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Abstract

Phasic electromyographic (EMG) activity during sleep is characterized by brief muscle twitches

(duration 100–500 msec, amplitude four times background activity). High rates of such activity

may have clinical relevance. This paper presents wavelet (WT) analyses to detect phasic EMG,

examining both Symlet and Daubechies approaches. Feature extraction included 1 sec epoch

processing with 24 WT-based features and dimensionality reduction involved comparing two

techniques: principal component analysis and a feature/variable selection algorithm. Classification

was conducted using a linear classifier. Valid automated detection was obtained in comparison to

expert human judgment with high (>90%) classification performance for 11/12 datasets.
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1. Introduction

Labor-intensive, visual analysis of surface electromyographic (EMG) activity during human

sleep studies (i.e., polysomnography, PSG) has provided a quantitative, physiologic research

metric to potentially track development of some neurodegenerative conditions [1]. High

rates of EMG activity during rapid eye movement (REM) sleep occur in patients with
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idiopathic REM behaviour disorder (RBD), a dramatic condition in which patients act out

their dreams and engage in potentially disruptive, injurious and even dangerous behaviors

(e.g., walking through glass doors) while asleep [2]. RBD appears, in some cases, to be the

earliest sign of impending Parkinson’s Disease (PD), which may occur decades later [3].

The elevated phasic muscle activity is subtle but can be a potentially stable and objective

physiological marker of disease process [4] even on nights without dream enactment. This

makes it a potentially attractive metric as a diagnostic tool for widespread use in sleep

medicine. However, visual analyses of such activity are extremely labor intensive

(approximately 6 to 8 hours of visual scoring time per sleep recording [1]) and hinder

immediate application in the clinical setting of overnight diagnostic PSG. The work that we

present here expedites detection of phasic muscle activity by introducing a computerized

identification scheme. This work builds upon our previous investigation of unsupervised,

feature-based phasic EMG activity identification [5] by evaluating the performance of a

supervised phasic EMG activity detector, based on the discrete wavelet (WT) transform [6].

We describe use of WT analysis to decompose the EMG signal to discriminate between

phasic and non-phasic EMG activity. In this work we use the WT transform to improve such

discrimination, which contrasts to the approach shown in [5], which considered time and

frequency components of the EMG signal separately. We excluded several features used

previously [5] because of redundancy.

Few computerized methods for quantification of surface EMG signals recorded during

human sleep to track neurodegenerative disease have been attempted to date [7, 8]. Apart

from a small range of features analyzed, such prior attempts all relied prematurely on case

identification to derive estimates of case sensitivity and case specificity, a strategy which

ultimately confounds the two separate issues of signal identification performance and patient

(case) versus control identification [5]. Such confusion can greatly exaggerate performance

estimates of a computerized system by essentially “stacking the deck,” against the presence

or absence of time-based signals that occur stochastically in both patients and controls over

seconds to minutes during the course of a night of sleep. Before evaluating the performance

of any case-based identifying computerized system in a clinical or epidemiologic setting, its

accuracy regarding signal identification and validity must be demonstrated in real time.

Materials and methods

a. Polysomnographic (PSG) Data Collection

We analyzed twelve overnight de-identified PSG data sets (each consisting of separate left

and right leg recordings from six individuals) derived from the sleep laboratory at Emory

University School of Medicine in Atlanta, Georgia under an Institutional Review Board

approved protocol. Sleep durations for selected epochs of PSG data for the six individuals

are shown in Table 1. Extraction of real time leg muscle activity was obtained from bipolar

(i.e., two active sites on each leg) surface electrodes with impedances below 10,000 ohms

placed above the right and left anterior tibialis. Data acquisition was accomplished using the

Embla (MedCare, Bloomfield, CO) sleep monitoring model N-7000 digital PSG system,

with the software program Somnologica ® 2.0 at sampling rates of at least 200Hz, which

ensures sufficient sampling to capture phasic EMG activity occurring within the 0.1 second
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range specified within classical visual scoring guidelines. EMG data was converted from

