5 RFX3 binds to ciliary gene promoters in vivo. (A)

ChIP-Seq data reveals a single, specific RFX3 peak 200 bp

upstream from the transcriptional start site of known Rfx target

gene Dync2li1 in OF1 mouse primary differentiated ependymal

cell culture. Insert illustrates single predicted X-box within the

peak sequence. (B) Well-conserved both in terms of sequence and

position, a highly canonical X-box matching both Rfx-binding

motifs RYYRYYN(1–3)RRNRAC [42] and GTTGCCATGG-

CAAC [43] is identified close to the transcriptional start site of

Dync2li1. Nucleotides are shown in grey if they vary from the

consensus. (C) ChIP-Seq data reveals specific RFX3 peaks with

deeper reads upstream from the transcriptional start site of both

Heatr2 and Dync2li1 in MIN6 mouse pancreatic cell culture.

(TIF)

Figure S6 HEATR2 expression during development. (A,B)

Sections of E15.5 lungs immunostained for RFX3 (red), FOXJ1

(green) and DNALI1 (purple) (A,A9) and HEATR2 (red), DNAI2

(green) and DNALI1 (purple) (B,B9). In contrast to large bore

airways (see Figure 7B,C), only low nuclear levels of RFX3 are

detected in small developing airways (dotted box shown in A9, B9),

without FOXJ1 or target genes like DNALI1. At this stage, low

levels of HEATR2 expression are observed. (C–F) Endogenous

mouse HEATR2 is enriched in tissues with motile cilia including

E18.5 trachea (C, C9), bronchus (D), P5 ependymal cells lining the

lateral ventricles (E) and muticiliated epithelium of adult oviduct

ampulla (F). (HEATR2: red, Acetylated a-tubulin: green, DAPI:

blue.). (G) Over-expressed Heatr2 is cytoplasmic in ciliated murine

cells. Live imaging of overexpressed mouse Heatr2::tGFP in

murine NIH-3T3 fibroblast cells demonstrates fails to enter the

primary cilia axonemes, shown by Arl13b::mKate2.

(TIF)

Figure S7 CG31320::mVenus localization during Drosophila
development reveals cytoplasmic expression in all Ch neurons,

without any cilia localization. A CG31320::mVenus fusion gene

containing the upstream regulatory region containing X-boxes

and Fox binding sites recapitulated expression from its own

promoter. Double immunofluorescence with CG31320:mVenus
(green) and structural markers (magenta) including Elav (A,B,D;
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PLOS Genetics | www.plosgenetics.org 17 September 2014 | Volume 10 | Issue 9 | e1004577



nuclear, all neurons) or GT335 (D,E; polyglutamylated tubulin,

cilium). (A) View of whole late stage embryo (stage 16).

CG31320::mVenus is expressed in all Ch neurons (lch5, v’ch1,

vchA, vchB in the abdominal segments). (Scale bar: 100 mm). (A9)

Higher magnification view of two abdominal segments (A),

showing strong cytoplasmic localization in Ch neurons (Scale

bar: 20 mm). Very weak expression is also detected in v’td neuron,

which although is not thought to be ciliated, remains poorly

characterized and requires atonal for its development. This might

be an artifact of the enhancer construct, or it might represent real

expression of CG31320. (B) Higher magnification shows

CG31320::mVenus expression is strong cytoplasmic expression

in Ch neurons (Scale bar: 20 mm). Fainter, diffuse expression in

one of the Ch organ support cells (scolopale cell) that ensheaths the

sensory dendrite likely reflects CG31320 is expressed in the

mother cell before its final division into these sister lineages.

However, no clear ciliary localization of CG31320 is observed. (C)

In contrast. G6971::mVenus, the orthologue of DNALI1 and

known Fd3F target, clearly localizes to Ch neuron cilia as well as

cytoplasmic staining, showing that the construct/vectors used do

not interfere with cilium targeting (see also Figure 8F). (D) lch5

neurons from a third instar (mature) larva show weak

CG31320::mVenus staining in the Ch neurons. Similar to

wholemount in-situ staining, CG31320 is not expressed strongly

in mature neurons, being required for development. Importantly,

there is no localisation to the cilia, marked by GT335. There is

diffuse staining around the dendrites, again explained by some

expression in the ensheathing scolopale cells. (Scale bar: 20 mm).

