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Summary

The vast majority of mental illnesses can be conceptualized as developmental disorders of neural
interactions within the connectome, or devel opmental miswiring. The recent maturation of
pediatric in vivo brain imaging is bringing within reach the identification of clinically meaningful
brain-based biomarkers of developmental disorders. Even more auspicious, is the ability to study
the evolving connectome throughout life, beginning in utero, which promises to move the field
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from topological phenomenology to etiological nosology. Here, we scope advances in pediatric
imaging of the brain connectome as the field faces the challenge of unraveling developmental
miswiring. We highlight promises while also providing a pragmatic review of the many obstacles
ahead that must be overcome to significantly impact public health.

Introduction

Nearly two-thirds of neuropsychiatric disorders manifest in the first two decades of life
(Kessler et al., 2005). During this time discrete periods of susceptibility to mental illness
occur. For example, different stages of early childhood are characterized by the emergence
of disruptive, impulse control, anxiety and autism spectrum disorders, while adolescence
and young adulthood are notable for the onset of mood, psychotic, and substance use
disorders. As such, the vast majority of mental illnesses are conceptualized as
neurodevelopmental disorders, rooted in disturbances of typical brain development. In other
fields of medicine, understanding the biological roots of diseases has led to breakthroughs in
treatment and prevention. For neuropsychiatry, despite the accumulation of knowledge over
decades, this promise is yet to be realized (Kapur et al., 2012). Fortunately, recent
methodological and neuroscientific advances suggest that the field is nearing an inflection
point in the study of these complex disorders.

Theoretical models of neuropsychiatric illnesses have long implicated “developmental
miswiring” — i.e., abnormal development of neural interactions in the connectome. Only
recently, however, have pediatric brain imaging methods matured to allow delineating
typical and atypical developmental phenomena in the human macroscale connectome in vivo
(e.g., Collin and van den Heuvel, 2013; Craddock et al., 2013; Hagmann et al., 2012; Uddin
et al., 2010). As a result, long-standing aspirations to attain clinically meaningful brain-
based biomarkers of abnormal brain development are coming within reach. Perhaps most
exciting is the potential to inform our etiologic understanding of neuropsychiatric iliness
using diffusion MRI and resting state functional MRI (R-fMRI) technologies that permit the
study of the evolving connectome across all stages of development—from fetus to
adulthood. These approaches promise to open an unprecedented window into the developing
brain, well before the appearance of clinical signs or symptoms, which appear relatively late
in the disease process. At the same time, the increasing popularity of longitudinal designs
and augmentation of imaging datasets with rich phenotyping (e.g., clinical, cognitive,
lifestyle, fitness), more comprehensive laboratory characterizations (e.g., pubertal
hormones), and integration with genomics are promising to move the field beyond a
topological phenomenology to an etiological nosology.

While promising, pediatric connectomics faces a number of unique obstacles, many of
which require rethinking current models and practices, as well as a careful delineation of
strategic goals for the field. Here, after distinguishing between a phenomenological and
etiologic understanding of the developing connectome and its miswiring (Section 1), we
provide a critical overview of the challenges related to connectomics MRI (Section 2). We
then highlight a range of experimental and methodological innovations that may help to
overcome these challenges, some of which are already being implemented. These
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encompass considerations about novel approaches aimed at examining increasingly younger
populations including fetal MRI (Section 3), as well as new statistical and analytical
approaches (Section 4). Given the large proportion of developmental connectomics studies
that have employed R-fMRI, the present work focuses heavily on findings revealed by this
technique. Nonetheless, the areas discussed are equally relevant for diffusion imaging.

SECTION 1: Developmental Miswiring: Emerging Models

Phenomenology

General Principles—The quantification of changes in brain function and structure over
time, commonly referred to as trajectory analysis, is central to the characterization of
developmental phenomena, and of how they are impacted by phenotypic differences (e.g.,
sex) and biological processes (e.g., puberty, gene expression) (Shaw et al., 2010). From the
perspective of miswiring, trajectory analysis allows for the description of deviations in
development related to pathological disturbances (e.g., disease, stressors); (see Figure 1). In
particular, it differentiates between processes altering the timing of developmental
phenomena and those altering their nature (i.e., the shape of a trajectory). For example,
decelerations in the progression of typical changes are believed to index immaturity or
delay, while accelerations may represent precocious development. The volumetric MRI
literature has taken the lead in delineating neurodevelopmental timing abnormalities among
neuropsychiatric conditions. For example, in ADHD, longitudinal volumetric and cortical
thickness studies have consistently shown a pattern of delayed (i.e., immature) cortical
development (e.g., Shaw et al., 2007). The connectomics literature is only beginning to take
on the challenge of understanding normative developmental trajectories and the factors that
interfere with those trajectories.

Beside abnormalities in timing, scenarios in which the shape of a trajectory is changed may
signal more profound developmental disturbances. Such alterations can entail the formation
of ectopic (i.e., abnormally located) connectivity, a failure to form critical connections, or a
halting of development (Figure 1). For any deviation in the timing or shape of a
developmental trajectory, trajectory analyses extending to later development or adulthood
can also provide insight into whether neurodevelopment will eventually “catch-up” or
“normalize,” and if this change will be reflected in behavior. Related to normalization is
“compensation” - when disturbances in one circuit can be functionally masked by
compensatory changes in the development of another circuit.

Importantly, the implications of any abnormality in the developmental trajectory of an
individual’s connectome can only be understood in terms of its relationship to behavior, in
both the short- and the long-term. In this regard, analyses of developmental trajectories can
be used to: 1) detect developmental disturbances which may signal risk or the onset of
illness, 2) identify sensitive period(s) for intervention, 3) identify modifiable targets for
intervention, 4) monitor the impact of environmental exposures and interventions on
development, and 5) detect heterogeneity in current diagnostic categories to permit
diagnoses that are more firmly rooted in the underlying neurobiology.
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Given the high dimensionality of the connectome, it seems quite likely that multiple types of
miswiring co-occur simultaneously in any given disorder. For example, initial evidence for
Tourette’s disorder (Church et al., 2009) and autism (Di Martino et al., 2011) have
suggested mixed developmental patterns, including both immature and ectopic connectivity.
These are preliminary results that require confirmation from large longitudinal studies (see
Section 2). While the number of connectomic studies focusing on a range of
neurodevelopmental disorders has increased exponentially in the past 10 years (Castellanos
et al., 2013; Dennis and Thompson, 2014; Fox and Greicius, 2010; Uddin et al., 2010), only
a handful have explicitly investigated age-related effects (i.e., age by diagnostic group
interactions; see Figure 2).

Connectome-Specific Principles—A prerequisite to the study of developmental
miswiring is the characterization of typical brain development. Still in its infancy, research
on typically developing connectomics has already identified several fundamental organizing
principles underlying the developing connectome (Collin and van den Heuvel, 2013;
Hagmann et al., 2012; Menon, 2013; Power et al., 2010; Vogel et al., 2010). At the most
general level, evidence suggests that the foundations of major structural pathways and
functional systems within the connectome are in place prior to birth, and already possess key
topological properties (e.g., small-worldness, community structure, hubness, rich-clubness).
However, a burgeoning literature is drawing attention to a variety of age-related refinements
in network architecture that are posited to optimize the integration of multimodal
information and the segregation of local, specialized processing.