Somnologica Embla format to .edf format, using the MATLAB (version 7.8 R2009a)

toolbox BioSig (Schloegl A-Graz University of Technology, Graz, Austria). WT analysis

and classification routines were run using MATLAB (MathWorks®; Natick, MA) software

programs.

b. Visual labeling of phasic EMG activity

Performance of the automated scheme was evaluated with respect to guidelines for manual

assessment of phasic muscle activity found in our previous work [1]. The twelve overnight

PSGs were first visually labeled for phasic and non-phasic muscle activity by the same

trained visual scorer. Individual one second epochs containing visually identifiable artifacts

were excluded. The left and right leg EMG recordings were separately marked at one second

intervals (epochs) as either non-phasic (0), or phasic muscle activity (1). Data epochs that

contained signal amplitudes of four times the surrounding background activity, visually

estimated for that epoch, with duration ranges of 100 to 500 msec were marked as phasic

muscle activity [1, 5]. Epochs that did not meet the criteria for phasic muscle activity (e.g.

activity > 500 msec) were marked as non-phasic muscle activity. Scoring was conducted

within the Somnologica software platform with a screen resolution display of 10 seconds per

viewing window and a screen size of 15″ (see Figure 1). Table 2 contains a summary of the

frequency of these visual scoring binary classifications for each data set. EMG epochs with

artifacts that included gross movements, ballistocardiographic interference and other

spurious information were manually removed prior to formulation of the final data sets and

are not included in Table 2.

c. Computerized detection algorithm

i. General Approach—In order to discriminate between phasic and non-phasic EMG data

segments, we implemented a pattern classification approach (see Figure 2), which involved

data collection, feature extraction (WT decomposition), dimensionality reduction (feature/

variable selection [FVS] and principal components analysis [PCA]), and linear

classification. We consider feature extraction to be the most essential component of

classification system development, because the selection of a “good” set of features are

required to fully characterize EMG data for successful automated phasic and non-phasic

EMG activity discrimination. To compensate for potentially redundant or irrelevant features,

the feature extraction stage was followed by a dimensionality reduction stage which further

condensed relevant information in order to reduce classifier training time and increase

generalizability of the classifier. Generalizability would be expected to be important if the

classification approach was to be readily exported to PSG recordings not included in this

initial validation.

We tested both: (a) a linear transformation technique, PCA and (b) a FVS algorithm

represented by Forward Floating Search (FFS) using a filter approach [9, 10]. Lastly, for

automated phasic and non-phasic EMG activity discrimination we employed a linear

classifier since it has been cited to provide comparable results to more advanced non-linear

classifiers when applied to real data sets [11], resembling the time and frequency

components of human muscle activity recorded with surface EMG.
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ii. Feature Extraction: Classical approaches in signal processing typically have

incorporated short-time Fourier transform (STFT) analysis, however, WT analysis has

advantages for non-stationary time series, which typically characterize biopotentials [12].

WT analysis differs from traditional STFT by its approach to information in time and

frequency domains. More specifically, WTs trade one type of resolution (time vs. frequency)

for the other, making them robust for the analysis of non-stationary signals [6]. WTs

decompose a signal into scales, each representing a particular “coarseness” of the signal.

Data sets containing a mixture of features residing at different time and frequency

resolutions are well-suited for WT analysis relative to STFT [13]. The presumed benefits of

WT (vs. STFT) to track phasic EMG activity, which appears in varying high frequency

bands (see Figure 1), was a major factor underlying our testing in order to determine

whether WT analysis offered unique EMG signal analysis advantages, as was the

conventionality of this technique. Other advantages included the lower computational cost

of the WT approach.