(D9) Higher magnification view of the dendrite tips with single

channel (D0), confirming no ciliary localization. (E) Expression of

CG31320::mVenus in pupal antennal organs shows pattern

restricted to mechanosensory Ch neurons, not adjacent sensory

neurons highlighted by GT335 staining (Scale bar: 100 mm). (F)

Localization of CG31320::mVenus in pupal antennal organs

where cilia are stained with GT335 (Scale bar: 20 mm) shows

mostly cytoplasmic staining, with some diffuse signal from

ensheathing scolopale cells but no ciliary localization. (G)

Schematic of Ch neurons and antibodies used for highlighting

different associated structures. (H) Schematic of pupal antennal

organs showing different populations of sensory neurons, with Ch

neurons highlighted in green.

(TIF)

Figure S8 HEATR2 interacts with DNAI2. Protein extracts

were prepared from terminally differentiated bronchial epithelial

cultures from the same healthy human control and subjected to

immunoprecipitation (IP) with antibodies to HEATR2 (Protein-

tech) or control rabbit immunoglobulin G (GFP). Resulting

immunocomplexes as well as the original extracts (INPUT) were

subjected to immunoblot analysis with antibodies to HEATR2,

HSP70, and HSP90 (A) or DNAAF2/KTU, DNAAF3,

ZMYND10 (B). Interactions with chaperones for other dynein

assembly factors were not detected by HEATR2 CO-IP. (C) Blot

from Figure 9B reprobed with DNAH5 (Sigma) or DNALI1

(Santa Cruz).

(TIF)

Table S1 Survey for HEATR2 orthologues across eukaryotes

with presence of sensory cilia, motile cilia or flagella, as well as

components of ciliary motility machinery of inner and outer

dynein arms. Species examined are shown as rows, grouped as

Deuterostomia (white), Ecdysozoa (yellow), Lophotrochozoa
(orange), Cnidaria (purple), Fungi (blue), plants and protistan

sister groups (aqua), other protists (green). Column 4: document-

ed presence of motile cilia/flagella. Column 5: Presence of

sensory monocilia. Column 6: Expanded notes of life-cycle stages

with cilia or flagella. Column 7: Presence and identity of

orthologs in other species as described in Material and methods.

Where available, an NCBI accession number is provided,

alternately a reference to the relevant species database (Ensembl,

JGI, Phytozome) is given. Note for D. renio, the presence of two

putative orthologues is a scaffolding artifact due to poor genomic

reference sequence within the region (<1/3 of the gene on

chromosome 3, 1/3 on an unmapped scaffold and the middle of

the gene missing). Column 8: The similarity of HEATR2

orthologues is represented as a percentage ID with the human

HEATR2 sequence from the Clustal multiple alignments.

Column 9: The presence of absence of HEATR2 orthologues.

For visual simplicity, ‘‘yes’’ is colored green and ‘‘no’’ colored red.

Columns 10–12: Presence or absence of outer dynein arm

components [93]. For visual simplicity, ‘‘yes’’ is colored green and

‘‘no’’ colored red. Column 10: Orthologue of heavy chain motor

subunit DNAH9 (C.reinhardtii DHC14)? Column 11: Ortholo-

gue of heavy chain motor subunit DNAH5 (C.reinhardtii DHC15)

? Column 12: Orthologue of light chain DNAL1 (C.reinhardtii
DLU1)? Columns 13–15: Presence or absence of inner dynein

arm components [93]. For visual simplicity, ‘‘yes’’ is colored green

and ‘‘no’’ colored red. Column 13:,Orthologue of inner arm

group 3 heavy chain DNAH3 (C. reinhardtii gene DHC4, closely

related to DHC5 of the dynein species b/I39)? Column 14:

Orthologue of inner arm group 4 heavy chain DNAH1
(C.reinhardtii gene DHC2 of the dynein d/I2’ species)? Column
15: Orthologue of inner arm I1/f heavy chain DNAH2
(C.reinhardtii gene DHC10)?