An important caveat is that the connectomics literature to date likely provides an
underestimate of the magnitude and complexities of developmental phenomena. Although
there are exceptions (e.g., Gao et al., 2014a), the vast majority of studies have not included
the most active periods of brain development. These encompass the fetal period and the first
two years of life, in which initial studies have already found more dramatic age-related
changes (e.g., velocity, magnitude) than subsequently. Puberty is also known to substantially
affect brain structure and function but is frequently overlooked in the connectomics
literature. Additionally, as highlighted by recent efforts (Betzel et al., 2014; Hagmann et al.,
2010), the complex relationship between functional and structural connectivity during
development is only beginning to be explored. Below, we provide an abbreviated list of key
phenomena in typical development, whose derailment may lead to neurodevelopmental
miswiring.

»  Fromshort- to long-range connectivity. Short-range connectivity predominates in
infancy (Fransson et al., 2007; Gao et al., 2011), and gradually decreases during
childhood and adolescence as long-range network connectivity becomes
predominant in young adulthood (Dosenbach et al., 2010; Fair et al., 2009; Fair et
al., 2007; Hagmann et al., 2010; Kelly et al., 2009; Supekar et al., 2009). Thus, it
appears that brain maturation entails a shift from a local to a distributed network
architecture. As discussed in Section 2, failure to account for head motion in the
analysis of distance-based changes can exaggerate this developmental
phenomenon. Indeed, the changes in short and long-range connectivity appear to be
most prominent in the first two years of life (e.g., Gao et al., 2011; Yap et al.,

Neuron. Author manuscript; available in PMC 2015 September 17.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Di Martino et al.

Page 5

2011), with more modest changes occurring later in development (Fair et al.,
2012b; Satterthwaite et al., 2012).

Community structure changes. Graph theory is the study of large-scale systems or
networks (see Figure 3) defined as collections of nodes (i.e., brain areas) joined in
pairs by lines or edges (i.e., connections). Community detection is an important
focus of graph-theoretical analyses of the developing connectome, allowing the
identification of subsets of nodes (brain areas) in the connectome graph that are
more densely connected internally than with the remainder of the graph; these are
taken to reflect networks (Power et al., 2011). Questions related to network
segregation (i.e., how many communities/networks are in a brain?), integration
(i.e., how are communities/networks connected?), and influence (i.e., which nodes
or edges are more relevant for connecting networks?) are being increasingly
investigated in both typical and atypical neurodevelopment (Sporns, 2013). Thus
far, this line of work has suggested that while fundamental community structure
properties are present across the lifespan, their composition changes during early
development. The degree of integration and segregation between networks also
appears to change with respect to age. Specifically, in infancy (Fransson et al.,
2011), and potentially prenatally (Thomason et al., 2014), communities tend to
include anatomically proximal regions; with age, more distributed networks emerge
(Fair et al., 2007). Once again, we emphasize that findings may be obscured if one
does not properly account for head motion (e.g., artifactually decreased network
segregation; Satterthwaite et al., 2012).

Maximizing the Cost-Efficiency of Information Transfer. The ability to assess the
efficiency of information flow within the connectome is another appealing feature
of graph-theoretical approaches. Efficiency can be assessed both globally (i.e.,
inverse of the average shortest path length in the connectome graph) and locally
(i.e., inverse of the average shortest path connecting all neighbors of a vertex).
Consistent with the notion that the brain’s foundational architecture is present early
in life, recent studies have found that the global efficiency of the connectome is
relatively constant across the lifespan. In contrast, local efficiency has been found
to increase across childhood (Cao et al., 2014; Dennis et al., 2013a; Supekar et al.,
2009; Wu et al., 2013). In considering network features responsible for maximizing
topographical efficiency, researchers have emphasized hierarchical aspects of the
connectome’s community structure, in particular the role of connectivity hubs (i.e.,
the most “connected” nodes in the connectome graph; Bullmore and Sporns, 2012).
While structural hubs are highly determined in early development, functional hubs
appear to undergo some reorganization during the course of development. In the
infant brain, hubs are located in primary sensory and motor cortex, whereas by
young adulthood hub primacy shifts to posterior cingulate, insula and other
heteromodal cortex (Fransson et al., 2011). Intriguingly, recent work has noted that
hubs tend to connect to one another to form “rich clubs.” Rich club graph
organization describes a system where highly connected nodes tend to connect
more strongly with each other than would be expected by chance. This type of
organization of the connectome serves to further optimize the integration of
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information across the connectome and thus network efficiency (van den Heuvel
and Sporns, 2011). Initial investigations using structural (Dennis et al., 2013b) and
functional (Ball et al., 2014; Grayson et al., 2014) connectivity have found that rich
club coefficients increase from childhood to adulthood, as some level of
topographical reorganization also occurs (Grayson et al., 2014).

«  From subcortico-cortical to cortico-cortical connectivity. Occurring in parallel
with the network reorganization described above are developmental changes in
subcortical circuitry (Fair et al., 2010; Greene et al., 2014; Supekar et al., 2009).
Specifically, subcortico-cortical connections tend to be strong in childhood,
particularly with other phylogenetically primitive areas (e.g., limbic and paralimbic
cortex). With age, subcortico-cortical connectivity decreases as cortico-cortical
connectivity strengthens, particularly within association cortex (Supekar et al.,
2009).

e Interhemispheric Connectivity. The integration of information between the cerebral
hemispheres is another developmentally sensitive feature of the connectome. Not
surprisingly, interhemispheric interaction has long been a focus of developmental
models for learning and cognition, as well as genetic and neurodevelopmental
disorders (Paul et al., 2007). Histologic, diffusion and morphometric studies have
consistently highlighted developmental changes in the micro and macrostructure of
the corpus callosum, which is the primary conduit of interhemispheric information
transfer. Notably, interhemispheric structural connectivity exhibit marked sex
differences during development (Ingalhalikar et al., 2014). Complementing this
body of literature, a recent resting state fMRI (R-fMRI) study revealed that age-
related variations in homotopic connectivity (i.e., connections between
geometrically corresponding interhemispheric brain areas) are regionally specific.
That is, homotopy appears to increase within sensory processing and motor control
areas, but to decrease in higher-order cognitive regions (Zuo et al., 2010). These
changes in interaction are thought to coincide with developmental increases in
hemispheric specialization — a process by which each hemisphere becomes
uniquely optimized to support a specific subset of functions (e.g., language in the
left hemisphere). Of note, while models of interhemispheric interaction tend to
focus primarily on the corpus callosum, subcallosal commissures and subcortical
structures are also known to facilitate communication (Uddin et al., 2008) and
should also be considered in models of developmental miswiring.

While phenomenology emphasizes detailed, systematic characterization of typical and
atypical developmental processes, etiology focuses on the identification of causative agents
that lead to connectome miswiring. Etiologies of miswiring can be endogenous (i.e., nature)
or exogenous (i.e., environment). Successful delineation of the etiology of connectomic
miswiring is essential to efforts focused on prevention and can lead to novel targets for
therapeutic interventions. Below, we outline key events and factors thought to have an
etiological role in neurodevelopmental disorders.