A WT ψ(t) is a localized waveform (a short-term duration wave), which characterizes

waveforms by vanishing moments (VMs) of varying complexity [13]. Two basic

manipulations can be performed on the WT, stretching or squeezing (dilation) and moving

(translation). Dilation is governed by the scale parameter a, whereas translation is governed

by the parameter b. Smaller scales correspond to higher frequency components and higher

scales correspond to lower frequency components. Dilated and translated versions of the

original mother WT comprise a family of WTs defined by (with the original mother WT

defined by parameters values a=1 and b=0):

(1)

In our analysis we employed the discrete time WT transform (DTWT), also known as the

pyramid algorithm, which is defined as [14]:

(2)

such that x[k] is the discrete EMG signal and the mother WT is considered real valued and

m, n ∈ . If the discrete dyadic grid WTs are chosen to be orthogonal, the information stored

in a WT coefficient Tm,n is not repeated elsewhere. Therefore, the information represented at

a certain scale m is disjoint and independent from the information at all other scales.

Although various mother WTs have been proposed and methods exist for the development

of customized WTs [15], results produced by the use of these customized WTs are usually

insignificant compared to the application of existing WTs [16].

Given this background, our work used traditional Daubechies and Symlet families with

different values of VMs because the literature has shown that the selection of VMs is

dependent on the application [17]. The Daubechies and Symlet WT families provide

compact support such that the WT transform can be computed efficiently with finite impulse

response conjugate mirror filters using a fast filter bank algorithm [13]. Daubechies WTs
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have a compact support of minimum size for any given number p of VMs. Symlets are also

WTs of minimum compact support, for any given number p of VMs, but they are more

symmetric compared to Daubechies WTs. The minimum support is a desired property in this

application since phasic muscle activity usually last a few msec. Daubechies and Symlet

WTs are described in greater detail elsewhere [13, 15].

Preliminary results, not shown here, revealed that relevant information for phasic EMG

activity discrimination was concentrated at low levels of WT decomposition. (Examinations

at higher levels using area under curve [AUC] as criterion consistently showed AUC values

approaching 1.0 at levels of m < 5 or lower.) Therefore, WT decomposition was performed

at m values of 1, 2, 3 and 4) and WT coefficients (extracted by Equation 2) were used to

compute the set of features illustrated in equations (3) to (8) below. In each equation below,

N is represented by Nm as the number of wavelet coefficients at level m (with Nm ≈ 2Nm+1

due to the decimation by 2 between consecutive levels in the pyramid algorithm). Features

were selected based upon consultation with sleep practitioners and a review of previous

quantitative metrics used in biological signal processing [18]:

• Standard deviation,

(3)

• Shannon’s entropy (inputs included the normalized squared detailed WT

coefficients).

(4)

• Mean absolute deviation,

(5)

• Mean curve length,

(6)

• Skewness
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(7)

• Kurtosis,

(8)

A total of 24 features were calculated for each EMG epoch {stdm, Sm, madm, mclm, skewm,

kurtm} and WT level m (m=1, 2, 3 and 4). Figure 3 depicts examples of histograms

(empirical approximation of the underlying probability density functions of the mean curve

length and Shannon’s entropy features, using the WT coefficients produced from the WT

transform with a Symlet mother WT consisting of four VMs, at WT levels m=1 and m=4, for

a single leg data set from one individual. Figure 3 indicates that the two classes, phasic and

non-phasic EMG activity, are characterized by distinct ranges of feature values. Higher

decomposition levels characterize lower frequency ranges and usually manifest greater

amount of overlapping, hence less distinct discrimination between phasic and non-phasic

EMG activity segments, as can be seen in Figure 3 (panels b and d). Also, different levels of

overlapping are observed depending on the decomposition level. Lower decomposition

levels characterizing higher frequency ranges indicate less overlap, hence, more distinct

discrimination between phasic and non-phasic EMG activity segments occur, as can be seen

in Figure 3 (panels a and c).