(PDF)

Table S2 CG31320/HEATR2 orthologues share conserved

upstream regulatory FOX motifs and X-boxes of a master cilia

motility transcriptional program. Expanded analysis of 1000 bp

upstream of the HEATR2 ATG and syntenic regions in other

species to identify X box sequences, along with the nearest

conserved Fox motifs. These sequences are underlined where they

conform to recognized consensus sequences for generic FOX

proteins (RYMAAYA (Kaufmann et al., 1995)) and RFX

(RYYRYYN{1–3}RRNRAC (Laurençon et al. (2007)). Note for

the identified X box site the 39 site is extremely well-matched

whilst the 59 half-site is often more degenerate [37,58]. A

schematic version of this analysis for the closest set of Fox and

X-box binding sites to the ATG is provided in Figure 6.

(PDF)

Table S3 Details of primary and secondary antibodies used in

this study.

(PDF)

Table S4 Details of primers used in this study.

(PDF)

Table S5 Details of RT-qPCR primers and probes used in this

study.

(PDF)
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8. Olbrich H, Häffner K, Kispert A, Völkel A, Volz A, et al. (2002) Mutations in

DNAH5 cause primary ciliary dyskinesia and randomization of left–right

asymmetry. Nat Gen 30:143–144.

9. Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, et al. (2002) Mutations in
the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of

situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad
Sci U S A 99:10282–10286.

10. Duriez B, Duquesnoy P, Escudier E, Bridoux A-M, Escalier D, et al. (2007) A

common variant in combination with a nonsense mutation in a member of the
thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A

104:3336–3341.

11. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, et al. (2008) DNAI2
Mutations Cause Primary Ciliary Dyskinesia with Defects in the Outer Dynein

Arm. The American Journal of Human Genetics 83:547–558.

12. Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, et al. (2011)
Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding

dynein light chain 1. Am J Hum Genet 88:599–607.

13. Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, et al. (2013) ARMC4

Mutations Cause Primary Ciliary Dyskinesia with Randomization of Left/Right
Body Asymmetry. Am J Hum Genet 93:357–367.

14. Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, et al. (2013)

Exome sequencing identifies mutations in CCDC114 as a cause of primary
ciliary dyskinesia. Am J Hum Genet 92:99–106.

15. Olbrich H, Schmidts M, Werner C, Onoufriadis A, Loges NT, et al. (2012)

Recessive HYDIN mutations cause primary ciliary dyskinesia without
randomization of left-right body asymmetry. Am J Hum Genet 91:672–684.

16. Castleman VH, Romio L, Chodhari R, Hirst RA, de Castro SC, et al. (2009)

Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause
primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am

J Hum Genet 84:197–209.

17. Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, et al. (2011) The
coiled-coil domain containing protein CCDC40 is essential for motile cilia

function and left-right axis formation. Nat Gen 43:79–84.

18. Merveille A-C, Davis EE, Becker-Heck A, Legendre M, Amirav I, et al. (2011)
CCDC39 is required for assembly of inner dynein arms and the dynein

regulatory complex and for normal ciliary motility in humans and dogs. Nat Gen

43:72–78.

19. Austin-Tse C, Halbritter J, Zariwala MA, Gilberti RM, Gee HY, et al. (2013)

Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies

C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia.
Am J Hum Genet 93:672–686.

20. Horani A, Brody SL, Ferkol TW, Shoseyov D, Wasserman MG, et al. (2013)

CCDC65 Mutation Causes Primary Ciliary Dyskinesia with Normal Ultra-
structure and Hyperkinetic Cilia. PLoS One 8:e72299.

21. Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, et al. (2013) The

nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia
function in algae and humans. Nat Genet 45:262–268.

22. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, et al. (2013)

ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with
LRRC6. Am J Hum Genet 93:336–345.

23. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, Zur Lage PI, et al. (2013)

Mutations in ZMYND10, a Gene Essential for Proper Axonemal Assembly of
Inner and Outer Dynein Arms in Humans and Flies, Cause Primary Ciliary

Dyskinesia. Am J Hum Genet 93:346–356.

24. Duquesnoy P, Escudier E, Vincensini L, Freshour J, Bridoux AM, et al. (2009)
Loss-of-function mutations in the human ortholog of Chlamydomonas

reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary

dyskinesia. Am J Hum Genet 85:890–896.

25. Loges NT, Olbrich H, Becker-Heck A, Häffner K, Heer A, et al. (2009)
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