Neuron. Author manuscript; available in PMC 2015 September 17.
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Genetics. The sequencing of the human genome (McPherson et al., 2001) and,
more recently, the availability of relatively rapid and inexpensive sequencing have
created a number of opportunities for identifying genetic determinants of
developmental miswiring. Importantly, most psychiatric disorders are the result of
multiple, complex interactions between genes as well as between genes and the
environment. This means that it is likely to be rare that any single developmental
process or disorder is controlled by a single gene or genetic event. The
heterogeneity of neuropsychiatric disorders serves to further complicate the
challenge at hand, and necessitates phenotypic characterizations beyond simple
categorical labels (see the Research Domain Criteria Project for an example).
Fortunately, the models for interrogating genetic underpinnings of behavioral and
neurobiological phenomena are advancing. Candidate gene studies, which tend to
be limited in scope (due to requirements for a priori knowledge) and difficult to
replicate, have given way to hypothesis-free strategies using exome and whole
genome scanning. These approaches have proven to be more successful in
identifying risk alleles (e.g., copy number variants) for specific events and/or
conditions — most of which turn out to be rare (<1%), with large effects rather than
more common variants of small effect (El-Fishawy and State, 2010). Initial efforts
attempting to link risk variants to connectome phenotypes are emerging. For
example, recent work examined a common autism risk variant in the Met Receptor
Tyrosine Kinase (MET). Differential patterns of functional and structural
connectivity in the default network as well as task activation were found as a
function of MET genotype (risk, non-risk, intermediate) (Rudie et al., 2012).
Intriguingly, for all imaging measures, the effects of this risk allele appeared to be
greater in individuals with ASD than typical comparisons. Central to the success of
this study, and future efforts with risk variants, is the generation of very large, well-
phenotyped samples, from which participants representing different genotypes can
be selected for comprehensive imaging. Of note, since epigenetics (heritable and
non-heritable changes in gene function that occur without altering the sequence)
may also play a role in phenotype development, both epigenetic and genetic
strategies may be necessary to fully appreciate the genetic substrate or contribution
to imaging findings.

Prenatal. Susceptibility for connectome miswiring may, in part, be conferred in
utero. A recent review suggests that while the first trimester is characterized by
neuron production, migration and early synaptogenesis, the mid- to late-second
trimester marks the genesis of the macroscale connectome (Collin et al., 2014). It is
during this time that thalamo-cortical, cortico-cortical, callosal-cortical and cortico-
spinal connections begin to form (Ghosh and Shatz, 1993). This period is marked
by vulnerability to injury from numerous sources (e.g., oxygen deprivation,
chemical exposure, infection, stress; Gluckman and Hanson, 2004). Interference
with cell maturation, function, or survival may account for untoward shifts in
programming of connections in the brain. Consistent with this notion, lasting
neurological consequences of physical and mental adversity during pregnancy are
now well-documented into the second and third decades of life. For example,
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maternal cortisol levels predict offspring amygdala volume (e.g., Buss et al., 2012),
and maternal alcohol use relates to offspring white matter abnormalities (Wozniak
and Muetzel, 2011). Additionally, a recent connectomics study of neonates with a
history of in utero growth restriction (an outcome of placental insufficiency)
demonstrated decreases in global and local efficiency, which predicted deficits in
subsequent infant neurobehavioral progress (Batalle et al., 2012). Thus, early
disturbances can have substantial, lasting impact. As will be discussed later,
emerging fetal imaging methodologies will provide an unprecedented window into
in utero brain organization and the factors that impact it.

Perinatal. Over the past two decades, the prevalence of preterm births has
increased in response to an array of factors, including in vitro fertilization,
increasing parental age of conception, and earlier detection of fetal distress.
Preterm neonates requiring intensive care following birth have increased risks for
later life cognitive and learning impairments (3-5 times higher than the general
population; Karmel et al., 2010) and signs of neurological damage (e.g., diffuse
white matter injury, reduced grey matter volume, intraventricular hemorrhage,
periventricular leukomalacia). Initial connectomics studies in preterm infants have
highlighted disruptions in thalamocortical connections implicated in cortical
organization (Groppo et al., 2014; Smyser et al., 2012). Work focused on the visual
system has highlighted the vulnerability of the developing brain in the period after
30 weeks gestational age (Groppo et al., 2014). Moving forward, a key challenge
for the field will be to differentiate primary and secondary causes in the complex
sequelae that follow preterm delivery.

Early life stress/trauma. Animal and human research, including volumetric imaging
studies, have demonstrated that organisms are particularly vulnerable to stressful
experiences early in life (e.g., Graham et al., 2013). Although few studies have
examined the impact of early life stress or trauma on the connectome, emerging
work suggests that long-term alterations in the circuitry of the amygdala constitute
one enduring effect of early life stress. For example, Gee et al. (2013) used a face
emotion perception fMRI task to demonstrate a precocious pattern of task-related
amygdala connectivity with medial prefrontal cortex in previously institutionalized,
maternally deprived children relative to typical comparisons. This effect was
mediated by higher cortisol levels and associated with amelioration of separation
anxiety symptoms, suggesting adaptive circuit changes in response to early
stressors (Gee et al., 2013). Together these results dovetail with extensive work in
animal models demonstrating that adverse experiences in early development
accelerate the engagement of amygdala-prefrontal circuitry. The R-fMRI literature
has also highlighted enduring changes in amygdala-prefrontal circuitry in response
to trauma/early life stress (Burghy et al., 2012; Herringa et al., 2013). However, the
direction of the effects observed differs from that obtained with task fMRI, likely
reflecting contextual influences, and/or methodological differences between
studies.

Connectomic studies are beginning to differentiate vulnerabilities selective to
specific forms of stress and trauma. For example, in a study of females with
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chronic posttraumatic stress disorder precipitated by early life trauma, posterior
cingulate cortex/precuneus functional connectivity with the right amygdala and
hippocampus/parahippocampal gyrus was decreased (Bluhm et al., 2009). In a
study that focused on inhibitory control in individuals without current psychiatric
diagnoses, patterns of connectivity among regions supporting motor inhibition were
related to the reported severity of early-life maltreatment (Elton et al., 2014).
Intriguingly, this relationship differed between males and females. This led the
authors to speculate that sex-related differences in later-life consequences of
childhood maltreatment (e.g., greater depression/anxiety in females vs. aggression,
impulsivity and drug abuse in males) may be related to the differential impact of
early-life maltreatment on the connectome. Future work examining the impact of
stress and trauma throughout the lifespan will be crucial to the delineation of
sensitive periods and differential outcomes. Consideration of various factors
contributing to resilience (e.g., genetics, epigenetics) will be crucial for explaining
inter-individual variations.

Puberty. Although commonly described in terms of physical changes and
reproductive maturation, puberty also demarcates a unique stage of brain
maturation. Surges in sex hormones (e.g., estrogen, testosterone, and gonadotropin
releasing hormone) affect brain organization (Sisk and Zehr, 2005) and enhance
neural sexual dimorphism (Blakemore et al., 2010). One prominent theory, termed
the organizational-activational hypothesis, posits that while sex-steroids shape
brain circuitry during the prenatal period, it is not until puberty that the brain
“pathways” they shape are activated. During this time, surges in sex hormones are
believed to activate these pathways and amplify sexual dimorphism.