iii. Dimensionality Reduction using PCA: PCA (Karhunen-Loeve Transformation)

linearly transforms the original feature space [19] [20] by projecting the d-dimensional data

onto l eigenvectors (l ≤ d) from the covariance matrix of the zero mean original feature

matrix corresponding to the l largest eigenvalues. Even if the latter entails that the entire set

of eigenvectors is retained (resulting in a lack of dimensionality reduction), this may still

lead to an improvement of classification performance due to the uncorrelated nature of the

new set of features

ii. Dimensionality Reduction with FVS using FFS—FVS determines a subset of l

features from a given set of d measurements/features, such that the selected subset retains

the greatest ability to discriminate between classes. The “goodness” of a particular feature

subset is evaluated by using an objective function, J(Yk), where Yk is a feature subset of size

k.

In this work we employed an approach that included an objective function based on scatter

matrices, namely inter/intra distance calculations [19, 21]:
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(9)

with Sw the within scatter matrix describing the average scattering within classes (the scatter

of samples around their respective class mean vectors)

(10)

and Sb the between scatter matrix describing the scattering of the classes dependent means

with respect to the overall mean,

(11)

where μi is the mean value of class i, μ is the overall mean (for all classes), xi,n is the nth

data point belonging to class i, K is the number of classes (K=2 in our case phasic EMG and

non-phasic EMG), N is the total number of data and Ni is the number of examples belonging

in class i (i=1,2, …, K).

The inter/intra distance criterion was combined with Pudil’s FFS method in order to form

the subset of features to be fed into the classification stage [19, 22]. The FFS method allows

the addition and removal of a non-predefined number of features; assuming that Yk = {x1, x2,

…, xk} is the best subset of features according to a criterion J and Yd − k is the set of the

remaining d−k features. In the latter, all the subsets with lower cardinality (number of

features in the set): Y1, Y2, …, Yk−1 are also kept. The next stage proceeds as follows:

Step 1: Select the feature xj from Yd − k that yields the maximum value for J

Step 2: Find the feature xr in the set Yk+1 that reduces the value of J the least. If this

feature is the same as xj then retain the current subset, set k=k+1 and return to step 1;

otherwise remove xr to form 

Step 3: Continue removing features from the set , to form  while

 or k=2; then return to step 2.

The algorithm is initialized using the sequential forward FVS algorithm [19] to form Y2 (the

feature with the highest value of J is kept and feature pairs/subsets are created that contain

the feature selected from the first stage and any features retained in subsequent stages such

that the final feature subset has the maximum value for J) and is terminated when the

required l features are obtained.

v. Classification: In this study, we discriminated between phasic EMG and non-phasic

EMG segments. Many classification methods have been proposed in the field of pattern

recognition. However, for real world data sets, conventional classifiers tend to perform
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adequately when compared to more complex classifiers [11]. Therefore, a simple minimum

Mahalanobis distance classifier (using decision boundaries between compartments in the

feature space that are linear [hyper] planes) [19, 20] was used to detect phasic EMG and

non-phasic EMG segments. This follows Hand’s observation [11] that for many real world

data sets, a linear approach works surprisingly well. In the Mahalanobis classifier, each

feature vector x is assigned to class i (phasic EMG or non-phasic EMG) such that the value

of the corresponding discriminant function is maximized:

(12)

where μi is the mean of class i, P(ωi) is the prior probability of class i, and C is the estimated

covariance matrix, which is assumed constant across all classes.

vi. Evaluation Performance: Eight sets of experiments were conducted on each of the six

individuals’ data sets separately, testing (a) recordings from the left and the right leg (b)

Daubechies and Symlet family WTs analysis and (c) linear transformation of the input

features via PCA and FVS. For each set of experiments we varied the number of VMs from

1 to 15 and the number of components of the reduced input vector from 1 to 24 for PCA and

the number of features from 1 to 15 for the FVS approach, these parameters were selected

due to our desire to test a classification scheme that would be computationally feasible and

translational within clinical settings.