Consistent with this notion, sex differences in connectome structure are detectable
during the first two years of life (Gao et al., 2014b) and persist through childhood
and adolescence (Satterthwaite et al., 2014b). Additionally, the imaging literature
to date has confirmed that changes observed during adolescence are more fine-
grained specialization, as the gross network morphology nears adult levels prior to
the onset of puberty (Caviness et al., 1996). For example, in gray matter, synaptic
pruning and cortical thinning are observed in prefrontal cortex (Gogtay et al., 2004;
Huttenlocher and Dabholkar, 1997; Petanjek et al., 2011) and subcortical regions
(Raznahan et al., 2014). At the same time, white matter structural indices of
directional diffusion increase throughout major association and projection tracts
(Dennis et al., 2013b; Lebel et al., 2008; Simmonds et al., 2014). These refinements
in brain structure are thought to maximize integration of information processing
within the connectome during puberty.

From the perspective of functional connectomics, gross functional network
community structure and interaction properties (e.g., hub hierarchy) are thought to
be in place prior to adolescence (Hwang et al., 2013). Once again, adolescence
appears to be characterized by critical refinements in support of the integration of
information processing and coordination between regions. From a systems
neuroscience perspective, the balance of prefrontal and limbic influences shifts.
While prefrontal cortex continues to undergo pruning and cortical thinning
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throughout adolescence, its engagement in cognitive control nears adult levels early
in adolescence (Ordaz et al., 2013). In contrast, the striatal systems supporting
reward processing undergo more substantial maturation throughout this period,
which is characterized by greater motivational processing and ventral striatal
activation relative to adults (Galvan et al., 2006; Geier et al., 2010; Padmanabhan et
al., 2011; Padmanabhan and Luna, 2013; Raznahan et al., 2014; Sowell et al., 1999;
Spear, 2000; Wahlstrom et al., 2010).

Recent imaging studies have emphasized the value of including physical and/or
hormonal assessments during puberty (Bramen et al., 2011; Satterthwaite et al.,
2014b). From a clinical neuroscience perspective, such assessments are particularly
valuable, as variations in pubertal processes are thought to underlie inter-individual
and sex differences in vulnerabilities to psychopathology (e.g., schizophrenia,
mood disorders, eating disorders, suicide, and substance abuse; Paus et al., 2008).
As such, greater attention to the impact of pubertal processes on connectome
development is critical for both phenomenological and etiologic understandings of
miswiring in the connectome. Complementary measurements with other modalities
such as electroencephalography should also be considered (Uhlhaas et al., 2009).

Substance abuse. An incipient literature is beginning to address the effects of drugs
of abuse on connectomics in the context of development. A central challenge in this
pursuit is the determination of whether variations in the connectome associated
with substance use are the result of exposure to drugs or are trait markers of
behavioral tendencies towards substance use. In this regard, prenatal exposure
studies are the least equivocal. For example, initial work has examined the impact
of prenatal cocaine exposure on default network properties in adolescence, finding
greater within-network connectivity at rest and decreased deactivation during a
working memory task with emotional distractors (Li et al., 2011). Studies
examining the impact of prenatal alcohol exposure also suggest long-term effects
on the connectome. Initial work has demonstrated delays in the progression of
white matter development in children and adolescents with Fetal Alcohol Spectrum
Disorders, which appear to be linked to behavioral and cognitive deficits (Treit et
al., 2013).

Determining the impact of substance exposures later in development is challenging.
An illustrative example comes the cannabis literature. Initial functional
connectomics studies of chronic cannabis use in adolescence have already
furnished a number of findings (Behan et al., 2014; Orr et al., 2013), which are
particularly intriguing given recent secular trends in the legal status of cannabis in
many western societies. However, the reliance of these efforts on retrospective
designs precludes determinations of whether abnormalities in brain structure and
function were pre-existing deficits or sequelae of early substance use (for review
see: Jacobus and Tapert, 2014). Large-scale prospective population-based
approaches with deep-phenotyping, such as the Generation R Study (Jaddoe et al.,
2012), will have the opportunity to address this issue in years to come. For
example, the IMAGEN study has demonstrated discriminant as well as predictive
identification of future binge drinking among adolescents (Whelan et al., 2014).
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Another fruitful strategy is to enroll at risk youth stratified by family history of
substance use prior to exposure (e.g., Squeglia et al., 2014).

Given the many possible etiologies of developmental miswiring, the task of
obtaining all the necessary variables to delineate causal relationships is
considerable. Complicating this challenge is the growing list of new potential
etiologies for miswiring (e.g., immune dysregulation and metabolic abnormalities;
Gabbay et al., 2009; Gabbay et al., 2010) that few imaging datasets have taken into
account, to date. These points are not made to be discouraging, but rather to
emphasize the importance of comprehensive, careful phenotyping and knowledge
of emerging clinical literatures.

SECTION 2: Challenges and Solutions

Having presented the phenomena and potential factors related to miswiring, we now turn to
challenges in study design, data collection and preprocessing relevant to developmental
miswiring. For each topic, challenges and potential solutions are presented.

Technical Traps in Image Acquisition and Processing

Movement—It could be argued that, for imaging studies of middle childhood, in-scanner
head motion is the most problematic source of artifact. This is largely due to the
hyperkinetic tendencies of children, which can introduce systematic biases; similar
challenges arise in neurodevelopmental disorders characterized by hyperkinesia (e.g.,
ADHD, Tourette’s or bipolar disorders). While this phenomenon has long been known, only
recently has the field become acutely aware that traditional approaches to movement
correction are insufficient. Specifically, in a series of R-fMRI studies from three
independent investigators, head “micro-movements” as small as 0.2mm were shown to
systematically impact observed patterns of functional connectivity (Power et al., 2012;
Satterthwaite et al., 2012; Van Dijk et al., 2012).

These small amounts of head displacement have become particularly alarming in the R-
fMRI childhood development literature because they are usually associated with decreases
in long-range connectivity and increases in short-range connectivity.l This particular pattern
is identical to the pattern associated with brain maturation. In response to this challenge, two
studies have re-examined developmental changes in functional connectome measures. They
have found that that while head motion did inflate previous reports of distance- and age-
dependent connectivity differences related to age, the developmental phenomena remained
after correcting for motion (Fair et al., 2012b; Satterthwaite et al., 2012). They also noted
that the effects of motion artifact on patterns of brain development are heterogeneous
(Satterthwaite et al., 2013). For example, while motion inflates estimates of distance-
dependent changes in connectivity with age, it obscures evidence of age-related increases in
functional network segregation (Fair et al., 2007; Stevens et al., 2009).

10f note, this specific pattern is dependent upon the inclusion of global signal regression in image preprocessing. When excluded, the
opposite pattern is observed, with motion artifacts producing increases in long-range connectivity and decreases in short (Satterthwaite

etal., 2013).
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Since the initial papers detailed the effects of “micro-movements” on R-fMRI data,
investigators have introduced a variety of post-processing procedures to mitigate motion
artifact. These include censoring corrupted volumes “scrubbing” (Power et al., 2012, 2013),
spike regression (Satterthwaite et al., 2013), inclusion of higher-dimensional motion
parameters (Satterthwaite et al., 2013; Yan et al., 2013), single-subject ICA denoising (ICA-
FIX) (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), wavelet despiking (Patel et al.,
2014), and group-level corrections (Satterthwaite et al., 2013; Van Dijk et al., 2012; Yan et
al., 2013). While all of these techniques have been shown to mitigate the influence of
motion-related artifacts on R-fMRI connectivity, two primary concerns remain. First artifact
removal may be incomplete, and second neurobiologically relevant signals may also be
removed. For example, two recent studies (Yan et al., 2013; Zeng et al., 2014) suggest that
the phenotypic propensity to exhibit in-scanner motion is associated with distinct profiles of
connectivity, even in the absence of actual in-scanner motion. Such work highlights the
challenges of separating signal from noise in the absence of ground truth. It is worth noting
that while post-processing corrections are necessary to salvage the large number of existing
datasets, recent advances in MRI acquisition (e.g., multi-echo pulse sequences and
prospective motion-correction strategies) should reduce the impact of motion artifact
henceforth (Kundu et al., 2013).

Finally, it is important to highlight that while R-fMRI has received the most systematic
attention to date, task-based functional MRI as well as structural imaging modalities (e.g.,
morphometric, diffusion tractography) are also affected by micro-movements (Siegel et al.,
2014; Yendiki et al., 2013). Systematic examinations of the effects of micro-movements on
task-related fMRI and structural imaging measures are overdue.

Registration—Image registration (a.k.a. spatial normalization) transforms brain images
into a common stereotaxic space with the goal of improving the correspondence of brain
regions across individuals; this in turn aligns their connectome graphs. Although significant
effort has been directed to optimizing different registration algorithms, some degree of
misregistration will remain. This becomes more problematic in pediatric studies due to
systematic age-related changes in the contrast between white and grey matter, as well as
changes in the size and location of anatomical landmarks (Sanchez et al., 2012). This is
particularly true for children younger than six (Altaye et al., 2008; Muzik et al., 2000) - the
age at which the volume of the developing brain reaches 95% of that observed in adults
(Caviness et al., 1996). As such, usage of commonly distributed adult templates in pediatric
studies represents a potentially significant source of error in brain developmental studies.

To overcome these challenges, several groups have created pediatric templates. Most of
these templates, however, are based on relatively broad age ranges; 32 age-specific
templates from ages 4-24 years, created with 6-month increments, represent the lone
exception (reviewed in Sanchez et al., 2012). Additional strategies need to be employed to
incorporate the use of age-specific templates in studies comprising different age groups. For
example, one multistage registration algorithm first normalizes individual images to
unbiased age-specific templates constructed to improve registration quality at different age-
bands, then, in a subsequent registration, transforms them to a unified template (Fonov et al.,
2011). An alternative or complementary approach is to estimate region-specific
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misalignments, and then compensate for this error by smoothing the data. In this regard, one
distinct advantage of graph theoretic approaches is that graph invariants (e.g., degree
distribution, modularity, efficiency) can be compared across individual-level connectomes
without the need for registration, as long as the number of graph nodes and edges are
controlled for.

Atlases—Defining the size and location of the brain units to be used as nodes in
connectome graphs is a crucial step. Depending on the analysis at hand, nodes can be
defined using image voxels (Zuo et al., 2012), anatomical parcellation (Desikan et al., 2006;
Tzourio-Mazoyer et al., 2002), animal model or postmortem cyto- and myeloarchitectonic
parcellations (Eickhoff et al., 2005; Lancaster et al., 2000; Miranda-Dominguez et al., 2014),
regions-of-interest derived from meta-analyses of task activation studies (Dosenbach et al.,
2007), or parcels derived from data-driven approaches subdividing the brain into
homogenous areas based upon functional or structural connectivity (Beckmann et al., 2009;
Bellec et al., 2010; Craddock et al., 2012). Regardless of node definition, care must be taken
when comparing connectomes between or across early age groups, as nodes (even voxels)
may correspond to substantially different brain units across developmental stages. For
example, commonly used meta-analytic and anatomical atlases are derived from adults; their
representational accuracy for young brains has yet to be fully investigated. Based on what is
known about development-related variation in the brain’s sulcal patterns, functional regions,
and microstructure, how well such atlases fit younger brains will likely vary with age.
Localization issues could be resolved using data-driven approaches to define age-specific
brain parcellations. Stability analyses (e.g., using bootstrap analyses of stable clusters
(BASC); Bellec et al., 2010) can evaluate the impact of development on region location and
size. Connectomes based on age-specific nodes will not be comparable across ages unless a
graph alignment can be performed (with the exception of their graph invariants, as indicated
in the prior section). Recent calls for individual-specific parcellations would face the same
challenges in graph alignment (Blumensath et al., 2013).

Nuisance Physiologic Signals—Since the origins of fMRI, the potential for
physiologic signals to introduce artifactual findings into analyses have been a central focus
(Birn, 2012). Cardiac and respiratory signals have received particular attention, though they
are not regularly controlled in analyses. From a developmental perspective, cardiac and
respiratory signals may be particularly problematic, as normative rates differ by age. For
example, a typical heart rate is between 100-160 beats per minute in an infant < 1, 70-120
in children 6-12 years-old and 50-100 in individuals >12; this is accompanied by profound
age-related differences in heart rate variability. For respiration, a typical rate is 30-60
breaths per minute for infants < 1, 18-30 for children 6-12, and 12-16 in individuals > 12.
While direct measurement and correction for these signals is ideal, logistical challenges tend
to arise during data collection, particularly in younger children. Fortunately, the field is
moving towards the development of data-driven corrections (e.g., CORSICA (Perlbarg et
al., 2007), PESTICA (Lowe et al., 2008), ICA-FIX (Griffanti et al., 2014; Salimi-Khorshidi
et al., 2014)), which should mitigate concerns about the confounding influence of
physiologic signals across development. However, we know of no systematic studies on this
topic.
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Experimental Pitfalls

Study Design—Pediatric connectomics delineating developmental trajectories and
detecting biomarkers have employed an array of designs, which can be grouped into two
broad categories: cross-sectional and longitudinal. Both have advantages and limitations, as
itemized in Table 1. In general, cross-sectional designs are faster, less costly, and often
include a broader range of measures, as they do not carry the burden of repeated assessments
over time. However, data simulations have compellingly illustrated that cross-sectional
designs are insufficient to accurately render developmental trajectories (Kraemer et al.,
2000). Kraemer and colleagues argue that investigators should never interpret “differences
between time-group means” from cross-sectional data as increases or decreases, nor as
changes over time. Instead, cross-sectional data should be reserved for inference about
differences between age-groups and used to generate hypotheses about developmental
trajectories. This restriction of cross-sectional research is due in part to the inability to
equate age-groups on all potentially relevant factors (e.g., 1Q, socioeconomic variables). For
all of these reasons, longitudinal designs, following the same individuals across time, are
undeniably superior in the inferences permitted.