To ensure minimum bias we tested the aforementioned approach using an “inner” and an

“outer” loop validation scheme. The outer loop tracked the phasic EMG and non-phasic

EMG detection performance while the inner loop refined the classification scheme

parameters (number of retained principal components (PCs) or number of retained features

and the selection of the number of VMs. EMG data in the outer loop was divided into two

sets: training and testing (80% for training and 20% for testing) followed by a random

reshuffle of the phasic EMG and non-phasic EMG data segments. Next, the training set was

further sub-divided into another training and testing data set (75% for training and 25% for

testing) using a similar randomized reshuffle scheme, as mentioned previously. Classical

approaches in data mining suggest that two-thirds of the data are allocated to the training set,

and the remaining one-third is allocated to the testing set. Therefore in our work we used

training-set to testing-set ratios approximating these [23]. Eight inner loop iterations were

used and the optimal model configuration (number of PCs and VMs), in terms of average

classification performance was selected. Lastly, retraining of the model was conducted using

both the training and testing sets of the inner loop and final model validation was obtained

using the testing set of the outer loop (using 30 iterations). This validation scheme

decoupled the parameter selection stage from the estimation of the classification

performance [24, 25], which avoided obtaining overly optimistic conclusions (over-fitting).

b. Statistical Analyses

For each individual and leg, we performed a separate Kruskal-Wallis analysis of variance

and six Mann-Whitney U-tests with Bonferroni correction as post-hoc tests for

dimensionality reduction and WT family technique configurations. Non-parametric
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statistical procedures were favored because of the relatively small sample size. Values of p

lower than 0.05 were considered statistically significant. We defined the statistical

significance threshold for the multiple comparisons as p< 0.0083 (i.e., 0.0500/6 via

Bonferroni correction). The null hypothesis for each inferential statistical test separately

presumed equal median True Positive % (TP) and True Negative % (TN) values across

dimensionality reduction and WT family configurations.

These were defined as:

2. Results

Figure 4 includes the respective TP% for each of the eight aforementioned configurations

for each of the six individuals. TP %’s exceed 90% for all recordings, the sole exception

being a single leg recording (left) from one individual. Apart from this effect, there is some

suggestion of individual differences (e.g., S001 versus S005) but this occurs at very absolute

levels of accuracy (range of 90–100%). Figure 5 indicates uniformly rates of TN % above

90%, without differences by individual or leg.

3. Discussion

We intentionally selected signals for these analyses that represented de-identified data from

individuals without the disorders in question, because we were attempting to achieve

accurate computer-derived classification apart from more difficult and complex clinically

related issues related to case identification. To that end, we selected over 131,000 seconds of

surface EMG signals from 6 different individuals (x 2 legs) that were free from apparent

artifacts or otherwise spurious signals, at least as detectable using the gold standard of expert

visual analysis. Although we did not specifically select patients with neurodegenerative

diseases for this analyses, the range of ratios of phasic seconds to total (phasic + non-phasic)

seconds of signal varied widely across individuals, thus providing us with a broad overview

of likelihood of such signals occurring during human sleep. It is of interest that the left leg

of individual 003 was relatively low in frequency of phasic activity relative to the

occurrence non-phasic activity. However, the ratio was not the lowest (c.f., left leg of

individual 002) thus suggesting that low TP% of individual 003 was not simply related to

the differences in the ratio of base rate. These data instead raise the possibility that some

subtle introduction of noise components may occur for some recording of surface EMGs,

that fact perhaps being a function of the bipolar recording derivation used in that signal (e.g.,

left leg recording of individual 003), rather than a person-related factor per se. Electrode

application on humans is not an exact science, and although there are guidelines for

technologists to guide such procedures, small differences in person-based electrode
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impedance may impact signals from which WT-based feature analysis and dimensionality

reduction strategies ultimately derive accuracy. Our future work will examine more

carefully how unequivocal artifacts can impact classification accuracy. In the interim, our

suggestion is that minimizing impedance through proper electrode application techniques

will minimize the possibility of potentially spurious results. Development of a library of

artifacts and their impact upon WT-based features may ultimately inform us as to the

robustness of these techniques for the routine clinical practice of sleep medicine.