As the field works to implement longitudinal studies, it is important to consider key
potential pitfalls (Thompson et al., 2011). For example, population cohort effects can
compromise the interpretability of results. A cohort is defined as “the total population of
individuals entering a specified environment at the same point in time” (Thompson et al.,
2011; p. 895). Pragmatically, cohorts are commonly referenced to birth year, and individuals
born within a five-year period are generally considered to be in the same cohort. Changes in
nutrition, policy, or the law, among numerous other factors, can differentiate results from
distinct cohorts. Again using marijuana as an example, the move towards decriminalization
or outright legalization of the substance in certain states in the US will likely produce cohort
effects. Cohorts prior to legalization will be limited to those willing to chance illicit activity;
new cohorts will include less risky individuals as well, thereby changing the profile of
marijuana users within a cohort. Alternatively, cohorts can be defined by factors such as
developmental milestones, or the age of illness onset. Regardless of the rigor applied to
define cohorts, one cannot assume that all individuals within a defined cohort will exhibit
parallel trajectories. Factors such as environmental exposures (e.g., catastrophic events,
trauma, familial and academic stressors) and genetic predispositions can easily produce non-
parallel trajectories within a cohort. These potential confounds can be overlooked by simple
averaging, and thus require more careful consideration of potential within-cohort variation
during both the design and analytic phases of a study.

When balancing the various pragmatic factors (e.g., study duration, funding) and potential
confounds, an alternative is to employ a blended cross-sectional/longitudinal design,
referred to as a structured, multicohort design (Thompson et al., 2011). In this design the
developmental period of interest (e.g., ages 6-17) is sampled using a series of evenly spaced
cohorts that overlap in age and are followed for relatively brief periods (e.g., a series of
cohorts that differ in birth year by 12 months are simultaneously followed for 3 consecutive
years). The blended cross-sectional/longitudinal design addresses shortcomings inherent in
either individual method; it is therefore increasingly recommended. One means of
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accelerating the pace of longitudinal study construction is to identify existing cross-sectional
cohorts of interest and add longitudinal follow-ups. Researchers can add follow-up time-
points to existing cross-sectional imaging studies (e.g., NKI-Rockland Sample - Nooner et
al., 2012; the Philadelphia Neurodevelopmental Cohort - Satterthwaite et al., 2014a) or
imaging-based follow-ups to established cohorts that are well-characterized but did not
initially include brain imaging (e.g., a 33-year ADHD follow-up sample; Proal et al., 2011)
or the UK Biobank Initiative (Petersen et al., 2013).

One final consideration that applies to both cross-sectional and longitudinal efforts is the
need to prepare the field for brain genomics. The recent Human Connectome Project
initiative (Van Essen et al., 2012) has brought twin study designs to central focus in the
imaging community. Undoubtedly, twin studies are useful tools for exploration of the
contributions of genes and environment to normal and pathologic development. In the
structural imaging literature, they have established the high heritability of gray matter
cortical thickness and surface area. Likewise, an initial twin study has suggested the
heritability of network efficiency (Fornito et al., 2011). However, twin studies are not the
only tool available for delineating genetic contributions to the connectome, and are not
without limitations. Pedigree studies have been employed to establish the heritability of
default network connectivity (Glahn et al., 2010). As highlighted earlier in our section on
genetics, studies have begun to explore the potential utility of designs focusing on the
identification of connectomic phenotypes for rare genetic variants; these variants may be
among the most promising of design advances in the field of genetics (Chow et al., 2012).
For any of these designs, we note that brain-genetics relationships can vary with age,
because genes are differentially expressed in different tissues and at different developmental
ages (Tebbenkamp et al., 2014). These factors introduce confounds that make interpretation
difficult.

Sampling Strategy—Similar to other areas of neuroscience, a key challenge to the
successful delineation of etiologies of connectome miswiring is the generation of
representative data. With few exceptions (e.g., Philadelphia Neurodevelopmental Cohort;
Satterthwaite et al., 2014a), the vast majority of brain imaging studies to date has relied on
opportunistic sampling strategies to build datasets. Such approaches are fraught with
potential biases that compromise the representativeness of the data collected and thus the
ability to replicate or generalize findings to the community. As connectomics moves into the
era of Big Data, voices in the emerging field of population neuroscience (Falk et al., 2013)
are emphasizing that although large sample size is important (see Table 1 for list of large-
scale pediatrics connectomics data resources), it is not enough; samples must be
representative. Fortunately, the fields of demography, epidemiology and survey research can
guide the imaging community in selecting sampling strategies that can reduce bias, increase
statistical power and improve causal inference. Particular focus must be placed on
identifying social and environmental variables that can moderate brain-behavior
relationships. One strategy that may be particularly valuable at the present time is the
identification of existing epidemiologic cohorts from which imaging subsamples could be
rapidly selected.
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SECTION 3: New windows into the developing brain

Below, we highlight key advances in imaging that are rapidly defining the next generation of
pediatric imaging studies, with a particular focus on the connectome. If successful, these
advances will enable us to trace typical and pathologic developmental processes from the
fetus to adulthood.

Natural Sleep Imaging

Collecting MRI data during natural sleep represents a significant advance for early postnatal
examinations of the developing brain (e.g., newborns, infants, toddlers, preschoolers). Sleep
MRI bypasses requirements for compliance and remaining still in the scanner, which are
practically insurmountable for children under age five. A growing literature is demonstrating
the feasibility of imaging infants and young children during natural sleep without the need
for medical sedation, avoiding unnecessary risks to participants.

Initial sleep fMRI efforts focused primarily on patterns of activation produced by passive
auditory and receptive language paradigms (e.g., Redcay et al., 2007). However, the
emergence of intrinsic functional connectivity approaches has increased the scope of
examination to include the broader connectome. Initial studies in infants and toddlers have
revealed structural and functional connectivity patterns similar to those observed in awake,
older children (e.g., Fransson et al., 2009; Gao et al., 2013). The success of these efforts has
raised hopes that natural sleep fMRI could be instrumental in tracking maturation of the
developing connectome, as well as in detecting and characterizing early miswiring. Not
surprisingly, sleep fMRI is rapidly finding its way into clinical studies focused on
populations at risk or with early onsets of illness (e.g., low birth weight populations,
intellectual and developmental delays, language disorders, autism).

Yet a number of challenges and open questions remain. In particular, similarities between
the awake and sleeping connectomes cannot be assumed to infer equivalence. In adult sleep
staging studies, despite overall similarities, state-related differences between wakefulness
and non-REM sleep are consistently observed (e.g., Boly et al., 2012; Horovitz et al., 2009;
Larson-Prior et al., 2011; Spoormaker et al., 2012). These findings parallel the sleep-related
cortical ‘breakdown’ described in the EEG literature: as sleep deepens, cortical intrinsic
functional connectivity decreases (Massimini et al., 2005). The strongest differences are
observed between extremes (i.e., wakefulness vs. sleep) rather than among sleep stages. To
date, studies of natural sleep in young children have not quantified the impact of sleep vs.
wakefulness on the functional connectome. As such, it is unclear how well sleeping and
awake resting fMRI data can be used to bridge the divide between samples that span early
life, childhood, and adulthood (when wakeful study is more practical). This is particularly
relevant in the context of longitudinal studies. Future efforts aimed at systematically
mapping the stability between sleep and wakefulness for functional connectome measures
will help in study design and interpretation.
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Fetal MRI in utero offers a novel means to capture broad properties of the developing
connectome. Studies are just beginning, but initial results indicate that MRI methods for
evaluating connectivity in utero are robust, despite significant challenges (e.g., extreme
movement, small volume, encasement in maternal compartment).

Pioneering fetal DTI and R-fMRI studies performed in utero have begun to demarcate stages
of macro-scale brain connectivity development at the beginning of human life. The first in
utero tractography study of fetal white matter showed white matter tracts following a
hierarchical developmental pattern, with highest fractional anisotropy in the splenium,
followed by the genu, and then the internal capsule (Kasprian et al., 2008). Complementary
R-fMRI studies of typically developing fetuses scanned in utero demonstrate that older
gestational ages are characterized by stronger long-range and homotopic connectivity
(Thomason et al., 2014; Thomason et al., 2013). They also have verified the presence of
proto-visual, motor, and default mode networks in the last gestational trimester (Schopf et
al., 2012).

Progress in human fetal in utero DTI and R-fMRI research has had to overcome severe
technical hurdles (e.g., Jiang et al., 2009; Seshamani et al., 2014) but can still suffer extreme
data loss due to motion. Substantial methodological advances will be necessary to determine
the best methods for acquisition and processing of in utero fetal data. These will include
improvements in the correction of maternal and physiological sources of noise,
enhancements in image resolution, development of age-specific fetal atlases, and robust
motion correction. Additionally, a current limitation of fetal DTI and R-fMRI is that the
field still lacks a definitive understanding regarding the physiological basis of the signals
being measured. Although nascent, in utero fetal MRI represents an auspicious frontier for
breakthroughs regarding the origins of disease and development of the human nervous
system.

Translational Studies

A complete understanding of developmental miswiring in the functional connectome will
continue to evade us until we move toward direct experimental manipulations capable of
providing a mechanistic account of how miswiring can arise. Arguably, only animal models
permit direct structural, pharmacological, molecular, and genetic experimental
manipulations that will furnish comprehensive mechanistic insights into miswiring, while
controlling for environmental factors (e.g., early experience and diet). Importantly, from the
perspective of enabling longitudinal studies, the time scales of animal lifespans provide
experimentally tractable timeframes within which to address developmental questions.
Confidence in the likely success of a translational approach is bolstered by strong
demonstrations of homology of the structural and functional connectomes across
mammalian species. For example, homologues of the default network, which is thought to
support spontaneous cognition in humans, have been identified in several non-human
primate species, including the macaque monkey (Margulies et al., 2009; Vincent et al.,
2007), chimpanzee (Barks et al., 2013), as well as in rodents (Lu et al., 2012). Cross-species
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homologies, particularly in the macaque monkey, extend beyond the default network to most
of the networks commonly observed in humans (Hutchison and Everling, 2012).

Another important advantage of animal models is that they permit simultaneous invasive
electrophysiological recordings, which are a prerequisite for understanding the
neurophysiological basis of functional connectivity. While invasive recordings are possible
in humans implanted with intracranial electrodes for the purposes of seizure monitoring,
such studies are limited to areas in which seizure onset zones are suspected; additionally, by
definition, the brains being examined are atypical. Animal models permit experimental
invasive recordings not possible in humans. In macaques, Leopold and colleagues have
shown robust relationships between fluctuations in the amplitude of intracranially recorded
neuronal fluctuations in both high (e.g., gamma) and low frequency bands and the intrinsic
fMRI signal fluctuations that underlie the functional connectome (e.g., Shmuel and Leopold,
2008). In rodents, an elegant line of research (e.g., Keilholz, 2014) has investigated the
relationship between both static and dynamic measures of functional connectivity and
concurrently recorded electrophysiological measures of neuronal activity. These efforts
demonstrate how simultaneous recording techniques can permit the differentiation between
aspects of the functional connectome that reflect changes in infraslow neuronal activity and
those that reflect changes in higher frequency (e.g., gamma) activity. These distinct
frequencies have been associated with global and local neuronal processing, respectively;
longitudinal translational studies delineating these phenomena may therefore reveal the
specific neuronal processes underlying integration and segregation in the connectome, and
how these processes can go awry.

One major pitfall of fMRI studies in animal models is that the animals must either be
anesthetized, introducing a major confounding influence (Li et al., 2014), or intensively
trained to tolerate the magnet environment. Accordingly, the development and application of
techniques that will facilitate the interrogation of the functional connectome in awake,
behaving animals, is urgently needed.

SECTION 4: Analytic Models and Considerations

Changing Statistical Frameworks

Most studies of miswiring in the developing connectome have focused on the identification
of connections between areas or functional systems (e.g., “task-positive” and default
networks) that differ between children with and without a given diagnosis. Such approaches
are preferred due to their reliance on widely available and easy to interpret univariate
analyses. However, as highlighted in a recent review (Craddock et al., 2013) such
approaches are not well suited for broader examinations of the connectome because they
require careful correction for multiple comparisons. Additionally, univariate methods cannot
measure interactions between systems. Such interactions may be particularly relevant in the
developing connectome, where functional brain systems mature in concert with one another.
Disturbances in the development of one functional system can impact the development of
others. Schizophrenia research provides a useful example: recent models suggest that
frontoparietal dysfunction may in part result from low-level abnormalities in the visual
system (Butler et al., 2001). Thus, failure to examine systems interactions among systems
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(with multivariate approaches) can lead to spurious conclusions about deficits in individual
systems.

Multivariate statistical approaches offer a potential solution to the limitations of univariate
statistics, as they evaluate the relationship between the entire connectome and its associated
phenotypic variables (e.g., age, diagnosis). While independent component analysis (ICA) is
the most commonly used multivariate methodology in the connectomics literature, a
growing number of alternative approaches are emerging (e.g., cluster analysis, support
vector regression, multivariate distance-based matrix regression, canonical correlation
analysis). Multivariate approaches are not without cost, however, as they inherently obscure
information about the involvement of individual connections or functional systems, thereby
necessitating follow-up with univariate analyses.