Somewhat surprising to us was the relative equivalence of Symlet and Daubechies WT

analysis results seen in these data (excluding S003-the noise sensitive case, which displayed

a TP% approaching 90% only for the Daubechies and not the Symlet WT). Although these

two approaches contain slightly different geometric properties for each mother WT (Symlet,

an essentially symmetric waveform vs. Daubechies, a non-symmetrical waveform), this

geometric distinction did not impact performance evaluation, which suggests robustness in

usage of either WT family in analyzing human EMG activity recordings. In this study, we

did not elect to examine customized WTs, because the diversity of waveforms covered by

the Symlet/Daubechies approaches was very broad. Future work might consider examining

WTs different from the two examined here. Regarding dimensionality reduction approaches,

we found no evidence that the complex FVS algorithm was superior to PCA. Therefore, for

clinical application we suggest implementation of the PCA due to its faster execution time.

Prospective examination of the utility of such an approach in clinical populations would still

be required (see final paragraph below).

A final limitation of our WT-based approach is that we have made a somewhat arbitrary

selection of features for incorporation here. For example, in our previous work [5], we

employed some features that were not included here (e.g., zero crossings, squared signal

amplitude) but in the interest of simplicity we elected to investigate whether a smaller set of

features could provide efficient results when applying WT decomposition. Additionally, our

prior efforts extracted features limited to the time or frequency domain, whereas WT

analysis uses both, which represents a more complementary and comprehensive approach

for processing human muscle potentials. However, in future work we will include features

overlooked in this study, as the possibility remains that some may prove to be valuable as

we establish automated pre-processing methods to detect and compensate for artifacts that

were manually excluded at this point.

The primary goal of this investigation was the establishment of an automated scheme that

uses surface EMG activity to detect phasic data which, we propose, requires the

development of a resilient quantitative model. We have, in this study, established that

Symlet or Daubechies and FVS or PCA represent viable feature extraction and

dimensionality reduction methods, respectively, to be utilized in the desired model. Also, we

found that the application of either supervised or unsupervised classification methods

(investigated in our previous work [5]) both provided efficient performance in detecting

phasic activity (maximum unsupervised TP% ~97% and maximum supervised TP% ~99%,

for S001). Having determined that supervised and unsupervised classification provides

efficient phasic detection, we will apply the method that fits best within computational

constraints that will be explored in our continued studies. We also suggest that applications
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of phasic EMG quantification extend beyond the 1-, 2-, or 3-second processing window

boundary used by ourselves [1] and others [3, 7, 8]. Such fixed segmentation may

significantly contribute to lack of concordance, since in some situations the majority of

disagreement mostly involves seconds crossing segmentation boundaries. In future work, we

will focus on these borderline situations by considering more flexible, continuous interval

approaches. Generally, we found that the investigated supervised, WT-based approach

provides efficient benchmarking parameters to be included within the development of a

robust quantitative model to process surface EMG signals derived from overnight

polysomnography.

This study intentionally avoided patients with disease in examining the utility of WTs in

phasic EMG identification. We did this because the prevalence of PD and RBD in the

general population approximates 1–2%, whereas prior attempts to validate digitized

processing of the EMG signals during sleep select patients at a rate approximating 50% [7,

8], thus grossly exaggerating the accuracy of their models. The approach that we have taken

here is less biased, since it focuses on the occurrence of EMG signals at rates encountered in

the general population. As such, WTs would be expected to at least be equivalent to or

possibly exceed accuracy of other digitized approaches in future disease/non-disease

comparisons. It also remains to be seen whether the current findings are limited to specific

features selected for analysis here, the dimensionality reduction approaches and/or the linear

classifier function employed.