Next Steps for Graph Theoretical Analyses—Beyond the application of graph theory
to the characterization of the human connectome, recent studies have highlighted its
potential utility in dissecting heterogeneity among samples. This involves creating graphs in
which nodes are used to represent study participants (rather than brain regions), and edges
(connections) are used to represent the similarity of participants’ behavioral and/or imaging
profiles (rather than functional or structural connectivity). In this sense, the graph represents
the links between individuals based on similarities in their behavior and/or brain profile.
Application of community detection approaches enables the identification of homogenous
subgroups within a larger heterogeneous sample. Community detection overcomes
challenges of attempting to match individuals on multiple dimensions simultaneously, and
holds great promise for the identification of previously unappreciated subgroups, which can
transcend traditional diagnostic labels. For example, Fair and colleagues used this approach
to characterize heterogeneity in ADHD samples based on neuropsychological profiles and
functional brain imaging (Fair et al., 2012a; Gates et al., 2014). Both of these works
identified multiple subpopulations, not only in the clinical group, but also in typically
developing samples. These efforts suggest that understanding heterogeneity in behavior
and/or brain phenotypes among populations is critical to characterizing the multiple
mechanisms that may underpin heterogeneous neuropsychiatric disorders. One other notable
example is that of Yang and colleagues, who carried out community detection on R-fMRI-
based graphs of drug-naive, first-episode early-onset schizophrenia (EOS) patients and
demographically matched controls based on their intrinsic brain networks (one graph per
network). Community detection successfully differentiated individuals with EOS from
controls, based on their default network graph, and EOS patients with predominantly
negative symptoms from those without, based on their fronto-temporal network graph (Yang
et al., 2014). Moving forward, subject community detection approaches are likely to provide
the field with powerful tools for data-driven classification of individuals based upon
complex heterogeneous profiles such as neuropsychiatric diagnoses.

Brain Maturation Indices—The concept of a “brain development index” was introduced
to summarize the complex patterns of brain development present in imaging data and
generate developmental trajectories. In this approach, high-dimensional imaging data are
used to predict a subject’s age using regularized regression (e.g., support vector regression)
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or regularized regression (e.g., lasso or elastic net). Because of the flexibility of these
models, it is critical that the data be cross-validated using separate training and testing sets.
Dosenbach et al. (2010) used this approach to predict neurodevelopment on a single-subject
level using the complex pattern of intrinsic brain functional connectivity (Dosenbach et al.,
2010). Notably, the strengthening of within-network connections and weakening of
between-network connections were among the most highly predictive of group membership.
This finding has been replicated in independent datasets even after controlling for motion
artifact (Fair et al., 2012b). Subsequently, this approach has been applied to multi-modal
developmental data emphasizing its utility as a data-integration technique (Brown et al.,
2012; Erus et al., 2014). For example, Erus et al. demonstrated that individuals with an
advanced brain development index (constructed using T1 structural and DTI images)
showed faster reaction times on a battery of cognitive tests, whereas those whose predicted
“brain age” was substantially less than their actual age showed evidence of cognitive
slowing (Brown et al., 2012; Erus et al., 2014). These studies have raised the possibility that
deviations from a normative multivariate pattern of brain development could be associated
with developmental neuropsychiatric syndromes. While this approach shows substantial
promise of clinical utility, thus far most indices are constructed using chronological age as
the single surrogate of maturation. Other functional indices of maturity are likely to emerge.
In addition, specifying deviations in brain trajectories in complex multivariate patterns will
be needed. If deviations from normative trajectories of brain development indices are
present in many disparate disorders (as seems likely), necessary and sufficient brain features
related to such deviations must be identified across, between, and within diagnostic groups.

Regional Indices—Regional metrics are gaining increasing popularity in the
connectomics literature likely reflecting their amenability to full-brain, voxelwise
exploratory analysis and apparent sensitivity to pathologic processes in the brain (for review
see Zuo and Xing, 2014). Regional amplitude (ALFF; Zang et al., 2007) and homogeneity
(ReHo; Zang et al., 2004) of the low-frequency fluctuations in spontaneous brain activity are
among the most popular (but see Wink et al., 2008 for a discussion of elegant wavelet-based
alternatives). Since their conception, these two indices have been revised to yield more
robust and reliable measures. In the case of ALFF, fractional ALFF (FALFF; Zou et al.,
2008) has emerged to minimize the contributions of artifactual signals (e.g., head motion);
ReHo, which is based on volumes, has been refined to its cortical surface counterpart which
has been shown to minimize partial volume effects (Zuo et al., 2013). Recent work has
applied these regional metrics to index developmental and aging phenomena in the
connectome, as well as to index inter-individual variation in behavior and cognition
(Mennes et al., 2011). One caveat is that, while potentially valuable for biomarker
development, the neurobiological meaning of these regional measures is yet to be
determined (see an initial effort in Jiang et al., 2014).

Temporal Dynamics—Traditional perspectives of the connectome have viewed
functional connectivity as being static, or constant over time; this is exemplified by
depictions of the “functional connectome” with a single 3D graph. In contrast, a dynamic
view, which emphasizes the presence of time-varying patterns in functional connectivity is
rapidly emerging (Hutchison et al., 2013). Initial work suggests that the intrinsic brain
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alternates among a small number of well-defined “connectivity states” over time. While the
developmental connectomics literature has yet to explore potential age-related changes in
temporal dynamic properties (e.g., number of connectivity states, specific connectivity state
patterns, transition behaviors), such exploration is imperative. Examination of temporal
dynamics will have to be mindful of the potential contributions of motion, and motion
correction strategies, as they both have the potential to artifactually alter findings.

Conclusion

The goal of the present perspective was to scope current efforts in developmental
connectomics and provide insights into the work ahead for the field as it takes on the
challenge of unraveling the miswired connectome. Recognizing that this is a dynamic period
in developmental neuroscience, we attempted to balance promises and aspirations with a
pragmatic review of the many obstacles and potential solutions. In considering the breadth
of the issues raised, borrowing and sharing ideas and solutions from other disciplines may
prove to be the single-most important means of accelerating the pursuit of a simple goal: to
attain a better understanding of how the brain works in health and disease so that we can
develop better diagnostics, prevention and treatments.
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Figure 1. Miswired Developmental Trajectories
Different categories of abnormal developmental trajectories can be identified. Abnormalities

in timing may reflect precocious (A) or delayed (immature; B) development with respect to
typical development. Other scenarios may involve halted development (C; when
development stops after initially following typical trajectories), failure to mature (D; when
the maturation trajectory does not follow/attain the normative curve) or ectopic development
(E; when developmental changes occur in atypical but not in typical development). Blue and
red dashed lines: typical and atypical development, respectively.
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Figure 2. Age-Related Connectomics Studies in Selected Neurodevelopmental Disorders
Among the most studied disorders in clinical connectomics (Craddock et al, 2013), we

selected four examples of either early or later clinical onset in youth (Autism [blue]; ADHD
[green]); schizophrenia [pink]; depression [yellow]). For each disorder, we counted the total
number of connectomic empirical studies that included task-fMRI, R-fMRI and/or diffusion-
based MRI. Amongst them, we then counted the studies examining age-related effects
(excluding aging). As the pie charts show, few studies have addressed developmental
effects. The largest proportion was in autism (10% of autism papers) and ADHD (8% of
ADHD papers) followed by a negligible number in schizophrenia (1%) with no such studies
in depression. Notably, none of the age-related studies identified used a longitudinal design.
Our searches were conducted in July 2014 with PubMed combining the key words
“connectivity” and the name of each of the above disorders.
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Figure 3. Connectome graph
This sketch depicts a graph whereby nodes (solid black circles) are connected by edges

(solid lines); a highly connected node is illustrated as solid blue circle. Community detection
algorithms identify subsets of nodes that are more densely (colored clouds) connected
internally than with the remainder of the graph - i.e., modules. Figure modified from Fair et
al., 2012; PNAS.
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