4. Summary

Phasic (< 100 msec duration) muscle activity recorded during human sleep is relevant for

the study of certain neurodegenerative diseases, however, visual quantification of such

activity is time-intensive. We developed a computer-based, digitized system for quantifying

such activity using wavelet (WT) approaches. We considered both Symlet and Daubechies

functions and applied these to various features extracted from the overnight recordings

encompassing over 131,000 individual artifact-free seconds of surface-recorded muscle

activity in human sleep. This was followed by dimensionality reduction, employing both

principal components analysis (PCA) and a feature/variable selection (FVS) algorithm. A

linear classifier was used to distinguish each individual second of recording as phasic

activity present or phasic activity absent. Performance evaluation of the classifier was

determined by calculating the True Positive and True Negative percentages relative to

human visual classification, which represented the gold standard. Results indicated generally

high levels of classification performance that was independent from specifics of WT

function (Symlet or Daubechies) or dimensionality reduction technique (PCA or FVS).

These findings may present an optimistic pathway for future development of phasic muscle

quantification of the human polysomnogram.
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Figure 1.
Plot of electromyogram (EMG) labeling, 9.5 second duration of EMG activity-from the

S001 data set, in stage REM sleep, P_Right indicates right leg phasic EMG activity (top

panel, shaded gray region) and bottom panel indicates left leg phasic EMG activity

(P_LEFT, gray regions).
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Figure 2.
Schematic of the phasic EMG activity classification system.
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Figure 3.
“Empirical” probability density functions (pdfs) of the curve length and Shannon’s entropy

features of the wavelet coefficients (using Symlet with four vanishing moments) at level 1

and 4 (where non-phasic EMG activity is labelled Non-PEM (blue) and phasic EMG activity

is labelled PEM (red)): a) curve length feature at wavelet decomposition level 1 b) Curve

length feature at wavelet decomposition level 4 c) Shannon’s entropy feature at wavelet

decomposition level 1 d) Shannon’s entropy feature at wavelet decomposition level 4, with

feature values indicated on the x-axis and probability density values displayed on the y-axis.
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Figure 4.
True Positive (TP) % for each subject with respect to the classification scheme parameters:

L = left leg; R = right leg; S = Symlet Mother Wavelet, D = Daubchies Mother Wavelet, V =

Feature/Variable Selection Algorithm, P = Principal Component Analysis. Each box and

whiskers plot represents the median (horizontal line), the 25th and 75th percentiles (edge of

box) and the 95% confidence intervals (whiskers).
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Figure 5.
True Negative (TN) % for each subject with respect to the classification scheme parameters:

L = left leg; R = right leg; S = Symlet Mother Wavelet, D = Daubchies Mother Wavelet, V =

Feature/Variable Selection Algorithm, P = Principal Component Analysis. Each box and

whiskers plot represents the median (horizontal line), the 25th and 75th percentiles (edge of

box) and the 95% confidence intervals (whiskers).
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Table 1

Sleep duration and relative distribution of sleep stages (% sleep in min) for epochs selected for EMG analysis.

Subject Duration of Sleep (min) NREM (% of sleep[duration]) REM (% of sleep[duration])

001 134 64.08 35.92

002 191 74.61 25.39

003 184 64.34 35.66

004 187 67.03 32.97

005 197 74.96 25.04

006 196 76.67 23.34
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Table 2

Distribution of phasic and non-phasic seconds for selected analyzed epochs*.

Subject Phasic EMG Epochs (sec) Non-Phasic EMG Epochs (sec)

001 L = 698; R = 880 L= 7,384; R= 7,199

002 L = 80; R = 1,452 L = 11,432 ; R = 10,066

003 L = 286; R = 736 L = 10,798; R = 10,352

004 L = 3,340; R = 2,956 L = 7,933; R = 8,318

005 L = 1,774; R = 2,042 L = 10,095; R = 9,800

006 L = 2,672; R = 3,154 L = 9,145; R = 8,646

*
L = left leg; R = right leg; Numbers refer to number of 1 sec epochs labeled as phasic or non-phasic activity; some 1 sec epochs not included due

to gross signal artifact
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